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ABSTRACT 
Protein-polypeptide interactions, including those involving intrinsically-disordered 
peptides and intrinsically-disordered regions of protein binding partners, are crucial for 
many biological functions. However, experimental structure determination of protein-
peptide complexes can be challenging. Computational methods, while promising, 
generally require experimental data for validation and refinement. Here we present 
CSP_Rank, an integrated modeling approach to determine the structures of protein-
peptide complexes. This method combines AlphaFold2 (AF2) enhanced sampling 
methods with a Bayesian conformational selection process based on experimental 
Nuclear Magnetic Resonance (NMR) Chemical Shift Perturbation (CSP) data and AF2 
confidence metrics. Using a curated dataset of 108 protein-peptide complexes from the 
Biological Magnetic Resonance Data Bank (BMRB), we observe that while AF2 typically 
yields models with excellent consistency with experimental CSP data, applying 
enhanced sampling followed by data-guided conformational selection routinely results in 
ensembles of structures with improved agreement with NMR observables. For two 
systems, we cross-validate the CSP-selected models using independently acquired 
nuclear Overhauser effect (NOE) NMR data and demonstrate how CSP and NMR can 
be combined using our Bayesian framework for model selection. CSP_Rank is a novel 
method for integrative modeling of protein-peptide complexes and has broad 
implications for studies of protein-peptide interactions and aiding in understanding their 
biological functions. 
 
Abbreviations:  AF2 – AlphaFold2 Multimer; BMRB - Biological Magnetic Resonance 
Data Bank; CEST – Chemical Exchange by Saturation Transfer; cryoEM - cryogenic 
Electron Microscopy; CSP - Chemical Shift Perturbation NMR data; ES - Enhanced 
Sampling, ESM - Evolutionary Scale Modeling; LDDT – Local-Distance Difference Test; 
ML – Machine Learning; MSA – multiple sequence alignment; NMR - Nuclear Magnetic 
Resonance; NOE - Nuclear Overhauser Effect; NOESY – NOE SpectroscopY;  PDB - 
Protein Data Bank; PSVS - Protein Structure Validation Server;  pLDDT - predicted 
LDDT, a model confidence score predicted from ML; RDC - Residual Dipolar Coupling.   
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INTRODUCTION 
Structural analysis of protein-peptide complexes is pivotal for understanding biological 
mechanisms and facilitating development of peptide and peptide-mimicking therapeutics 
(Sugase et al, 2007; Watkins & Arora, 2015; Lee et al, 2019). In favorable cases, 
structures of protein-peptide complexes can be determined using X-ray crystallography, 
cryogenic electron microscopy (cryoEM), or Nuclear Magnetic Resonance spectroscopy 
(NMR). NMR offers several advantages, including the ability to examine the molecule of 
interest in a near-native solution environment and to provide quantitative information 
about conformational dynamics. However, experimental structure determination of 
protein-peptide complexes by conventional NMR methods involves substantial effort 
and generally requires isotope-enrichment of both the protein receptor and the 
polypeptide ligand (Aiyer et al, 2021).  

Recent advances in computational structure prediction methods now frequently deliver 
high-quality protein-peptide docking poses with accuracy often comparable with 
experimental studies (Johansson-Åkhe & Wallner, 2022; Tsaban et al, 2022; Lensink et 
al, 2023, Ozden et al, 2023;). Despite the longstanding challenge of predicting optimal 
pairwise protein docking poses (Janin et al, 2003), recently developed atomic-resolution 
protein structure prediction tools such as AlphaFold2-multimer (AF2) (Jumper et al, 
2021; Evans et al, 2021), AlphaFold3 (AF3) (Abramson et al, 2024), RosettaFold (Baek 
et al, 2021; Krishna et al, 2024) and Evolutionary Scale Modeling (ESMFold) (Lin et al, 
2023) have reinvigorated the field. These tools frequently outperform more traditional 
protein-peptide docking algorithms especially in cases involving extensive structural 
changes, such as those that occur upon binding of disordered polypeptides to receptor 
proteins (Ko & Lee, 2021; Tsaban et al, 2022; Zhang et al, 2023; Mondal et al, 2023). 
Although the evolving machine learning (ML)-based modeling methods often provide 
remarkably accurate protein structure predictions (Jumper et al, 2021; Huang et al, 
2021; Bryant et al, 2022; Tejero et al, 2022; Li et al, 2023), in some cases AF2 structure 
models do not match to experimentally-determined structures (Huang et al, 2021; 
Terwilliger et al, 2022; Bonin et al, 2024; Huang & Montelione, 2024). These counter 
examples provide important lessons about the strengths and weaknesses of ML-based 
modeling methods and demonstrate the need for experimental validation or refinement 
of ML-based models, particularly for flexible proteins and those that adopt multiple 
conformational states.  

 
“Enhanced Sampling” (ES) describes a suite of emerging methods that modulate the 
data pipeline of ML-based structure prediction methods like AF2 to explore the 
conformational variability of protein structures. These methods are grounded in the 
hypothesis that either AF2 has learned by some kind of memorization the alternative 
conformations of protein structures (Del Alamo et al, 2022; Sala et al, 2023, 
Chakravarty et al, 2024), or the stronger claim that AF2 has learned insights into the 
free energy landscape governing protein conformational diversity (Roney & 
Ovchinnikov, 2022; Monteiro da Silva, 2023; Vani et al, 2023; Feng et al, 2024, Bryant & 
Noé, 2024). ES methods can be leveraged to predict conformational dynamics and 
alternative conformational states of biomolecules and possibly provide information 
about the pathways between disparate states (Kalakoti & Wallner, 2024).  
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Recent studies underscore the efficacy of ES techniques, including excellent 
performance in prediction of protein complexes (Lensink et al, 2023; Ozden et al, 2023; 
Wallner, 2023a; Wallner, 2023b) and in modeling alternative conformational states of 
proteins  (Del Alamo et al, 2022; Stein & McHaourab, 2022; Kryshtafovych et al, 2023; 
Bryant & Noé, 2024; Chakravarty et al, 2024; Kalakoti & Wallner, 2024; Monteiro da 
Silva et al, 2024; Stein & McHaourab, 2024; Sala et al, 2023; Wayment-Steele et al, 
2024). These methods rely on perturbing the input multiple sequence alignment (MSA) 
and/or varying weights of neural network nodes to achieve broader conformational 
sampling. AFAlt (Del Alamo et al, 2022) and AFCluster (Wayment-Steele et al, 2024) 
both use shallow MSAs to suppress dominance of evolutionary covariation information 
(ECs), which results in increased conformational diversity, allowing the modeling of 
alternative conformational states, while SPEACH_AF (Stein & McHaourab, 2024) 
suppresses ECs by MSA column masking. AFSample exploits alternative network 
weights and node dropouts to generate conformational diversity of AF2-predicted 
models (Wallner, 2023a), while AFSample2 manipulates the MSA by performing alanine 
column masking like SPEACH_AF, but in a randomized manner that has been 
proposed to more robustly predict the transitional structures between two or more 
alternative states (Kalakoti & Wallner, 2024). ES methods can provide many 
biophysically plausible 'shots on goal’ (i.e., varied and physically relevant structure 
models), improving the performance of AF2 in modeling complexes and in sampling 
conformational landscapes. ES methods can be used to generate collections of 
alternative conformations, providing the basis for conformer selection by ranking based 
on model consistency with experimental data (Huang & Montelione, 2024). 

 
NMR chemical shift perturbations (CSPs) are changes in NMR resonance frequencies 
of atoms in a receptor protein due to binding by a ligand or biomolecular partner.  They 
monitor both direct contacts between the receptor and ligand and conformational 
changes of the receptor, including long-range allosteric effects, due to ligand binding 
(Wishart, 2011; Williamson, 2013). They are highly informative and easily acquired for 
small, well-behaved proteins once backbone NMR resonance assignments have been 
determined. CSPs are routinely used in guiding NMR-based structural modeling of 
protein-protein and protein - nucleic acid complexes (Karaca & Bonvin, 2013). CSP-
guided docking methods like HADDOCK often provide accurate structures of protein 
complexes using CSP data to guide the docking process (Dominguez et al, 2003; De 
Vries et al, 2010), particularly when CSPs are available for both partners in the 
interaction. ColabDock, a framework incorporating sparse distance restraints to guide 
AF2 modeling, has also been applied successfully in a few examples of CSP-based 
docking (Feng et al, 2024). However, interpreting CSPs as structural restraints presents 
challenges, particularly for docking of peptides which involve folding-upon-binding, 
and/or when ligand binding results in allosteric effects that perturb chemical shifts 
distant from the interaction interface (Schmitz et al, 2012; Nussinov & Tsai, 2015; 
Mondal et al, 2023; Skeens & Lisi, 2023). Additionally, CSPs encode information that 
may be averaged from multiple conformational states or complex assemblies, including 
multiple transient weak complexes which may have their own CSPs, complicating their 
interpretation as docking restraints (Schmitz et al, 2012; Robustelli et al, 2012; Mondal 
et al, 2023). Hence, significant challenges in integrative modeling using CSPs remain, 
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especially for systems where CSPs can only be measured for one binding partner and 
those involving significant structural rearrangements of the receptor upon binding, 
where there are significant numbers of CSPs distant from the binding interface, or 
folding-upon-binding of the polypeptide ligand. 

In this paper we present CSP_Rank, an integrative modeling protocol for determining 
the structures of protein - peptide complexes that combines multiple ES approaches like 
AFSample, AFSample2, and AFAlt with ligand-induced CSP data for the receptor 
protein. Using a database of 108 protein-peptide complexes with known 3D structures 
and available NMR chemical shift data, we observed that baseline AF2-multimer models 
of these complexes have excellent knowledge-based structure-quality features and 
achieve high structural similarity to the corresponding complex models deposited by 
experimental research groups in the Protein Data Bank (PDB). Using a metric of model 
quality based on comparing predicted and observed CSPs due to complex formation, 
many (but not all) AF2 models of these protein-peptide complexes score better than the 
corresponding experimental models available in the PDB. Using some of these protein-
peptide complexes as test cases, we demonstrate the CSP_Rank protocol, which uses 
AF2 ES methods to generate collections of protein-peptide complex structures and 
ranks the resulting models using a Bayesian conformer selection score assessing the fit 
of models to CSP data and AF2 model reliability scores. The resulting ensembles of 
protein - peptide complexes usually fit experimental CSP data better than the 
corresponding structures available in the PDB or the baseline AF2-multimer models. In 
several cases the accuracy of the resulting CSP_Rank models was also cross-validated 
with experimental NMR NOESY data and were found to fit these data as well as 
structures generated using the NOESY data as restraints.  Finally, we demonstrate how 
CSP and NOESY data can be combined using our Bayesian framework for model 
selection from the enhanced-sampled AF2 conformer distributions. 

 

METHODS 

Data collection 
Chemical shift lists for holo(bound) and apo(free) forms of proteins were collected using 
the BioMagResBank (BMRB) API (Hoch et al, 2023). The criteria for inclusion in this set 
were binary complexes between an ordered protein receptor and a polypeptide of 80 
amino-acid residues or less, with backbone resonance assignments available for both 
the apo and holo versions of the receptor protein. As additional criteria, the 
experimental conditions used in determining NMR assignments for the apo and holo 
protein receptor must be approximately the same in terms of ionic strength, pH (± 0.5 
pH units), and temperature (± 5 degrees C). The representative structure of the bound 
form of the complex used for comparison was selected as the medoid model of the 
NMR ensemble deposited in the PDB, as determined with the program PDBStat (Tejero 
et al, 2013). 
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Structure computation 
Structures of both the free (apo) protein receptor and the bound (holo) protein-
polypeptide complex were modeled using AlphaFold Multimer v2.3 available on Google 
Colab (Mirdita et al, 2022) using no templates and three recycles (hereafter denoted as 
‘baseline AF2’). Only the first-ranked model of five models returned by baseline AF2 
were used for comparison with the medoid PDB model. AF2 models were protonated 
using the Amber relax Google Colab notebook protocol (Mirdita et al, 2022).  

For several protein - polypeptide complexes, we also computed protein-peptide complex 
structures using the ES methods AFSample (Johansson-Åkhe & Wallner, 2022), 
AFSample2 (Kalakoti & Wallner, 2024), and/or AFAlt (Del Alamo et al, 2022).  
AFSample inferences used various AF-Multimer model weights (v2.1.2, v2.2.0, and 
v2.3.2). In all cases modeling was done with no templates.  When using AF-Multimer 
v2.1.2, modeling was done using 21 max_recycles, with v2.2.0 with the default of 3 
max_recycles, and with v2.3.2 using 9 max_recycles. AFSample2 inferences used the 
same variation in AF-Multimer model weights as the AFSample runs. In all cases 
inference was run with no templates and 3 max_recycles. Runs with AFAlt use AF-
Multimer v2.1.2, no templates, 5 max_recycles, and max MSA depths ranging from 32 
to 128. Hydrogen atoms were added to files generated by AFSample, AFSample2, and 
AFAlt using a custom script which employs the Amber Force Field, analogous to the 
method employed by the original AF2 manuscript (Jumper et al, 2021). Each of these 
enhanced sampling methods can be quite aggressive in generating conformational 
diversity in addition to models that are not physically reasonable: e.g. incorrect amino 
acid chirality, non-native cis peptide bonds, and other biophysically incorrect features, 
particularly in the not-well-packed residue segments of the modeled proteins. The most 
egregious of these physically unreasonable models were identified and removed, as 
described elsewhere (Spaman et al, manuscript in preparation). The resulting relaxed 
models were used for further analysis. 

 
CSPs were calculated by comparing chemical shifts between bound and free forms of 
the complex. CSPs were calculated only for well-defined residues (Snyder & 
Montelione, 2005; Kirchner & Güntert, 2011) of the receptor protein chain. Well-defined 
residues were determined using the overlapping region from Dihedral Angle Order 
Parameter (DAOP) analysis (Hyberts et al, 1992), CYRANGE (Kirchner & Güntert, 2011) 

and FindCore2 (Snyder et al, 2014), determined by running the PDB NMR conformer 
ensemble with Protein Structure Validation Server (PSVS) v2.0 (Bhattacharya et al, 
2007). In each system, only N- and C-terminal “not well-defined” residues were 
trimmed, while not-well-defined internal loops were not excluded from analysis.  

 
Chemical shift predictors were used to identify which receptor protein residues have 
backbone atoms with expected significant 15N-1H CSPs upon peptide binding. There are 
multiple state-of-the-art chemical shift predictors including ShiftX2 (Han et al, 2011), 
Sparta+ (Shen & Bax, 2010), and UCBShift (Li et al, 2020). Each of these methods has 
advantages and disadvantages for this application; for instance, when provided with 
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structural homologs with assigned chemical shifts UCBShift has been shown to 
outperform other methods. The analysis presented here uses predicted chemical shifts 
from UCBShift generated using the implementation on NMRBox servers (Maciejewski et 
al, 2017). However, comparable results were obtained using predicted shifts from other 
methods. These other results can be accessed via a GitHub repository created for this 
study (https://github.rpi.edu/RPIBioinformatics/CSP_Rank) or in Supplementary Figure 
1. 

 
Chemical shifts were acquired from 2D 15N-HSQC spectra, providing backbone amide 
1H and 15N CSP data. CSPs were calculated as described elsewhere (Weng et al, 
2020):

 

Cutoff values for “significant” CSPs were determined as described previously (Ma et al, 
2016; Aiyer et al, 2021). Briefly, significant outlier CSPs were identified using an 
iterative procedure in which mean and standard deviations of CSPs were computed, all 
CSPs with values greater than an outlier cutoff (z-score = 3) were removed, mean and 
standard deviations were then recomputed for the remaining CSPs, and the process 
was iterated until no CSPs remain that are greater than this outlier cutoff. The subset of 
CSPs below this final outlier cutoff were used to compute the mean CSP (excluding 
outliers) and standard deviation. CSPs less than this mean were defined as 
“insignificant”, those greater than this mean as “significant”. These “significant” and 
“insignificant” CSPs were then used to generate a ranking metric (described below) to 
assess the fit of holo structure models to the experimental CSPs. 

 
Cross validation 
Knowledge-based model quality assessments, including ProCheck (backbone and all 
dihedral angles) (Laskowski et al, 1993), Ramachandran plot analysis (Chen et al, 
2010), and MAGE clashscore analysis (Chen et al, 2010) were done as described 
elsewhere using the Protein Structure Validation Server (PSVS) (Bhattacharya et al, 
2007). For systems with available data, the final computational models were cross 
validated against NMR NOESY and/or RDC data using RPF DP-scores (Huang et al, 
2005; Huang et al, 2012) computed using RPF and PDBStat (Tejero et al, 2013) 
software implemented in PSVS. 

 
RESULTS 

Dataset of protein-peptide complexes with NMR data 
We compiled a dataset including three-dimensional structures of 108 protein-peptide 
complexes structures and their associated apo and holo chemical shift lists. This 
dataset contains numerous systems known to involve extensive structural 
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rearrangement upon peptide binding. The dataset includes 22 calmodulin-peptide 
complexes (Soderling & Stull, 2001), 6 TFIIH-peptide complexes (Rimel & Taatjes, 
2018), 9 bromo and extraterminal domain (BET) complexes of BRD3 or BRD4 ET 
domain bound to polypeptides (Cheung et al, 2021) and 71 other protein-peptide 
complexes.  All the protein-peptide systems in this dataset have 1:1 stoichiometry. The 
protein receptors range from 34 to 197 residues, and the ligand peptides from 4 to 73 
residues. Metrics for DockQ (Basu & Wallner, 2016) and TM (Zhang & Skolnick, 2005) 
scores, and for backbone atomic RMSDs between the well-defined residues of the 
protein receptor in the baseline AF2 models relative to the medoid experimental models, 
are provided in Supplementary Figure 2. This dataset, including the PDB and BMRB 
ID’s, experimental and baseline AF2 atomic coordinates, experimental backbone 
chemical shifts (apo and holo), and predicted backbone chemical shifts (apo and holo) 
are available in a publicly accessible GitHub repository 
(https://github.rpi.edu/RPIBioinformatics/CSP_Rank).  

For each system in the protein-peptide complex dataset, five sets of 15N-1H chemical 
shift lists were collected from the BMRB archive or generated by chemical shift 
prediction based on atomic coordinates:  

1. apo receptor shifts from BMRB  
2. holo receptor shifts from BMRB  
3. predicted shifts for baseline AF2 apo structure  
4. predicted shifts for baseline AF2 holo structure  
5. predicted shifts for PDB holo structure.  

Using these data sets, three sets of CSPs were calculated for each complex:  

1. CSPs between apo and holo shift chemical shift lists from BMRB  
2. CSPs between shifts predicted for baseline AF2 apo and PDB holo structures  
3. CSPs between shifts predicted for baseline AF2 apo and baseline AF2 holo 
structures.  

While the focus on this work is on using 15N-1H data, CSPs were also calculated using 
backbone 13C’ and 13Ca-1H CSP data (Grzesiek et al, 1996; EvenaÈs et al, 2001, 
Williamson, 2013). These carbon shift data are less extensive in the BMRB; our 
database contains only 38 entries with 15N-1H, 13C’, and/or 13C-1H CSP data. Analysis 
using these restricted datasets is presented in Supplementary Figure 3.  

CSP_Rank_Score 
To rank the fit of structure models to CSP data, CSPs were computed for alternative 
models and compared. For each apo / holo pair, significant and insignificant CSPs are 
computed as outlined in the Methods section. A confusion matrix (Table 1) was 
generated by comparing predicted vs observed, and significant vs insignificant, CSPs. 
In computing the confusion matrix, for each observed CSP the absolute value of its z-
score is used to increment the corresponding quadrant of the confusion matrix; each 
increment of TP, FP, FN, and TN is the z-score of the corresponding observed CSP so 
that CSPs significantly larger (or significantly smaller) than the mean CSP contribute 
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more (or less) to the resulting statistical scores. Hence, there is more penalty applied to 
a model for missing a very large (significant) CSP than for missing a CSP close to the 
mean CSP value. 

Table 1. Confusion matrix used to label CSPs of the protein receptor upon peptide 
binding as True Positive (TP), False Negative (FN), False Positive (FP), or True 
Negative (TN). These values are used to calculate statistical measures of the fit of 
structure models to observed significant CSPs.                  

 Observed Significant CSP Observed Insignificant 
CSP 

Predicted Significant CSP True Positive (TP) False Negative (FN) 

Predicted Insignificant CSP False Positive (FP) True Negative (TN) 
 

 

True Positives (TP) are instances where a CSP is both predicted and observed to be 
significant (as defined above). False Positives (FP) are instances where a CSP is 
erroneously predicted to be significant. False Negatives (FN) are instances where a 
CSP is erroneously predicted as insignificant. True Negatives (TN) are instances where 
a CSP is both predicted and observed to be insignificant.  

Using this confusion matrix, the following information retrieval statistics were computed 
for each complex and each CSP data set:

TN’s are not typically factored into an F1 performance score. The Matthew’s Correlation 
Coefficient (MCC) (Matthews, 1975) is used in information retrieval statistics to account 
for instances where there is an imbalance confusion matrix; e.g. for systems with 
commonly encountered in protein-peptide complexes where there are many insignificant 
CSPs (e.g. for residues distant from the peptide binding site) relative to the number of 
significant CSPs.  

Using these statistics, we define a CSP_Rank_Score as the weighted average of F1 
and MCC (Chicco & Jurman, 2020): 
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The CSP_Rank_Score is used to compare how well various models of protein-peptide 
complexes taken from the PDB or predicted by AF2 fit to the CSP data.  Comparison 
plots for F1 and MCC scores across the database for medoid PDB models and top-
ranked baseline AF2 models are presented in Supplementary Figure 4. 

Fig 1. Data flowchart for generating CSP_Rank_Score. Structure models are selected from the PDB 
archive (medoid model of NMR ensemble) or generated by AF2 and provided to a chemical shift predictor 
(e.g. UCBshift) to generate a list of residues with predicted significant CSPs (bottom two rows). These 
predicted significant CSPs are compared to the list of protein residues with experimentally observed (real) 
significant CSPs shifts (top two rows) to generate a confusion matrix and resulting statistical scores used 
to compute the CSP_Rank_Score (see Eqns. 2 - 6). 

Performance of AF2 on protein-peptide complexes   
Using this collection of 108 protein-peptide complexes for which NMR CSP data are 
available, the accuracies baseline AF2 to the corresponding medoid PDB model, as 
assessed by TM Scores, are shown in Figure 1A. As was observed in a recent similar 
study on a database of 96 protein-peptide complexes (Tsaban et al, 2022), baseline 
AF2 models often have remarkably good agreement with the experimentally determined 
structures of these complexes. In a few cases, however, AF2 predicts binding sites and 
poses incongruent with the models deposited in the PDB. The AF2 complex models 
were also assessed with commonly-used knowledge-based structure quality scores 
including Procheck G-factors (Laskowski et al, 1993) for both phi/psi backbone dihedral 
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angles or for all backbone and sidechain dihedral angles  (Supplementary Figure 5), 
MolProbity clashscores (Chen et al, 2010) (Supplementary Figure 6), and 
Ramachandran plot statistics (Chen et al, 2010) (Supplementary Figure 7). These 
values are reported as Z-scores relative to the corresponding scores in high-resolution 
X-ray crystal structures (Bhattacharya et al, 2007).  Overall, as illustrated in 
Supplementary Figures 5-7, the AF2 models have much better knowledge-based 
structure quality statistics than the medoid PDB models. A similar observation was 
made in our studies of AF2 models generated for small proteins and compared with the 
corresponding experimentally determined structures available in the PDB (Tejero et al, 
2022; Li et al, 2023). 

Fig. 2. Performance summary of baseline AF2 on protein-peptide dataset. (A) Histogram of TM 
scores of baseline AF2 models to the medoid model selected from the NMR ensemble deposited in the 
PDB. (B) Scatter plot of CSP_Rank_Scores for 108 complex models, with y=x line plotted in red. Points 
above the y=x line denotes systems where the baseline AF2 model fits the CSP data better than the 
medoid PDB model. (C) Histogram of residuals from the y=x line; when the residual is > 0 then the 
baseline AF2 model fits the CSP data better than the medoid PDB model. Paired sample t-test p-value = 
0.033. During this work, AlphaFold 3 (Abramson et al, 2024) was released.  We evaluated performance 
across our dataset using the AlphaFold 3 server as a structure prediction engine in Supplementary 
Figure 8. 

Baseline AF2 protein-peptide models also generally perform well when assessed 
against the experimental CSP data (Figures 2B, C).  In fact, 67 of the 108 AF2-
modeled protein-peptide complexes have better CSP_Rank_Scores than the 
corresponding medoid PDB model. For each system, chemical shifts were predicted 
with UCBShift (Li et al, 2020) for the holo medoid model from the deposited NMR 
ensemble and the apo and holo computational models received from baseline AF2. 
CSPs which arise from the predicted shifts (bottom half of Figure 1) and experimentally 
observed chemical shifts reported in the BMRB (top half of Figure 1) are compared to 
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generate a confusion matrix and CSP_Rank_Score. In each case, the chemical shift 
lists for apo and holo systems were aligned by applying an offset to the apo data set to 
minimize the mean difference in chemical shift values between the apo and holo shift 
lists.   
 
Some representative cases from the study outlined in Figure 2 are illustrated in 
Figure 3. In these plots, we compare the medoid PDB and top-ranked AF2 models, 
color coding the residues with observed 15N-1H CSPs on the receptor; with larger CSPs 
indicated in darker shades of red.  A bar plot of CSP vs. residue number is shown at the 
top of each panel, with coloring of bars indicating the size of the CSP. “Blips” along the 
x-axis indicate the agreement of the CSPs predicted from the AF2 and/or PDB model 
with these NMR data; the color coding of these “blips” is explained in Figure 3 legend.    
 
The first class of AF2 models, in which the top-ranked baseline AF2 model fits the CSP 
data better than the medoid PDB model, is illustrated by the case of PDB_IDs 2kpz and 
2kfh (Figure 3A, B). For 2kpz the CSP_Rank_Score of AF2 model (0.83) is significantly 
higher than that of the medoid PDB model (0.54); this is also evident from the molecular 
structure image shown, where in the AF2 model the peptide hugs up closely against 
residues exhibiting significant chemical shift perturbations and the sites showing the 
largest CPSs. These interactions are mostly annotated with purple or green blips that 
indicate good agreement between predicted and observed CSPs in the AF2 model. 
Model PDB_ID 2kfh (Figure 3B) provides a second illustrative example of this case, 
where the AF2 model (CSP_Rank_Score 0.52) fits the CSP data better than the medoid 
PDB model (rank score 0.26). Approximately 30% of the AF2 models exhibit better 
agreement with CSP data than the corresponding PDB model (Figure 1C residual > 
0.1). As in the previous two examples, in most of these cases there are no yellow blips 
(indicating the PDB model fits better than the AF2 model) for significant CSPs. A 
second class of AF2 models is illustrated by the case of PDB_ID 2n7k (Figure 3C), 
where baseline AF2 misplaces the location of the peptide ligand, resulting in a 
significantly better CSP_Rank_Score for the PDB model (0.61) than for the baseline 
AF2 model (0.41). Approximately 10% of the AF2 models fall into this class (Figure 1C 
residual < -0.1); here the purely computational AF2 method provides an incorrect model 
for the protein-peptide complex. The third class of AF2 models, where 
CSP_Rank_Scores are similar (-0.1 ≤ Figure 1C residual ≤ 0.1), and visual inspection 
does not provide a clear conclusion of which is a better fit to the CSP data, is illustrated 
by model PDB_ID 7jq8 (Figure 3D). Similar performance observed for approximately 
60% of the targets. Figure 3D also illustrates a case of significant allosteric changes in 
the receptor upon peptide binding, resulting in CSPs throughout the receptor upon 
peptide ligand binding and creating significant challenges for any CSP-based docking 
protocol. It is remarkable that for ~ 90% of the protein-peptide complexes in our data 
set, the CSP_Rank_Scores for AF2 models, generated with no sample-specific 
experimental data, are similar or better than the CSP_Rank_Scores of the PDB models 
which are based on CSP and other experimental NMR data. 
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Fig. 3. Comparison of predicted and observed CSPs for representative complexes modeled with 
AF2.  In each panel a CSP histogram is provided for each residue in the sequence, with bars colored 
varying shades of red to reflect the size of the indicated CSP; red bars indicating large “significant” CSPs, 
and grey bars indicating small “insignificant” CSPs. Colored “blips” at the bottom of the histogram denote 
the pattern of agreement between the observed CSPs and those predicted using the PDB model or the 
AF2 model: purple - AF2 model fits the CSP data but the PDB model does not, green - AF2 and PDB 
models both fit CSP about equally well, yellow - PDB model fits the CSP data but the AF2 model does 
not, and red - neither AF2 nor PDB model fit the CSP data. Below the histogram is a structural view of the 
medoid PDB model (left) and rank 1 AF2 model (right) with the backbone cartoon of the protein colored 
by the significance pattern of CSPs.  (A) Data for PDB_ID 2kpz, a case where the AF2 model has a much 
better CSP_Rank_Score. (B) Data for PDB_ID = 2kfh, another case where AF2 achieves a better 
CSP_Rank_Score by docking closer to residues with significant CSPs. (C) Data for PDB_ID=2n7k, a 
case where AF2 misplaces the docking of the peptide ligand, which results in a better 
CSP_Rank_Scorefor the PDB model. (D) Data for PDB_ID 7jq8, a case with similar CSP_Rank_Scores 
for the two models, and many allosteric CSPs throughout the receptor due to peptide binding. In all 
cases, the top-ranked baseline AF2 model and medoid conformer from the PDB NMR ensemble are used 
to predict CSPs, which are then compared to the experimental CSP data to calculate a 
CSP_Rank_Score. 
 
Enhanced sampling with AF2.  
We reasoned that enhanced sampling (ES) with AF2 could generate a diverse collection 
of models, among which would be models that fit even better to the CSP data than 
models generated with baseline AF2.  For several systems, we explored this hypothesis 
using three different ES methods, AFSample (Johansson-Åkhe & Wallner, 2022), 
AFSample2 (Kalakoti & Wallner, 2024), and AFAlt (Del Alamo et al, 2022). For this work 
we used published protocols for the ES methods, which determined the number of 
models generated with each method. The distributions of structures generated by ES 
methods were clustered, each of the resulting models was annotated using a Bayesian 
CSP_Rank_Score (outlined below), and the top-scoring models from each cluster were 
used to generate an ensemble of complex models representing the uncertainty of the 
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resulting AF2-NMR model. 
 
Bayesian model selection score and model selection 
For each model generated by the enhanced AF2 sampling protocol, we estimated a 
likelihood of the model from an unnormalized Bayes equation: 
 

 
 
where 
 

 
 

describes how well the data is explained by the model, and the Bayesian prior is  
 

 
 

Here, ipTM and pTM are AF2 reliability scores (Jumper et al, 2021) for the 
corresponding model; this prior is the ranking confidence score defined by Wallner 
(Wallner, 2023b). 
 
To rank models from the ES protocols, we use the following equation 
 

 
 
AF2 - NMR models of protein complexes  
To characterize the conformational heterogeneity sampled by AFSample, AFSample2, 
and AFAlt, residues of the receptor proteins that are well-defined (described in 
Methods) across the resulting ensemble were superposed using the medoid model from 
the ensemble deposited in the PDB as a reference. The Bio.3d R package (Grant et al, 
2006) was then used to perform a principal component analysis (PCA) by aligning the 
coordinates of the receptor (excluding the not-well defined N- and C-terminal tails) and 
using the variation in coordinates of the peptide ligand for PCA. The first three principal 
components of the resulting PCA are used to identify and remove outlier structures, 
using an algorithm that calculates the Mahalanobis distance (Mahalanobis, 1936; 
Venables & Ripley, 2002; Brereton & Lloyd, 2016) for each point in the PCA space and 
excludes points beyond a defined statistical threshold (97.5th percentile of Chi-squared 
distribution with 3 degrees of freedom). After iteratively removing outliers detected in 
PCA space, the coordinates are analyzed by t-SNE (van der Maaten & Hinton, 2008, 
van der Maaten L, 2014; Krijthe, 2015) and UMAP (McInnes et al, 2018) non-linear 
dimensional reduction. K-means hierarchical clustering was then performed in both t-
SNE and UMAP space. The single top-scoring model, in terms of their P(model|data), 
from each cluster was selected and incorporated into an ensemble of structures 
representing the model of the complex and its uncertainty. We refer to the resulting 
ensemble as the AF-NMR model, in which ES with AF is combined with experimental 
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data to generate an ensemble representation of the set of AF models which best fit the 
experimental CSP data.   
 
A detailed illustrative example of the CSP_Rank protocol for protein-peptide complexes 
is presented in Figure 4 for the complex formed between the extra-terminal domain 
(ET) of the bromodomain and ET domain protein (BET protein) (BRD3) and the C-
terminal polypeptide segment of the murine leukemia virus integrase protein (TP), 
PDB_ID 7jq8, a structure from our own lab for which we have access to the raw 
experimental data (Aiyer et al, 2021). This system involves a disorder-to-order transition 
upon binding of the 23-residue TP to the receptor ET protein. ET-TP is a particularly 
challenging system because the ET protein receptor itself also becomes more ordered 
upon binding, as a disordered loop forms a three-stranded beta-sheet with a hairpin 
conformation of the protein, and there are allosteric changes of ET upon complex 
formation resulting in small CSPs throughout the ET receptor structure. In this case, 
baseline AF2 has a better fit to the CSP data than the PDB medoid structure based on 
extensive experimental NOESY data (CSP_Rank 0.65 vs 0.56) (Figure 3D). Figure 4A-
D illustrates the diversity of models generated with various ES protocols with AF2.  
Selection of the models from each cluster with highest CSP Bayesian model selection 
score results in the ensemble shown in Figure 4E. In this model, the interactions 
between the TP and ET are extensive and well-defined. The model has excellent 
knowledge-based structure quality scores; viz Procheck phi/psi Z-score +1.14, 
ProCheck all dihedral Z score +2.07; MolProbity clashscore Z-score +0.15, with 100% 
of dihedral angles in the most favored regions of the Ramachandran map 
(Supplementary Table 1), that are better than those of either the PDB 
(Supplementary Table 3) or baseline AF2 models, and structural protein-peptide 
interaction features that are very consistent with those determined by the experimental 
NMR structure (Aiyer et al, 2021) (Table 2; Supplementary Figure 9). Interestingly, the 
conformational variations (backbone atomic coordinate RMSFs) across this AF-NMR 
ensemble are highly correlated with the residue-specific pLDDT score averaged across 
the individual AF2 models of the ensemble (Figure 4F), which is consistent with our 
similar observations on other systems (Huang & Montelione, 2024; Spaman et al, 
manuscript in preparation).  
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Fig. 4: Enhanced sampling for IN TP:ET complex. (A). Plots of first two TSNE PCA dimensions 
demonstrating conformational space explored by ES methods AFSample and AFAlt. Different ES 
sampling protocols provide different models of the complex.  (B) Clusters extracted from K-means 
hierarchical clustering. (C) Heatmap of P(model|data) overlaid on TSNE analysis. (D) Boxplots of 
CSP_Rank_Scores from each TSNE cluster.  (E) Ensemble of the models which have the highest 
CSP_Rank_Score from each TSNE or UMAP cluster, colored by chain, where the receptor protein is 
green, and the ligand peptide is blue. (F) Ensemble depicted in 4E; the color encodes the residue-specific 
pLDDT score averaged across the AF2 models of the ensemble (red - high; blue - low). 
 
The ES AF2-NMR protocol outlined in Figure 4 was applied to 17 complexes from the 
protein-peptide database. In all cases, the medoid model selected from the ES 
ensemble (hereafter denoted as AF-NMR ensemble) exhibits excellent knowledge-
based structure quality scores and better fit to the CSP data than the baseline AF2 
model (Supplementary Tables S1-S14). For 14 of these systems, the medoid AF-NMR 
model is also a better fit to the CSP data than the medoid model of each ensemble 
deposited in the PDB, which are based on extensive additional NMR data 
(Supplementary Figure 10). Some examples comparing the medoid model of the AF-
NMR ensemble with the top-ranked baseline AF2 model are shown in Figure 5. Also 
included here is the ET-TP complex (Figure 5D) used as an illustrative example of the 
AF2-NMR protocol in Figure 4D.  
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Fig. 5. Improvement in CSP_Rank_Scores with Enhanced Sampling. Following the convention from 
Figure 3, in each panel a CSP bar plot is provided for each residue in the sequence, with bars colored 
varying shades of red to reflect the size of the indicated CSP. Colored blips at the bottom of the histogram 
denote the pattern of agreement between the observed CSPs and those predicted using the medoid PDB 
model or the medoid model from the enhanced sampling ensemble as defined in Figure 4 legend. Below 
the bar plot is a structural view of the top-ranked baseline AF2 model (left) and the medoid AF-NMR 
model (right) with the backbone cartoon of the protein colored by the significance pattern of CSPs. In 
each of these cases, the ES protocol results in small adjustments to the orientation of the binding peptide 
ligand which enables a better fit to the NMR CSP data. Across 17 systems tested, the average 
improvement in CSP_Rank_Score between baseline AF2 model and the medoid AF-NMR model is 0.08. 
For each of these 17 systems, an ensemble was generated for which the medoid model has a better 
CSP_Rank_Score than the baseline AF2 model (Supplementary Figures. 11-19).  
 
Cross validation against other experimental data.  
Although most of the protein – peptide PDB structures used in this study were 
generated using distance restraints derived from NMR data, we did not attempt to 
validate the AF NMR models against such distance restraints because the restraint 
themselves are derived information with inherent (sometimes significant) inaccuracies 
that result from ambiguities in defining them from the experimental NMR data. Instead, 
for cross validation we used only systems for which NOESY peak list data is available in 
the PDB or BioMagResDB. Unfortunately, even though such data is invaluable for 
validation of models and methods, most groups do not provide such “raw” experimental 
NMR data.  
 
To perform this cross-validation, we rely upon previous work (Huang et al, 2005) which 
has established a statistical platform, RPF, for assessing the fit of models to NOESY 
peak lists. The RPF statistics provide data for Recall (percentage of NOESY peaks that 
can be explained by the input query structure(s) with a distance cut-off ≤ 5 Å), Precision 
(percentage of 1H–1H distances ≤ 5 Å calculated from the query structure that are 
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observed in the NOESY data), F-score, which is the mean of Recall and Precision,  and 
a Discrimination Power (DP) score, which scales the F-score based of the F-score that 
would be obtained for a random-coil model. The DP score is a value between 0 and 1 
assessing the agreement of the model and NOESY peak list data. For two protein-
peptide complexes for which NOESY peak list data are available, 7JQ8 (BET ET 
domain bound to the “tail-peptide” corresponding to the C-terminal segment of murine 
Moloney leukemia virus integrase) and 7JYN (BET ET domain bound to a peptide 
fragment of the chromatin-associated host protein NSD3), we assessed the fit of AF-
NMR ensembles to the NOESY peak lists using RPF-DP statistics (Table 2). For 7JQ8, 
the average of the individual model DP-scores is slightly better for the for the AF-NMR 
ensemble than the experimental NMR ensemble deposited in the PDB (0.675 vs 0.646). 
For 7JYN, the average of the individual model DP-score for the AF-NMR ensemble is 
somewhat lower than the ensemble deposited in the PDB (0.659 vs 0.698).  However, 
in both cases the DP scores for the AF2-NMR models determined using only CSP are 
similar to those of the experimental PDB models determined using these same NOESY 
data as driving restraints.  Also in both cases, the AF-NMR structures have significantly 
better agreement with the CSP data, and higher CSP_Rank_Scores than the 
conventional restraint-based PDB structures (Table 2). 
 
Bayesian-based joint selection protocol.  
We also explored a joint selection protocol, analogous to methods proposed elsewhere 
to select models based on both NOESY and chemical shift data (Huang & Montelione, 
2024). To create a joint selection score, Eqn. 8 is redefined as: 
 
P(data|model) =  CSP_Rank_Score * P(NOE|model)  (11)  
where 
 
P(NOE|model) = (DP(model) - DP_min) / (DP_max - DP_min)          (12) 
 
and DP_min and DP_max are the lowest and highest, respectively, DP scores observed 
across all the ES AF2 models, and DP scores are computed from the back-calculated 
and observed NOESY peak list using the RPF program (Huang et al, 2005, Huang et al, 
2012) available from the ASDP software package (Huang et al, 2015).  We refer to 
these models, jointly selected using both CSP and NOE data, as AF-NMR*. 
 
Selecting models using this joint selection score resulted in models with slightly 
improved fit to the NOE data without a significant change in the fit to CSP data (7JQ8 
AF-NMR* DP-score = 0.685, CSP_Rank_Score = 0.73; 7JYN AF-NMR* DP-score = 
0.680, CSP_Rank_Sore = 0.78) (Table 2). These results demonstrate a generalization 
of our Bayesian selection score to include both CSP and NOESY data, and the potential 
to expand the score to include additional interfacial experimental data in the AF-NMR 
protocol where available. 
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                      PDB 

 

 

                   AF-NMR 

  

  

                  AF-NMR* 

        7JQ8       7JYN 
 

       7JQ8        7JYN             7JQ8         7JYN  

RPF Recall 0.88 0.92 0.88 0.90 0.88 0.90 

RPF Precision 0.84 0.75 0.85 0.75 0.86 0.76 

RPF DP-Score 0.646 0.698 0.675 0.659 0.685 0.680 

CSP_Rank_Score 0.56 0.49 0.74 0.77 0.73 0.78 

Table 2. Cross-Validation RPF results for 7JQ8 and 7JYN. Table summarizing RPF statistics and 
CSP_Rank_score for each type of ensemble. AF-NMR ensembles were derived using Eqn 8 as the 
selection criteria (CSP-based selection), AF-NMR* ensembles were derived using Eqn. 11 as the 
selection criteria (CSP /  NOE –based selection). RPF statistics are reported as the average of values 
generated from individual models in the ensemble. CSP_Rank_Scores are reported according to the 
value of the medoid model in each ensemble. The modified selection criteria for AF-NMR* ensembles 
result in better agreement with NOE data than a selection metric unbiased by NOE observables; in both 
cases this new selection metric does not substantially impact the value of the medoid model 
CSP_Rank_Score and only changes the atomic coordinates slightly. Supplementary Figure 9 provides a 
Double Recall plot (Huang, Montelione 2024) for 7JQ8 highlighting the unique peaks satisfied by the AF-
NMR* ensemble for a specific Trp residue. Supplementary Figure 20 provides a Double Recall plot for 
7JYN. These Double Recall plots demonstrate how the AF-NMR* models are consistent with some key 
interfacial NOESY peaks not explained by the PDB models. Supplementary Figure 9 contains t-SNE 
clustering of 7JYN AF-NMR ensemble like those shown in Figure 4 for 7JQ8.  Supplementary Tables 
S9-14 provide PSVS structure quality reports for each of the complexes included in Table 2.  
 
 
DISCUSSION 
This study aimed to ascertain how emerging ML-based structure prediction methods 
can be used to validate or improve upon models of protein-peptide complexes which 
have experimentally acquired NMR CSP data, and to develop protocols for combining 
AF2 modeling with CSP for determing 3D structures of protein-peptide complexes. We 
have developed a scoring function based on NMR CSPs and demonstrated its 
effectiveness in ranking models from computational methods like AlphaFold2 and 
AFSample. Our results underscore the value of integrating accessible experimental 
data, such as NMR CSPs, into computational modeling to enhance their reliability. 
Approaches that combine computational and experimental techniques have the 
potential for more accurate and reliable protein structure predictions and may also 
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facilitate modeling conformational dynamics and the relative populations of different 
conformational states (Huang & Montelione, 2024). 

In this study, we explored the concept of model selection from a collection of models 
generated by enhanced sampling with AF2, using a Bayesian score to rank the fit of 
protein-peptide structures to experimentally observed NMR chemical shift perturbations. 
This approach addresses a significant need in the field for validating computational 
predictions with realistic experimental data. AFSample (Wallner, 2023a), AFSample2 
(Kalakoti & Wallner, 2024),  AFAlt (Del Alamo et al, 2022), and similar methods (Bryant 
& Noé, 2024; Wayment-Steele et al, 2024; Stein & McHaourab, 2022) are the current 
state-of-the-art in predicting diverse structural conformations by employing 
combinations of MSA subsampling, MSA column masking, neural network dropout, and 
multiple model training weights. Other methods including molecular dynamics 
simulations (Mondal, et al 2023) and diffusion-based sampling (Abramson et al, 2024) 
also may be useful to generate physically-reasonable models which can be ranked 
using experimental data.  
 
Rather than using the NMR data to drive the AF2 modeling, we allow the ES AF2 
modeling to generate unrestrained models and then select those models that best fit the 
data.  This same approach, utilizing a Bayesian framework to combine NOESY and 
dynamic structural data based on chemical shifts, was also explored in our recent study 
modeling multiple conformational states the enzyme Gaussia luciferase (Huang & 
Montelione, 2024) with ES AF2. In both of these approaches, we opted to integrate AF2 
modeling with NMR data by conformational selection, rather than using a conventional 
restraint-based implementation with experimental restraints as input into the AF2 
modeling, in order to circumvent the many ambiguities and inaccuracies associated with 
interpreting NMR data as conformational distance restraints. 

As representative examples of cross validation of model predictions using the 
CSP_Rank protocol, we illustrated two cases where generating diverse conformational 
ensembles with AFSample and AFSample2 and ranking them against NMR CSPs and 
NMR NOEs resulted in better fits to CSP data and similar fits to NOESY (DP score) 
data than either the baseline AlphaFold2-Multimer or the experimental PDB structure 
models. Thus far, 17 systems have been tested with the CSP_Rank protocol. Most of 
these systems result in structural ensembles with better agreement with the CSP data 
than either the baseline AF2 model or the model deposited in the PDB (Supplementary 
Figure 10). 

The primary AF-NMR method described here uses 15N-1H CSP data for model selection 
from the ES AF2 ensembles. We also demonstrated the joint use of CSP and NOESY 
data. Conformer selection from ES AF2 ensembles with NOESY and chemical shift data 
has also been demonstrated in studies of the conformational dynamics of the enzyme 
Gaussia luciferase (Huang & Montelione, 2024). However, it is also possible to use 
other NMR data for such conformer selection, including chemical shift data indicating 
conformational flexibility (Huang & Montelione, 2024), or data from residual dipolar 
coupling (RDC) (Chiliveri et al, 2021), nuclear relaxation dispersion, and/or 
paramagnetic relaxation experiments, other kinds of chemical shift data including 
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chemical shifts determined by chemical exchange by saturation transfer (CEST) data, 
and other types of NMR, chemical crosslink, or biophysical data. Validating structures 
generated by ES methods with experimental data provides an important novel approach 
for accurate analysis of biophysically relevant patterns of structural heterogeneity 
(Huang & Montelione, 2024). 

Although we and others (Ko & Lee, 2021; Tsaban et al, 2022) have observed that AF2 
alone does a remarkably good job in predicting the structures of protein-peptide 
complexes, a significant fraction of these models are incorrect, and there is no way to 
be certain about the resulting model accuracy without some experimental data. In a 
recent study of the accuracy of AF2 in modeling of the structures of 96 protein-peptide 
complexes, 37% had accuracies of < 2.5 Å; 63% had poorer accuracy (Tsaban et al, 
2022).  Hence, there remains a need for experimental validation and refinement of 
these assembly models. This integrative AF2-NMR approach provides accurate models 
of protein-peptide complexes using only 15N-1H CSP data, and is easily extended to 
include 13C CSP, NOESY, RDC, or other kinds of interfacial experimental data. As only 
backbone resonance assignments for the receptor are required, there is also no need to 
produce isotope-enriched polypeptides, which can be both expensive and challenging. 
Overall, the AF2-NMR approach has the potential to significantly advance the field of 
protein-peptide complex modeling, providing more accurate models that can better 
inform biological research and therapeutic development. 

Author Contributions. TLB and GTM jointly conceived this study and analyzed and 
interpreted data. TLB wrote computer codes, generated graphics, and organized the 
GitHub Data Repository for this paper. Both authors contributed to writing and editing 
the manuscript. 

Declaration of Interests. GTM is a founder of Nexomics Biosciences, Inc. This does 
not represent a conflict of interest in this study.   

Acknowledgements. We thank Dr. Davide Sala for providing scripts for running AFAlt,  
T. Acton, A. De Falco, K. Fraga, A. Gaur, R. Greene-Cramer, Y.J. Huang, T.A. Ramelot, 
B. Shurina, L. Spaman, G.V.T. Swapna, and R. Tejero for helpful discussions and 
comments on the manuscript, and S. Collen for computer system administration 
support. We also acknowledge access to the RPI Center for Computational Innovations 
(CCI) computing infrastructure. This work was financially supported by National 
Institutes of Health NIGMS grant R35 GM141818 (to G.T.M.) and by the Rensselaer 
Polytechnic Institute (RPI) Bio-computing and Bio-informatics Constellation Chair Fund.  
TLB is supported by a NIGMS Biomolecular Science Engineering Training Program 
T32GM141865. 

Code Availability.  Software together with input and output datasets for the examples 
demonstrated in this paper are available 
https://github.rpi.edu/RPIBioinformatics/CSP_Rank. 

Supplemental Information. Supplementary material includes 14 Supplementary 
Tables and 20 Supplementary Figures.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.19.613999doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.19.613999
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

References 

Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, 
L., Ballard, A.J., Bambrick, J. and Bodenstein, S.W., 2024. Accurate structure prediction 
of biomolecular interactions with AlphaFold 3. Nature, pp.1-3. 
https://doi.org/10.1038/s41586-024-07487-w 

Aiyer, S., Swapna, G.V., Ma, L.C., Liu, G., Hao, J., Chalmers, G., Jacobs, B.C., Montelione, 
G.T. and Roth, M.J., 2021. A common binding motif in the ET domain of BRD3 forms 
polymorphic structural interfaces with host and viral proteins. Structure, 29(8), pp.886-
898.https://doi.org/10.1016/j.str.2021.01.010 

Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G.R., Wang, J., 
Cong, Q., Kinch, L.N., Schaeffer, R.D. and Millán, C., 2021. Accurate prediction of protein 
structures and interactions using a three-track neural network. Science, 373(6557), 
pp.871-876. https://doi.org/10.1126/science.abj8754 

Basu, S. and Wallner, B., 2016. DockQ: a quality measure for protein-protein docking models. 
PLOS One, 11(8), p.e0161879. https://doi.org/10.1371/journal.pone.0161879 

Bhattacharya, A., Tejero, R. and Montelione, G.T., 2007. Evaluating protein structures 
determined by structural genomics consortia. PROTEINS: Struct Funct Bioinformatics, 
66(4), pp.778-795. https://doi.org/10.1002/prot.21165 

Bonin, J.P., Aramini, J.M., Dong, Y., Wu, H. and Kay, L.E., 2024. AlphaFold2 as a replacement 
for solution NMR structure determination of small proteins: Not so fast!. J Magn Reson, 
p.107725. https://doi.org/10.1016/j.jmr.2024.107725 

Brereton, R.G. and Lloyd, G.R., 2016. Re-evaluating the role of the Mahalanobis distance 
measure. Journal of Chemometrics, 30(4), pp.134-143. https://doi.org/10.1002/cem.2779 

Bryant, P., Pozzati, G. and Elofsson, A., 2022. Improved prediction of protein-protein 
interactions using AlphaFold2. Nat. Commun. 13(1), p.1265. 
https://doi.org/10.1038/s41467-022-28865-w 

Bryant, P. and Noé, F., 2024. Structure prediction of alternative protein conformations. Nat. 
Commun. 15(1), p.7328. https://doi.org/10.1038/s41467-024-51507-2 

Chakravarty, D., Schafer, J.W., Chen, E.A., Thole, J.F., Ronish, L.A., Lee, M. and Porter, L.L., 
2024. AlphaFold predictions of fold-switched conformations are driven by structure 
memorization. Nature Communications, 15(1), p.7296. https://doi.org/10.1038/s41467-
024-51801-z 

Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, 
L.W., Richardson, J.S. and Richardson, D.C., 2010. MolProbity: all-atom structure 
validation for macromolecular crystallography. Acta Crystall Section D: Biological 
Crystallography, 66(1), pp.12-21.https://doi.org/10.1107/97809553602060000884 

Cheung, K.L., Kim, C. and Zhou, M.M., 2021. The functions of BET proteins in gene 
transcription of biology and diseases. Frontiers in molecular biosciences, 8, 
p.728777.https://doi.org/10.3389/fmolb.2021.728777 

Chicco, D. and Jurman, G., 2020. The advantages of the Matthews correlation coefficient 
(MCC) over F1 score and accuracy in binary classification evaluation. BMC genomics, 
21, pp.1-13. https://doi.org/10.1186/s12864-019-6413-7  

Chiliveri, S.C., Robertson, A.J., Shen, Y., Torchia, D.A. and Bax, A., 2021. Advances in NMR 
spectroscopy of weakly aligned biomolecular systems. Chemical Reviews, 122(10), 
pp.9307-9330. https://doi.org/10.1021/acs.chemrev.1c00730 

Del Alamo, D., Sala, D., Mchaourab, H.S. and Meiler, J., 2022. Sampling alternative 
conformational states of transporters and receptors with AlphaFold2. Elife, 11, p.e75751. 
https://doi.org/10.7554/elife.75751 

De Vries, S.J., Van Dijk, M. and Bonvin, A.M., 2010. The HADDOCK web server for data-driven 
biomolecular docking. Nature protocols, 5(5), pp.883-897. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.19.613999doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.19.613999
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

https://doi.org/10.1038/nprot.2010.32 
!"#$%&'()*+,-*+."(/(%0*+1-+2%3+."%4$%*+5-6-*+7889-+:5!!;,<=+2+>?"@($%A+>?"@($%+3"BC$%&+

2>>?"2BD+E20(3+"%+E$"BD(#$B2/+"?+E$">DF0$B2/+$%G"?#2@$"%-+J Am Chem Soc, 125(7), 
pp.1731-1737. https://doi.org/10.1021/ja026939x 

Dube, N., Huang, Y. J., Gurla, S. G., Shurina, B., Liu, G., Im, W., & Montelione, G. T. (2024). 
Structural dynamics of antimicrobial drug transport by integral membrane protein MipA 
using deep learning methods and Anton 2 simulations. Biophysical Journal, 123(3), 68a. 
https://doi.org/10.1016/j.bpj.2023.11.483  

Evans, R., O’Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., 
Blackwell, S., Yim, J. and Ronneberger, O., 2021. Protein complex prediction with 
AlphaFold-Multimer. biorxiv, pp.2021-10. https://doi.org/10.1101/2021.10.04.463034 

EvenaÈs, J., Tugarinov, V., Skrynnikov, N.R., Goto, N.K., Muhandiram, R. and Kay, L.E., 2001. 
Ligand-induced structural changes to maltodextrin-binding protein as studied by solution 
NMR spectroscopy. J Mol Biol, 309(4), pp.961-974. 
https://doi.org/10.1006/jmbi.2001.4695 

Feng, S., Chen, Z., Zhang, C., Xie, Y., Ovchinnikov, S., Gao, Y.Q. and Liu, S., 2024. Integrated 
structure prediction of protein–protein docking with experimental restraints using 
ColabDock. Nature Machine Intelligence, pp.1-12. https://doi.org/10.1038/s42256-024-
00873-z 

Grant, B.J., Rodrigues, A.P., ElSawy, K.M., McCammon, J.A. and Caves, L.S., 2006. Bio3d: an 
R package for the comparative analysis of protein structures. Bioinformatics, 22(21), 
pp.2695-2696. https://doi.org/10.1093/bioinformatics/btl461 

Grzesiek, S., Bax, A., Clore, G.M., Gronenborn, A.M., Hu, J.S., Kaufman, J., Palmer, I., Stahl, 
S.J. and Wingfield, P.T., 1996. The solution structure of HIV-1 Nef reveals an unexpected 
fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine 
protein kinase. Nat Struct Biol, 3(4), pp.340-345. https://doi.org/10.1038/nsb0496-340 

Han, B., Liu, Y., Ginzinger, S.W. and Wishart, D.S., 2011. SHIFTX2: significantly improved 
protein chemical shift prediction. J. Biomol. NMR, 50, pp.43-57. 
https://doi.org/10.1007/s10858-011-9478-4 

Huang, Y.J., Powers, R. and Montelione, G.T., 2005. Protein NMR recall, precision, and F-
measure scores (RPF scores): structure quality assessment measures based on 
information retrieval statistics. J Am Chem Soc, 127(6), pp.1665-1674. 
https://doi.org/10.1021/ja047109h 

Huang, Y.J., Rosato, A., Singh, G. and Montelione, G.T., 2012. RPF: a quality assessment tool 
for protein NMR structures. Nucleic acids research, 40(W1), pp.W542-W546. 
https://doi.org/10.1093/nar/gks373 

Huang, Y.J., Mao, B., Xu, F. and Montelione, G.T., 2015. Guiding automated NMR structure 
determination using a global optimization metric, the NMR DP score. J. Biomol. NMR, 62, 
pp.439-451. https://doi.org/10.1007/s10858-015-9955-2  

Huang, Y.J., Zhang, N., Bersch, B., Fidelis, K., Inouye, M., Ishida, Y., Kryshtafovych, A., 
Kobayashi, N., Kuroda, Y., Liu, G. and LiWang, A., 2021. Assessment of prediction 
methods for protein structures determined by NMR in CASP14: Impact of AlphaFold2. 
PROTEINS: Struct Funct Bioinformatics, 89(12), pp.1959-1976. 
https://doi.org/10.1002/prot.26246 

Huang, Y.J. and Montelione, G.T., 2024. Hidden Structural States of Proteins Revealed by 
Conformer Selection with AlphaFold-NMR. BioRxiv. 
https://doi.org/10.1101/2024.06.26.600902 

Hyberts, S.G., Goldberg, M.S., Havel, T.F. and Wagner, G., 1992. The solution structure of eglin 
c based on measurements of many NOEs and coupling constants and its comparison 
with X-ray structures. Protein Science, 1(6), pp.736-751. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.19.613999doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.19.613999
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

https://doi.org/10.1002/pro.5560010606 
Janin, Joël, Kim Henrick, John Moult, Lynn Ten Eyck, Michael JE Sternberg, Sandor Vajda, Ilya 

Vakser, and Shoshana J. Wodak. "CAPRI: a critical assessment of predicted 
interactions." PROTEINS: Struct Funct Bioinformatics, 52, no. 1 (2003): 2-9. 
https://doi.org/10.1002/prot.10381 

Johansson-Åkhe, I. and Wallner, B., 2022. Improving peptide-protein docking with AlphaFold-
Multimer using forced sampling. Frontiers in bioinformatics, 2, 
p.959160.https://doi.org/10.3389/fbinf.2022.959160 

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, 
K., Bates, R., Žídek, A., Potapenko, A. and Bridgland, A., 2021. Highly accurate protein 
structure prediction with AlphaFold. Nature, 596(7873), pp.583-589. 
https://doi.org/10.1038/s41586-021-03819-2 

Kalakoti, Y. and Wallner, B., 2024. AFsample2: Predicting multiple conformations and 
ensembles with AlphaFold2. bioRxiv, pp.2024-05. 
https://doi.org/10.1101/2024.05.28.596195 

Karaca, E. and Bonvin, A.M., 2013. Advances in integrative modeling of biomolecular 
complexes. Methods, 59(3), pp.372-381. https://doi.org/10.1016/j.ymeth.2012.12.004 

Kirchner, D.K. and Güntert, P., 2011. Objective identification of residue ranges for the 
superposition of protein structures. BMC bioinformatics, 12, pp.1-11. 
https://doi.org/10.1186/1471-2105-12-170 

Krijthe, J., 2014. Rtsne: T-distributed stochastic neighbor embedding using a Barnes-Hut 
implementation. CRAN: Contributed Packages. 
https://doi.org/10.32614/cran.package.rtsne 

Krishna, R., Wang, J., Ahern, W., Sturmfels, P., Venkatesh, P., Kalvet, I., Lee, G.R., Morey-
Burrows, F.S., Anishchenko, I., Humphreys, I.R. and McHugh, R., 2024. Generalized 
biomolecular modeling and design with RoseTTAFold All-Atom. Science, 384(6693), 
p.eadl2528. https://doi.org/10.1126/science.adl2528 

Kryshtafovych, A., Montelione, G.T., Rigden, D.J., Mesdaghi, S., Karaca, E. and Moult, J., 2023. 
Breaking the conformational ensemble barrier: Ensemble structure modeling challenges 
in CASP15. PROTEINS: Struct Funct Bioinformatics, 91(12), pp.1903-1911. 
https://doi.org/10.1002/prot.26584 

Ko, J. and Lee, J., 2021. Can AlphaFold2 predict protein-peptide complex structures 
accurately?. BioRxiv, pp.2021-07. https://doi.org/10.1101/2021.07.27.453972 

Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M., 1993. PROCHECK: a 
program to check the stereochemical quality of protein structures. Journal of applied 
crystallography, 26(2), pp.283-291. https://doi.org/10.1107/s0021889892009944 

Lee, A.C.L., Harris, J.L., Khanna, K.K. and Hong, J.H., 2019. A comprehensive review on 
current advances in peptide drug development and design. International journal of 
molecular sciences, 20(10), p.2383. https://doi.org/10.3390/ijms20102383 

Lensink, M.F., Brysbaert, G., Raouraoua, N., Bates, P.A., Giulini, M., Honorato, R.V., van Noort, 
C., Teixeira, J.M., Bonvin, A.M., Kong, R. and Shi, H., 2023. Impact of AlphaFold on 
structure prediction of protein complexes: The CASP15-CAPRI experiment. PROTEINS: 
Struct Funct Bioinformatics, 91(12), pp.1658-1683. https://doi.org/10.1002/prot.26609 

Li, J., Bennett, K.C., Liu, Y., Martin, M.V. and Head-Gordon, T., 2020. Accurate prediction of 
chemical shifts for aqueous protein structure on “Real World” data. Chem. Sci. 11(12), 
pp.3180-3191. https://doi.org/10.1039/c9sc06561j 

Li, E.H., Spaman, L.E., Tejero, R., Huang, Y.J., Ramelot, T.A., Fraga, K.J., Prestegard, J.H., 
Kennedy, M.A. and Montelione, G.T., 2023. Blind assessment of monomeric AlphaFold2 
protein structure models with experimental NMR data. J Magn Reson, 352, p.107481. 
https://doi.org/10.1039/c9sc06561j 

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.19.613999doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.19.613999
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Y. and dos Santos Costa, A., 2023. Evolutionary-scale prediction of atomic-level protein 
structure with a language model. Science, 379(6637), pp.1123-1130. 
https://doi.org/10.1126/science.ade2574 

Maciejewski, M.W., Schuyler, A.D., Gryk, M.R., Moraru, I.I., Romero, P.R., Ulrich, E.L., 
Eghbalnia, H.R., Livny, M., Delaglio, F. and Hoch, J.C., 2017. NMRbox: a resource for 
biomolecular NMR computation. Biophys J, 112(8), pp.1529-1534. 
https://doi.org/10.1016/j.bpj.2017.03.011 

Mahalanobis, P. (1936). On the generalised distance in statistics. 12. 
https://doi.org/10.1007/s13171-019-00164-5 

Matthews, B.W., 1975. Comparison of the predicted and observed secondary structure of T4 
phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 405(2), pp.442-
451. https://doi.org/10.1016/0005-2795(75)90109-9 

McInnes, L., Healy, J., Saul, N., Großberger, L., 2018. UMAP: Uniform Manifold Approximation 
and Projection. Journal of Open Source Software, 3(29), 861, 
https://doi.org/10.21105/joss.00861 

Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S. and Steinegger, M., 2022. 
ColabFold: making protein folding accessible to all. Nature methods, 19(6), pp.679-682. 
https://doi.org/10.1038/s41592-022-01488-1 

Mondal, A., Swapna, G.V.T., Lopez, M.M., Klang, L., Hao, J., Ma, L., Roth, M.J., Montelione, 
G.T. and Perez, A., 2023. Structure determination of challenging protein–peptide 
complexes combining NMR chemical shift data and molecular dynamics simulations. 
Journal of chemical information and modeling, 63(7), pp.2058-2072. 
https://doi.org/10.1021/acs.jcim.2c01595 

Monteiro da Silva, G., Cui, J.Y., Dalgarno, D.C., Lisi, G.P. and Rubenstein, B.M., 2024. High-
throughput prediction of protein conformational distributions with subsampled AlphaFold2. 
Nat. Commun. 15(1), p.2464. https://doi.org/10.1038/s41467-024-46715-9 

Nussinov, R. and Tsai, C.J., 2015. Allostery without a conformational change? Revisiting the 
paradigm. Current opinion in structural biology, 30, pp.17-24. 
https://doi.org/10.1016/j.sbi.2014.11.005 

Ozden, B., Kryshtafovych, A. and Karaca, E., 2023. The impact of AI-based modeling on the 
accuracy of protein assembly prediction: Insights from CASP15. PROTEINS:  Struct 
Funct Bioinformatics, 91(12), pp.1636-1657. https://doi.org/10.1002/prot.26598 

Rimel, J.K. and Taatjes, D.J., 2018. The essential and multifunctional TFIIH complex. Protein 
Science, 27(6), pp.1018-1037. https://doi.org/10.1002/pro.3424 

Robustelli, P., Stafford, K.A. and Palmer III, A.G., 2012. Interpreting protein structural dynamics 
from NMR chemical shifts. J Am Chem Soc, 134(14), pp.6365-6374. 
https://doi.org/10.1021/ja300265w 

Roney, J.P. and Ovchinnikov, S., 2022. State-of-the-art estimation of protein model accuracy 
using AlphaFold. Physical Review Letters, 129(23), p.238101. 
https://doi.org/10.1103/physrevlett.129.238101 

Sala, D., Engelberger, F., Mchaourab, H.S. and Meiler, J., 2023. Modeling conformational states 
of proteins with AlphaFold. Current Opinion in Structural Biology, 81, p.102645. 
https://doi.org/10.1016/j.sbi.2023.102645 

Schmitz, C., Melquiond, A.S., de Vries, S.J., Karaca, E., van Dijk, M., Kastritis, P.L. and Bonvin, 
A.M., 2012. Protein–protein docking with HADDOCK. NMR of Biomolecules: Towards 
Mechanistic Systems Biology, pp.520-535. https://doi.org/10.1002/9783527644506.ch32 

Shen, Y. and Bax, A., 2010. SPARTA+: a modest improvement in empirical NMR chemical shift 
prediction by means of an artificial neural network. J Biomol. NMR, 48, pp.13-22. 
https://doi.org/10.1007/s10858-010-9433-9 

Shin, J.S., Ha, J.H., Lee, D.H., Ryu, K.S., Bae, K.H., Park, B.C., Park, S.G., Yi, G.S. and Chi, 
S.W., 2015. Structural convergence of unstructured p53 family transactivation domains in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.19.613999doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.19.613999
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

MDM2 recognition. Cell Cycle, 14(4), pp.533-543. 
https://doi.org/10.1080/15384101.2014.998056 

Skeens, E. and Lisi, G.P., 2023. Analysis of coordinated NMR chemical shifts to map allosteric 
regulatory networks in proteins. Methods, 209, pp.40-47.). 
https://doi.org/10.1016/j.ymeth.2022.12.002 

Snyder, D.A. and Montelione, G.T., 2005. Clustering algorithms for identifying core atom sets 
and for assessing the precision of protein structure ensembles. PROTEINS: Struct Funct 
Bioinformatics, 59(4), pp.673-686. https://doi.org/10.1002/prot.20402 

Snyder, D.A., Grullon, J., Huang, Y.J., Tejero, R. and Montelione, G.T., 2014. The expanded 
FindCore method for identification of a core atom set for assessment of protein structure 
prediction. PROTEINS: Struct Funct Bioinformatics, 82, pp.219-230. 
https://doi.org/10.1002/prot.24490 

Soderling, T. R., & Stull, J. T. (2001). Structure and regulation of calcium/calmodulin-dependent 
protein kinases. Chemical reviews, 101(8), 2341-2352. https://doi.org/10.1021/cr0002386  

Stahl, Kolja, Robert Warneke, Lorenz Demann, Rica Bremenkamp, Björn Hormes, Oliver Brock, 
Jörg Stülke, and Juri Rappsilber. "Modelling protein complexes with crosslinking mass 
spectrometry and deep learning." Nature Communications 15, no. 1 (2024): 7866. 
https://doi.org/10.1038/s41467-024-51771-2  

Stein, R.A. and Mchaourab, H.S., 2022. SPEACH_AF: Sampling protein ensembles and 
conformational heterogeneity with Alphafold2. PLOS Computational Biology, 18(8), 
p.e1010483. https://doi.org/10.1371/journal.pcbi.1010483 

Stein, R.A. and Mchaourab, H.S., 2023. Rosetta Energy Analysis of AlphaFold2 models: Point 
Mutations and Conformational Ensembles. BioRxiv. 
https://doi.org/10.1101/2023.09.05.556364 

Sugase, K., Dyson, H. & Wright, P. Mechanism of coupled folding and binding of an intrinsically 
disordered protein. Nature 447, 1021–1025 (2007). https://doi.org/10.1038/nature05858  

Tejero, R., Snyder, D., Mao, B., Aramini, J.M. and Montelione, G.T., 2013. PDBStat: a universal 
restraint converter and restraint analysis software package for protein NMR. J Biomol 
NMR, 56, pp.337-351. https://doi.org/10.1007/s10858-013-9753-7 

Tejero, R., Huang, Y.J., Ramelot, T.A. and Montelione, G.T., 2022. AlphaFold models of small 
proteins rival the accuracy of solution NMR structures. Frontiers in Molecular 
Biosciences, 9, p.877000. https://doi.org/10.3389/fmolb.2022.877000 

Terwilliger, T.C., Liebschner, D., Croll, T.I., Williams, C.J., McCoy, A.J., Poon, B.K., Afonine, 
P.V., Oeffner, R.D., Richardson, J.S., Read, R.J. and Adams, P.D., 2022. AlphaFold 
predictions: great hypotheses but no match for experiment. BioRxiv, 2011(2021), 
p.517405. https://doi.org/10.1038/s41592-023-02087-4 

Tsaban, T., Varga, J.K., Avraham, O., Ben-Aharon, Z., Khramushin, A. and Schueler-Furman, 
O., 2022. Harnessing protein folding neural networks for peptide–protein docking. Nature 
communications, 13(1), p.176. https://doi.org/10.1038/s41467-021-27838-9 

Van der Maaten, L. and Hinton, G., 2008. Visualizing data using t-SNE. Journal of machine 
learning research, 9(11). 

Van Der Maaten, L., 2014. Accelerating t-SNE using tree-based algorithms. The journal of 
machine learning research, 15(1), pp.3221-3245. 

Vani, B.P., Aranganathan, A., Wang, D. and Tiwary, P., 2023. Alphafold2-rave: From sequence 
to boltzmann ranking. J. Chem. Theory Comput., 19(14), pp.4351-4354. 
https://doi.org/10.1021/acs.jctc.3c00290 

Venables, W.N. and Ripley, B.D., 2002. Modern Applied Statistics with S, Springer, New York: 
ISBN 0-387-95457-0. https://doi.org/10.1007/978-0-387-21706-2 

Wallner, B., (2023a). AFsample: improving multimer prediction with AlphaFold using massive 
sampling. Bioinformatics, 39(9), p.btad573. https://doi.org/10.1093/bioinformatics/btad573 

Wallner, B., (2023b). Improved multimer prediction using massive sampling with AlphaFold in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.19.613999doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.19.613999
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

CASP15. PROTEINS: Struct Funct Bioinformatics, 91(12), pp.1734-1746 
https://doi.org/10.1002/prot.26562 

Watkins, A.M. and Arora, P.S., 2015. Structure-based inhibition of protein–protein interactions. 
Eur. J. Med. Chem. 94, pp.480-488. https://doi.org/10.1016/j.ejmech.2014.09.047 

Wayment-Steele, H.K., Ojoawo, A., Otten, R., Apitz, J.M., Pitsawong, W., Hömberger, M., 
Ovchinnikov, S., Colwell, L. and Kern, D., 2024. Predicting multiple conformations via 
sequence clustering and AlphaFold2. Nature, 625(7996), pp.832-839. 
https://doi.org/10.1038/s41586-023-06832-9 

Weng, G., Gao, J., Wang, Z., Wang, E., Hu, X., Yao, X., Cao, D. and Hou, T., 2020. 
Comprehensive evaluation of fourteen docking programs on protein–peptide complexes. 
Journal of chemical theory and computation, 16(6), pp.3959-3969. 
https://doi.org/10.1021/acs.jctc.9b01208 

Williamson, M.P., 2013. Using chemical shift perturbation to characterise ligand binding. Prog. 
Nucl. Magn. Reson. Spectrosc. 73, pp.1-16. https://doi.org/10.1016/j.pnmrs.2014.05.001 

Wishart, D.S., 2011. Interpreting protein chemical shift data. Prog. Nucl. Magn. Reson. 
Spectrosc. 58(1-2), pp.62-87. https://doi.org/10.1016/j.pnmrs.2010.07.004 

Zhang, Y. and Skolnick, J., 2005. TM-align: a protein structure alignment algorithm based on the 
TM-score. Nucl Acids Res, 33(7), pp.2302-2309. https://doi.org/10.1093/nar/gki524 

Zhang, Z., Verburgt, J., Kagaya, Y., Christoffer, C. and Kihara, D., 2023. Improved peptide 
docking with privileged knowledge distillation using deep learning. BioRxiv. 
https://doi.org/10.1101/2023.12.01.569671 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.19.613999doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.19.613999
http://creativecommons.org/licenses/by-nc-nd/4.0/

