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Abstract

Soil heterogeneity is a major contributor to the uncertainty in near-surface biogeochemical

modeling. We sought to overcome this limitation by exploring the development of a new

classification analogy concept for transcribing the largely qualitative criteria in the pedomor-

phologically based, soil taxonomic classification systems to quantitative physicochemical

descriptions. We collected soil horizons classified under the Alfisols taxonomic Order in the

U.S. National Resource Conservation Service (NRCS) soil classification system and quanti-

fied their properties via physical and chemical characterizations. Using multivariate statisti-

cal modeling modified for compositional data analysis (CoDA), we developed quantitative

analogies by partitioning the characterization data up into three different compositions:

Water-extracted (WE), Mehlich-III extracted (ME), and particle-size distribution (PSD) com-

positions. Afterwards, statistical tests were performed to determine the level of discrimina-

tion at different taxonomic and location-specific designations. The analogies showed

different abilities to discriminate among the samples. Overall, analogies made up from the

WE composition more accurately classified the samples than the other compositions, partic-

ularly at the Great Group and thermal regime designations. This work points to the potential

to quantitatively discriminate taxonomically different soil types characterized by varying

compositional datasets.

Introduction

Developing models for predicting soil behavior, such as biogeochemical reactions or the envi-

ronmental fate of contaminants, typically begins with the application of generalized mass bal-

ance models that incorporate hydrologic and physical processes driving transport with

experimentally determined parameters describing (i) the batch equilibrium distribution of the

solutes between the soil and water phases (i.e., sorption distribution coefficient or KD) and (ii)

kinetic parameters describing nutrient or solute persistence, such as via abiotic/biotic degrada-

tion. Attempting to develop data that is broadly applicable to a wide variety of environmental
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conditions, experimental soil systems are generally manipulated to show simple connections

between particular soil characteristics and its associated soil “behavior”. For example, the envi-

ronmental fate of contaminants is often considered in terms of comparing the contaminant’s

abiotic sorption on soils across varying soil organic carbon, clay, or metal oxide concentra-

tions. For charged solutes, these systems are typically further manipulated to study the impacts

of pH or redox conditions through the addition of acids or bases, and organic carbon. When

studying biotically mediated contaminant fate, the experimental systems are even further

manipulated to hold soil moisture, aeration, and temperature constant. While these experi-

mental conditions are useful for elucidating potential mechanistic information related to how

a soil’s properties influence the eventual fate of contaminants, it is reasonable to assume that

these manipulations may also promote substantial deviations in the natural biogeochemical

behaviors. Thus, there is a risk that developing soil behavioral information using highly ideal-

ized systems could ultimately frustrate our ability to predict the environmental fate for natural

soil types.

Much of the error in biogeochemical modeling originates from uncertainties in the parame-

ters describing the soil and sediment compartments [1, 2]. Attempts to overcome this problem

procedurally through standardized experimental or analytical methods (such as via published

ASTM, USEPA, or OECD methods) are challenged by our current inability to define thermo-

dynamically the initial state of a soil system, as can be done in systems with homogenous sol-

ids–a challenge largely occurring due to the inherent heterogeneity of soils. Inherent soil

heterogeneity makes it theoretically difficult to represent any particular soil biogeochemical

behavior with a single “universal” coefficient, such as a solute partitioning coefficient (KD) for

the equilibrium contaminant sorption or a 1st-order kinetic coefficient for indicating a con-

taminant’s persistence in soil. In spite of these theoretical and practical limitations, these types

of environmental fate parameters are almost universally employed in biogeochemical models.

While the uncertainty in the models is nearly impossible to quantify, these models remain pop-

ular given that the environmental science community generally lacks any good alternatives.

Some models attempt to reduce the uncertainty in using single universal coefficients to

describe all contaminant interactions by utilizing different fate parameters for different envi-

ronmental phases–a modeling approach employed in popular multicompartment models [3].

A second alternative approach may involve substituting single fate coefficients with empirical

functions based on univariate soil physical and chemical characteristics [4, 5]. Here, it is

assumed that one can better tune an environmental model to a particular site of interest by

incorporating the properties of soil. The dilemma here is that the analogy (defined in this

paper as the “structural” construct underlying data interpretation) for a site of interest remains

ambiguous and highly uncertain. This fact occurs because the analogy was built solely on

quantitative characteristics without any consideration of the soil’s “context”. Without defining

the soil’s context or class, it is impossible to fully appreciate the importance of the quantitative

characteristics, and ultimately, discriminate one soil from another [6]. Lacking the ability to

unambiguously discriminate one soil from another makes it difficult to justify extrapolating

any prediction of a soil’s biogeochemical behavior generated from a poorly defined analogy to

other sites of interest. Thus, a (perpetually) repeating, time-consuming, and expensive pattern

that has emerged in the environmental science community requiring that every new site of

interest conduct a corresponding new round of investigations.

Stepping back from the approaches discussed above to consider the pedomorphological fea-

tures as primary descriptors of soil in environmental modeling provides some helpful perspec-

tives. The most common pedomorphologically based soil taxonomic systems are the NRCS

system and the Food and Agricultural Organization of the United Nations Educational, Scien-

tific, and Cultural Organization (FAO-UNESCO) system—with its emerging update as the
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World Reference Base or WRB [7, 8]. These systems were designed to provide a common crite-

ria and terminology for not only distinguishing different soil types, but also discussing soil

behavior and application, such as in agriculture or other technological uses of soils [9]. While

pedomorphological considerations readily discriminate among different soil types, these dis-

tinctions are largely qualitative (based on visual inspection), supplemented by limited quanti-

tative characterization data. Thus, the corresponding analogies explaining the similarity

among different soil types in these classification systems are largely qualitative, containing

quantitative information that is insufficient to develop a distinctive signature of each soil

type. In theory, building quantitative (or numeric) analogies would make the highly discrimi-

nating capability of soil classification systems accessible to quantitative modeling, such as pre-

dicting soil biogeochemical behavior relative to a designated soil type. To be clear, soil

taxonomic systems excel at providing the necessary “context” by which soil properties may be

interpreted.

As formulated materials, Norris [10] considered soils as “multivariate entities”, arguing that

a more accurate description of a soil is made by considering multiple soil characteristic vari-

ables than any single variable alone. Numerous studies over the past few decades have empha-

sized this idea (to one degree or another) for soils and other environmentally relevant solids

and matrices. Examples include identifying terpane chemical signatures based on different

source geologies [11]; discriminating soil geochemical baseline for metal contaminated sites

[12]; chemically distinguishing coal fly-ash from background sediment after a major spill in

the U.S. [13]; discriminating minerals collected by NASA’s Mars Science Laboratory rover

based on remote laser-induced breakdown spectroscopy [14]; distinguishing rainwater by age

[15] or simply chemically distinguishing sediments based on collection site [16, 17] and time

of deposition relative to establishment of the U.S. EPA’s Clean Water Act [18]. Not only can

these approaches be useful for discriminating characterization data, but also discriminating

environmentally mediated processes. For example, multivariate models have been generated

for correlating soil fungal and bacterial communities [19–21], and organic and inorganic con-

taminant sorption distribution coefficients (KD) [22, 23] and degradation [24, 25] to soil

“types” or classes. In these examples, soil type was not reported in terms of organized pedo-

morphic taxonomic systems, but generalized in terms of the geographical and vegetative crite-

ria, such as desert soils, forest soils, coniferous soils, hard-wood growth forests, etc.

Aitchinson’s landmark revelations regarding the nature of compositional data are extremely

useful for circumventing latent structural artifacts in characterization data. The theoretical

basis for compositional data has been reviewed elsewhere [26]. However, it is important to

point out that nearly all soil characterization data is inherently compositional in nature, and

thus, CoDA theoretical considerations are not only appropriate but necessary. Consider that

nearly all quantitative soil characterization data are reported in units of concentration, such as

part per million (e.g., mg kg-1) or as a percentage, and composed of all positive (non-negative)

values. As such, these traits are key indicators of compositional data, implying that if all parts

of the composition were analyzed, they would sum to 100%. This means that the composition

is “closed”; a “fixed-closure bias” is evident in the structure of compositional data that appears

distorted in Euclidean space. These distortions give way to potentially spurious statistical cor-

relations obtained using classical structural methods. Thus, analysis must be conducted either

in “compositional” space, or in real space after the data is correctly transformed.

This paper describes our efforts to develop quantitative analogical models for different soil

types, utilizing taxonomic descriptors originating from the NRCS soil classification system.

Here, the analogies were built using soil characterization data partitioned into three different

compositions described hereafter.

Quantitative soil analogies using different compositional datasets
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Methods

Soil selection, collection, processing, and characterization

Pre-selected soil series were targeted based on interest in populating different subcategories

of soil types within the Alfisols order. We preferentially sought out pristine, non-anthropo-

genically disturbed sampling sites containing native vegetation. For this reason, we targeted

our collections at State Parks (after receiving both verbal and written permissions from Park

Rangers) and historically non-used areas (as recommended by range managers) on U.S.

Army bases in the Eastern and Midwestern U.S. At each site (Fig 1 and Table 1) the profile

was sampled using a soil corer to determine if the NRCS-designated soil series descriptions

qualitatively matched the observed features. Once satisfied, we collected samples by excavat-

ing soil approx. 10–20 inches (25.4–50.8 cm) down the profile, sampling each horizon based

on visible delineators and the soil series descriptions. Samples were collected in plastic bags,

sealed, and shipped to our laboratory in Vicksburg, MS, USA, where they were air-dried,

sieved, and ground using a soil grinder to pass through a 2-mm sieve, homogenized using an

acoustic mixer, and then stored in polypropylene bottles at 4˚C until used. The soil mixture

was subsampled in triplicate, and geochemically characterized using common soil character-

ization methods (S1 Table) used in environmental science for focusing on surface interfacial

properties.

Multivariate modeling for analogy generation

All statistical modeling was conducted using R statistical computing software [28] through the

graphical interface RStudio [29]. Soil taxonomic information for the collected soil series were

extracted from the USDA-NCSS soil databases using the “soilDB” package [30]. Soil character-

izations were conducted using both chemical and physical analysis (see Supporting Informa-

tion). Soil chemical properties were quantified based on solutions analyzed for as many solutes

as possible in order to capture any lingering (and often ignored) covariate information. The

characterization data was divided into three different compositions based on the experimental

methods employed: (i) water-extracted (WE), representing a composition measurement

obtained by washing the soils with a dilute salt solution (containing 20 variables), (ii) Mehlich-

III extracted (ME), representing a composition obtained using a weak acid solution (contain-

ing 14 variables), and (iii) particle size distribution (PSD, containing 3 variables). The ratio of

variables to observations conforms to more “tolerant” rules of the appropriate dimensionality

required for stable PCA results [31]. In order to develop the analogy models, all solution char-

acterization data were uniformly converted to homogeneous mass concentration units (mg kg-

1), including pH using -10^(pH), and electrical conductivity (EC) by assuming 1 mS cm-1 = 10

meq(+) L-1 = 640 mg L-1 total salts [32]. The exception to this conversion was our calculation

of cation exchange capacity (CEC), in units of cmol(+) kg-1, which was calculated by summing

the charge-equivalent Na, Ba, Ca, Mg, and K concentrations measured from the Mehlich-III

extractions.

Missing data patterns (due to analytical non-detects) were studied using the “zComposi-

tions” package [33] for R. Missing variables that exceeded 50% of the total samples were

removed from the matrix (see Supporting Information). As a result, we removed ortho-PO4,

B, P, S, Sn, Ti, and Sr solutes from the WE composition, and P, Sr, S, Th, Sn, and Ti from the

ME composition. Missing “zeroes” in all compositions were replaced using zComposition’s

multivariate imputation method from a matrix containing estimates of the analytical detection

levels of the missing characterization data. The final variable set was closed to the unit sum of

100 using the clo command in the “compositions” package [34].

Quantitative soil analogies using different compositional datasets
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Analogies were created by modeling the data using robust principal component analysis

(PCA) via pcaCoDa command in the “robcompositions” package [35]. Here, PCA was per-

formed first using an isometric log-ratio (ilr) transformation of the dataset (using a default

basis set), followed by conversion to a centered logratio (clr) transformed data for interpreting

Fig 1. Map showing location of Alfisols collected throughout the Eastern and Midwestern U.S. Location markers are colored with respective to the soils’

NRCS Great Group taxonomic designations. The map was created using the ggmap package [27] for R.

https://doi.org/10.1371/journal.pone.0212214.g001
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results. The clr transformation is defined as:

clrðxÞ ¼ ln
x1

gðxÞ
; . . . ; ln

xD
gðxÞ

� �

ð1Þ

Here, the terms in Eq 1 represents the logratio of each variable and the geometric mean across

the different components as gðxÞ ¼ ð
QD

i¼1
xiÞ

1=D
. Given no particular algorithms exist for

determining the stopping point of PCA for compositional data, the optimum number of prin-

cipal components (PCs) was selected based on the recommendations by Jackson [36]. Here,

we considered a combination of the calculated eigenvalues and percent explained variance for

Table 1. Samples collected including soil type and geographical coordinates of the location.

Soil Suborder Great Group Soil series Latitude Longitude

Backbone1 Udalfs Hapludalfs Basset 42.64347 -91.5553

Backbone2 Udalfs Hapludalfs Whalan 42.64392 -91.5553

Backbone3 Udalfs Hapludalfs Backbone 42.64402 -91.5482

Cedars1 Udalfs Hapludalfs Talbott 36.09443 -86.3402

Chappell1 Udalfs Paleudalfs Braxton 35.5943 -87.1452

Chickasaw1 Aqualfs Endoaqualfs Tooterville 35.38949 -88.7779

Chickasaw3 Udalfs Hapludalfs Lexington 35.3863 -88.8016

Fort Knox1 Udalfs Fragiudalfs Bedford 37.93652 -85.9843

Fort Knox2 Udalfs Paleudalfs Vertrees 37.93482 -85.9767

Fort Knox3 Udalfs Paleudalfs Baxter 37.92655 -85.9905

Fort Knox4 Udalfs Fragiudalfs Nicholson 37.92591 -85.9914

Fort Polk1 Udalfs Hapludalfs Eastwood 31.0238 -93.2014

Green1 Udalfs Fragiudalfs Hosmer 37.8774 -87.4791

Holmes2 Udalfs Fragiudalfs Loring 33.02993 -89.9118

Itasca1 Udalfs Hapludalfs Debs 47.19655 -95.2204

Itasca2 Udalfs Hapludalfs Lengby 47.19265 -95.2133

Knob1 Udalfs Fragiudalfs Otwell 37.88947 -85.6972

Knob3 Udalfs Fragiudalfs Lawrence 37.89042 -85.6968

Lake Sommerville1 Ustalfs Paleustalfs Singleton 30.3185 -96.6148

Lake Sommerville2 Ustalfs Paleustalfs Rehburg 30.31868 -96.6124

Lake Sommerville3 Ustalfs Paleustalfs Eufaula 30.31817 -96.6111

Luster2 Udalfs Hapludalfs Fayette 49.13707 -91.1867

Luster4 Udalfs Hapludalfs Dubuque 43.13458 -91.1867

Morrow6 Udalfs Hapludalfs Enon 35.36652 -80.0913

Natchez1 Udalfs Hapludalfs Memphis 31.59822 -91.2169

Penny1 Udalfs Fragiudalfs Zanesville 37.06266 -87.6726

Sam1 Udalfs Paleudalfs Bienville 30.29563 -93.2682

Sam2 Udalfs Paleudalfs Glenmora 30.30097 -93.2555

Tickfaw1 Aqualfs Albaqualfs Springfield 30.38292 -90.6475

Tickfaw2 Udalfs Hapludalfs Colyell 30.38147 -90.6478

Twin4 Udalfs Hapludalfs Wilkes 37.17608 -78.2762

Tyler2 Udalfs Paleudalfs Pickton 32.48015 -95.3013

Tyler3 Udalfs Hapludalfs Redsprings 32.47345 -95.2973

Zippel1 Udalfs Glossudalfs Suomi 48.84783 -94.8471

Zippel3 Udalfs Hapludalfs Karlstad 48.85832 -94.8373

Zippel6 Udalfs Hapludalfs Chilgren 48.84996 -94.8533

https://doi.org/10.1371/journal.pone.0212214.t001
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each component, as well as the overall shape of the Scree plot (See Supporting Information).

According to Jackson [36], agreement between the Scree criterion and eigenvalues > 1 is typi-

cally exhibited in structured data. Irregular Scree plots are more indicative of random variation

within the data; thus, we opted to choose PCs with eigenvalues > 1. Robust clr-loadings were

extracted from the PCA and plots were studied for opportunities to remove variables that were

redundant, or otherwise, provided no significant information. Afterwards, robust clr-scores

were extracted from the model and used for statistically discriminating the samples via linear

discriminant analysis (LDA) using the “MASS” package [37]. Shapiro-Wilk tests showed that

all clr-transformed data conformed to a normal distribution (see Supporting Information).

Results

PCA-based soil analogies for the three different compositional datasets

Fig 2 shows the biplots from the PCA, articulating how the variables making up the different

compositions correlated with the samples used to define the soil analogies. It is important to

recall that statistical biplots are interpreted differently for compositional data. For typical

covariance-based biplots, the vector length is a graphical representation of the contribution of

each variable to the linear-combination equation making up the model’s explained variance.

However, for compositional data, vector lengths graphically represent the deviation of the vari-

able from the model center (i.e., the plot origin in reduced space), or the geometric mean (g

(x)) in Eq 1- thus, the clr transformation) of each variable [38]. Compositional biplots are

interpreted by studying the log ratios between pairs of variables xi and xj represent as:

logðxi=xjÞ ¼ logðxiÞ � logðxjÞ: ð2Þ

Eq 2 is simple but important to keep in mind when considering the relationship between any

pair of variables. Large log ratios indicate high variation between the two variables, while the

inverse is true for small log ratios. Log ratios close to zero indicate very little difference

between the variables, opening the way for possibly combining the variables to filter out non-

essential information. Measured link distances (lines drawn from the tip of one variable vector

to another) graphically represent the log-ratio variances, while the pairwise vector lengths

show their relative standard deviation. These basic properties of the compositional data analy-

sis hold important implications for soil analysis; that soil data collections can be intelligently

prioritized based on the most important information. What constitutes the most “important”

information for discriminating different soil “types” as well as identifying important variables

driving soil reactions remains unclear, however, the fact that any one subcomposition is scale

invariant [39] may simplify the choice of characterization variables. All this assumes that

highly significant and robust analogies can be developed.

The water-extracted (WE) composition was described with a 5-PC model (based on shape

of the Scree plot and eigenvalues > 1) with the PC 1–2 representing 80% of the explained vari-

ance, making it a good candidate for exploratory analysis using biplots. In particular, we exam-

ined the variance matrix and loading plots to explore logratios and subcompositions of low

and high variance (Fig 2A), looking for opportunities to reduce the size of the composition

[40]. Log ratios contributing least to the total variance of the PCA model were log(Ba/Na), log

(Na/Zn), representing approx. 0.7 and 1.4% of the explained variance, respectively (see Sup-

porting Information for the logratio variation matrix). However, none of these rays for the dif-

ferent log ratios overlapped in the biplot (Fig 2A), therefore, were not appropriate to combine

into a single variable. On the other hand, rays for log(V/NH4.N), log(Ni/Mg), log(Fe/V), log

(Cu/EC), and log(pH.H2O/pH.CaCl2) noticeably overlapped, but the links were sufficiently

large to discourage further combining these variables as well.

Quantitative soil analogies using different compositional datasets

PLOS ONE | https://doi.org/10.1371/journal.pone.0212214 February 19, 2019 7 / 19

https://doi.org/10.1371/journal.pone.0212214


After evaluating the WE composition for nonsignificant information, we examined the

biplot for evidence of collinearity among the remaining variables [39–41]. Collinear variables

were suggested by different rays situated on a common line, whether in the same or opposite

direction. The most obvious example in the WE composition was observed in the long link

Fig 2. Statistical plots for the water-extracted (WE) composition (suffix “.w” refers to a constituent from the WE composition). (A) Clr-transformed biplots for the

full composition with samples grouped based on the Great Group designation. (B) ternary principal component (t-PCA) plot for the pH.KCl-Ca-EC subcomposition,

with samples grouped based on the Suborder designation. (C) t-PCA plot for the NH4.N-Cl-SO4 subcompositions, grouped based on the Suborder designation.

https://doi.org/10.1371/journal.pone.0212214.g002
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connecting the pH.KCl and Ca variables along the axes of their rays (Fig 2B). Calculations

showed that a pH.KCl-Ca-EC subcomposition contributed only 0.045% to the total variance.

A ternary principal component (t-PC) analysis (Fig 2B) showed the data points clearly follow-

ing the line defining the principal axis. The first PC, explaining 95% of the variance in the sub-

composition was highly loaded by pH.KCl. The NH4.N-SO4-Cl subcomposition also appeared

similarly collinear, however, considerable scattering of the data around the principal axis (Fig

2C), probably reflecting the large number of nondetects in the Cl data that were modified by

the multivariate imputation technique.

In the biplots (Fig 2), clustering was evident for most of the samples (represented as clr-

transformed scores), except the populations appeared “stretched” across the principal axis,

suggesting the presence of leverage outliers (thus, the use of robust principal component algo-

rithm). This outcome was expected given diversity of taxonomically distinct soil types cap-

tured in this work under the Alfisols Order. From the biplot in Fig 2, narrow linear boundaries

or margins separating several of the clusters (at the Great Group level) were apparent for PC

1–2, particularly for the Fragiudalfs, Paleudalfs, and Paleustalfs samples, largely occupying

negative PC-2 space. On the other hand, the Hapludalfs samples appeared to cluster in two

separate populations, one at negative PC-1 and the other in positive PC-1 space, with the small

Glossudalfs group.

For the ME composition, we obtained a two PC model (based on the eigenvalues > 1 given

the unusual shape of the Scree plot), explaining only 50% of the total variance. Sample cluster-

ing in the biplot based on the Great Group designation was much less apparent with the ME

composition, thus we expected this composition to be less discriminating than the WE compo-

sition. Furthermore, there were limited opportunities to simplify the composition. For exam-

ple, the very low variance of log(Ca/CEC) suggested that the two variables may be redundant,

however, the two rays did not overlap in the biplot (Fig 3). This lack of overlap may be an arti-

fact of the low explained variance of the PCA model, with the low variance of the log(Ca/CEC)

possibly suggesting the links were either very small or orthogonal [39]. Whichever the case, we

Fig 3. Statistical plots for the ME and CEC compositions (“.m” suffix refers to a constituent of the ME composition). (A) clr-transformed biplots for the ME

composition, with samples grouped based on the Great Group designation. (B) clr-transformed biplots for the CEC composition, with samples grouped based on the

Great Group designation. (C) Results of a marginal analysis of the CEC composition, where third component, “�”, represents the geometric mean of the Al and Ca parts,

and the orange line representing the first principal component.

https://doi.org/10.1371/journal.pone.0212214.g003
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decided against combining variables in the ME composition given the low explained variance

of the overall PCA model. Also, t-PCA analysis did not find any strong collinear relationships

among the reduced ME composition (plots not shown).

We realized that the ME composition in itself contained a unique subcomposition describ-

ing the exchangeable cation content at the soil surface. Thus, we created a separate CEC sub-

composition from the exchangeable cations, Na, Ba, Ca, Mg, and K, and added exchangeable

Al given the appearance of collinearity in Fig 2B (which could not be confirmed because of the

low explained variance of the model for the ME composition). From the CEC subcomposition,

we selected a 3-PC model that explained 84% of the total variance in the data, representing a

substantial improvement over the full ME composition. Interestingly, the biplot (Fig 3B) was

similar to that obtained in Fig 3A, suggesting that the variance among the exchangeable cation

logratios dominated the structure in the ME composition (i.e., subcompositional coherence).

The log (Ca/Mg) represented the largest link, suggesting that the log(Ca/CEC) in the ME com-

position was probably redundant. With the higher explained variance of the CEC subcomposi-

tion, the collinear relationship between Al and Ca was more evident (Fig 3C).

The PCA model for the PSD composition was limited to two PCs, given that the composi-

tion consisted of only three parts. Thus, we plotted this PCA results as both in compositional

and clr-transformed biplots (Fig 4). The first PC explained 98% of the total variance, and

highly loaded by %Sand. It was more difficult to observe clustering in this data, in part due to

the smaller populations (as described previously), however, there were some apparent relation-

ships. For example, the Fragiudalfs appeared to cluster predominantly in negative PC-1, within

the log(Clay/Silt) (Fig 4A), while the “older” Paleudalfs and Paleustalfs mapped out in positive

PC-1, better described by the log(x/Sand). This clustering is somewhat evident in the t-PCA

plot as well (Fig 4B), with clustering at higher %clay, and toward the %Silt vertex.

LDA tests were conducted to determine the extent in which the different classes were dis-

criminated based on their PCA models. Here, the cross-validated results were used as the test

set. Overall, the WE composition (Table 2) was highly discriminating for most of the classes–

an outcome implied by the linearly separable clustering apparent in the biplot (Fig 2). The

Fig 4. Statistical plots for the PSD composition grouped according to Great Group designation. (A) Clr-transformed biplot for the full PSD composition. (B) t-PCA

plot for the full PSD composition, with the orange line in the t-PCA plot representing the principal axis.

https://doi.org/10.1371/journal.pone.0212214.g004
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WE composition best discriminated the general Suborder class, with most misclassifications

occurring due to the model confusing samples as Udalfs (representing the largest population

of samples). However, at the Great Group level (representing one level down in the NRCS tax-

onomy), the WE composition was much less accurate. While Hapludalfs and Fragiudalfs were

correctly classified 73 and 80% of the time, the other Great Groups were confused by the Hap-

ludalfs designation. Similarly, the WE composition most consistently identified the correct

temperature classes (under the Family name), with the accuracy for all three thermal regimes

ranging from 87–91%. The mesic and thermal regimes were the most confused with each

Table 2. Misclassification matrix from linear discriminant analysis testing of the accuracy of PCA (containing 5-PCs) model to predict the membership of the Alfi-

sols based on the water-extracted (WE) compositional data. Percent correct classifications are shown on the diagonal (in bold) while percent misclassification samples

are shown off-diagonal.

Designation Class Predicted class Total accuracy

Suborder Aqualfs Udalfs Ustalfs

Aqualfs 0(0) 100

Udalfs 98 1

Ustalfs 33 67 91

Great Group Endoaqualfs Fragiudalfs Glossudalfs Hapludalfs Paleudalfs Paleustalfs

Endoaqualfs 0 60 7 33

Fragiudalfs 2 80 18

Glossudalfs 92 8

Hapludalfs 3 5 4 73 13 2

Paleudalfs 2 50 27 21

Paleustalfs 8 92 64

Horizon Subsurface Surface

Subsurface 84 16

Surface 56 46 69

Family—mineralogy kaolinitic mixed siliceous smectitic

kaolinitic 17 83

mixed 92 1 7

siliceous 5 36 33 26

smectitic 33 27 40 74

Family—clay activity active none semiactive superactive

active 76 12 9 3

none� 28 58 14

semiactive 52 14 33

superactive 9 91 69

Family—temperature frigid mesic thermic

frigid 91 4 4

mesic 87 13

thermic 9 88 88

Family—texture coarse.loamy fine fine.loamy fine.silty loamy none

coarse-loamy 0 20 13 60 7

fine 67 5 24 2 2

fine-loamy 6 19 64 11

fine-silty 26 13 58

loamy 52 11 33 0 4

none 100 0 44

�no information available for this class

https://doi.org/10.1371/journal.pone.0212214.t002
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other by the WE composition, while no thermic regime samples were confused with the frigid

temperature class.

The ME composition (Table 3) was markedly inferior in discriminating the difference clas-

ses compared to the WE composition. Similar to the WE composition, the ME composition

well-discriminated the Suborder class, but confused all of the Great Groups with the Haplu-

dalfs designation. Similarly, the ME composition confused all of the frigid and most of the

mesic samples with the thermic temperature regime. Both the WE and ME compositions were

largely confused by the semi-active clay activity designation, but the WE composition did a

much better job at discriminating the active and super-active classes. The CEC composition

Table 3. Misclassification matrix from linear discriminant analysis testing the accuracy of 2-PCA model used to describe the Mehlich-III extracted (ME) composi-

tion and a 3-PCA model for the CEC subcomposition to correctly assign class memberships of the Alfisols samples among the different Great Group taxonomic des-

ignations. Percent correct classifications are shown on the diagonal (in bold) while percent misclassification samples are shown off-diagonal. Accuracy of the CEC

subcomposition is given in parenthesis.

Designation Class Predicted class Total accuracy

Suborder Aqualfs Udalfs Ustalfs

Aqualfs 0(0) 100(100)

Udalfs 99(98) 1(2)

Ustalfs 100(100) 0(0) 86(85)

Great Group Endoaqualfs Fragiudalfs Glossudalfs Hapludalfs Paleudalfs Paleustalfs

Endoaqualfs 0(20) 100(80)

Fragiudalfs 0(0) 100(88) 0(12)

Glossudalfs 0(0) 100(100)

Hapludalfs 0(1) 100(90) 0(4) 0(2)

Paleudalfs 0(6) 94(90) 0(4) 0(4)

Paleustalfs 100(92) 0(8) 49(46)

Horizon Subsurface Surface

Subsurface 100(96) 0(4)

Surface 100(97) 0(3) 62(60)

Family—mineralogy kaolinitic mixed siliceous smectitic

kaolinitic 0(0) 100(100)

mixed 0(3) 99(96) 1(1)

siliceous 100(100) 0(0)

smectitic 100(100) 0(0) 67(65)

Family—clay activity active none semiactive superactive

active 71(80) 10(8) 18(12)

none 62(54) 6(4) 0(8) 32(33)

semiactive 64(48) 12(2) 0(7) 24(43)

superactive 64(56) 1(4) 0(8) 35(32) 36(39)

Family—temperature frigid mesic thermic

frigid 0(0) 0(22) 100(78)

mesic 13(16) 87(84)

thermic 4(4) 96(96) 52(53)

Family—texture coarse.loamy fine fine.loamy fine.silty loamy none

coarse-loamy 0(40) 60(20) 40(40)

fine 48(45) 3(3) 49(49)

fine-loamy 97(64) 0(3) 3(31)

fine-silty 0(3) 36(40) 64(56)

loamy 22(22) 78(78) 0(0)

none 72(33) 28(67) 0(0) 38(37)

https://doi.org/10.1371/journal.pone.0212214.t003

Quantitative soil analogies using different compositional datasets

PLOS ONE | https://doi.org/10.1371/journal.pone.0212214 February 19, 2019 12 / 19

https://doi.org/10.1371/journal.pone.0212214.t003
https://doi.org/10.1371/journal.pone.0212214


showed a similar ability at discriminating the different samples to the ME composition

(Table 3). In this sense, the subcompositional coherence of the ME composition (using the

CEC subcomposition) was apparent.

We expected the PSD composition (Table 4) to be the least discriminating composition,

given the limited chemical information inherent in this composition. Yet, to our surprise, the

PSD composition exhibited a discriminating ability that was, overall, on par with the ME and

CEC compositions. Where we expected the PSD composition to excel, in the texture designa-

tion (Family name), it performed no better than the other compositions. In general, the differ-

ent compositions were similarly confused by coarse-loamy, loamy, and fine-loamy textures,

but was more accurate in distinguishing the fine-loamy and fine-silty textures.

Table 4. Misclassification matrix from linear discriminant analysis testing the accuracy of the 2-PC model used to describe the particle size composition to correctly

assign class memberships of the Alfisols samples among the different Great Group taxonomic designations. Percent correct classifications are shown on the diagonal

(in bold) while percent misclassification samples are shown off-diagonal.

Designation Class Predicted class Total accuracy

Suborder Aqualfs Udalfs Ustalfs

Aqualfs 0 100

Udalfs 97 4

Ustalfs 100 0 85

Great Group Endoaqualfs Fragiudalfs Glossudalfs Hapludalfs Paleudalfs Paleustalfs

Endoaqualfs 0 100

Fragiudalfs 19 81

Glossudalfs 25 50 25

Hapludalfs 12 2 78 7

Paleudalfs 7 93 0

Paleustalfs 100 0 42

Horizon Subsurface Surface

Subsurface 98 2

Surface 100 0 62

Family—mineralogy kaolinitic mixed siliceous smectitic

kaolinitic 50 50

mixed 97 2 2

siliceous 7 92 0

smectitic 82 18 0 69

Family—clay activity Active None Semiactive superactive

active 73 7 20

none 16 53 32

semiactive 69 15 0 15

superactive 38 29 33 47

Family—temperature frigid mesic thermic

frigid 33 7 60

mesic 3 72 25

thermic 5 33 62 60

Family—texture coarse.loamy fine fine.loamy fine.silty loamy none

coarse-loamy 60 40

fine 4 13 52 22 9

fine-loamy 60 30 10

fine-silty 15 85

loamy 33 67 0

none 67 17 17 0 37

https://doi.org/10.1371/journal.pone.0212214.t004
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Discussion

This work agrees with other reports [42, 43] showing that multivariate analogies built to repre-

sent different soil “types” can do well to capture the natural complexity of soils as articulated

by soil classification systems, even in a relatively well-defined soil Order like Alfisols. In this

paper, we studied the application of compositional theory to different soil characterization

data of Alfisols within the Eastern and Central U.S., and its implications for discriminating soil

classification-analogies.

The results showed that the WE composition provided the best discrimination among the

different soil classes, both at general and more specific levels of classification. Surprisingly, all

of the compositions similarly resolved the soils at the Suborder class, pointing to their value

for discriminating soils at more general classification levels. The WE composition was notice-

ably better at discriminating the samples than the other compositions only one step down the

classification hierarchy, at the Great Group level. However, we observed that all of the compo-

sitions were confused by the Hapludalfs designation. This may be attributed in part to the

inherent ambiguity of this particular class, given that Hapludalfs serves as a “catch-all” desig-

nation for unremarkable Udalfs. If so, this represents a potential opportunity for meaningfully

revising this designation relative to the composition of interest. At the temperature regime des-

ignation (within the Family name), the WE composition correctly classified samples nearly

90% of the time. This result was especially surprising given that the WE composition was miss-

ing any information related to soil carbon, a major characteristic typically used to distinguish

soils from different climatic regimes. Additional analysis adding soil carbon, nitrogen, and sul-

fur contents as non-compositional variables (not shown) to the WE composition seemed to

have no effect on the misclassification rate for the thermal regime.

Related to this point was the observation that all of the compositions exhibited similar abil-

ity to discriminate between surface and subsurface horizons. Here, horizon position was over-

whelmingly confused by the subsurface horizon. This probably reflects that fact that the

surface horizons for collected Alfisols are typically thin, making it easier to confuse with the

subsurface horizons, particularly when diffuse horizon boundaries were apparent. However,

adding carbon, nitrogen, and sulfur contents as non-compositional variables to the WE com-

position greatly improved the accuracy of the horizon position predictions from 68 to 83% (S4

Fig).

CoDA principles provided a clearer theoretical basis for more detailed interpretations of

the biplots than we’ve experienced with classical statistical techniques. CoDA also provided a

reasonable basis to compare the value of each compositional data set. For example, the collin-

ear relationship in the pH.KCl-Ca-EC subcomposition was sensible, pointing to well-known

soil pH buffering mechanisms such as the dissolution of soil CaCO3 and release of exchange-

able Ca. Witnessing this behavior in the WE composition was reasonable, but, of course, not

anticipated in the ME composition because the Mehlich extractant generally overwhelms the

soil pH. This pH buffering behavior was clearly more important for discriminating the differ-

ent soil classes than via acid-extractable solutes or particle size distributions, and perhaps gets

us closer to articulating true aqueous chemical behavior in soils. On the other hand, the CEC

subcomposition showed the linear relationship between exchangeable Al and Ca cations occu-

pying the exchange phase. At a lower pH, the exchange phase is relatively more enriched in

Al3+ cations than Ca2+ at higher pH. In total, the WE, ME, and CEC compositions emphasized

the importance of pH as a dominant soil characteristic.

There are several implications arising from this research. Our results alluded to the value of

different compositions emphasizing different ranges of soil behavior. This point is particularly

important given that soil data comes in many “shapes and sizes”, representing an important
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barrier in our efforts to build the described soil analogies. Researchers may use different com-

binations of destructive (extractions, digests) and non-destructive (XRF, x-ray diffraction)

techniques depending on the rarity of the samples, equipment availability, and logistics of

transporting soils. To our knowledge, no standard method or protocol is universally suitable

for chemically and physically characterizing all soils. This limitation becomes painfully obvious

when seeking consensus on the properties important for various soil-mediated reactions, such

as contaminant environmental fate or spectroscopic response. Thus, the way forward may

involve studying the value of different compositions as opposed to developing a standard char-

acterization protocol for soils, taking advantage of the soils’ subcompositional coherence when

considering gaps in one characterization set to another.

These results suggest that classification-analogies could be developed for other NRCS soil

types, expecting that inherent or latent structure will similarly emerge from geochemical char-

acterization data as shown in this work for the Alfisols Order. In particular, statistically dis-

criminant analogical models are expected for the more pedomorphologically distinguished

taxonomic Orders, such as Mollisols, Ultisols, and Spodosols, and their accompanying Subor-

der and Great Group sublevels. These results indicate that classification-analogies may be

developed for other soil classification systems, such as the previously mentioned WRB, if the

specific soil taxonomy of samples can be identified, and the systems are relatively free of arbi-

trary or poorly defined criteria. In addition, classification analogies may be useful for recon-

naissance-related applications, such as developing calibration sets using local soil types for

extrapolating soil properties and behavior to remote or otherwise inaccessible soil types. Over-

all, this research points to the importance of considering soil taxonomy when sampling, pro-

viding a means for more explicitly incorporating soil taxonomic information in research.

It is important to note that this work does not include a critical analysis of the NRCS classi-

fication system, nor is it the intention of this work to strictly follow conventions among pedol-

ogists using the NRCS system in terms of collecting or presenting specific data relative to the

classification level. For example, soil nutrient data is typically associated at the Family level in

the NRCS classification system, which provides information relevant to land-use, such as

whether the land is under agricultural production, etc., because our interest was more related

to developing signature earlier on in the hierarchy. This approach was adopted intentionally

with the goal of building up a unique soil archive where soil samples could be repeatedly tested

for different complex soil processes, such as contaminant sorption or degradation using the

same set of soil analogs, and their corresponding multivariate signatures, as opposed to collect-

ing new soil samples when new inquiries arose in terms of complex processes.

Conclusions

In this paper, we explored the application of CoDA theory to develop highly discriminating

soil classification-analogies. We showed that the potential of three different compositions, and

one subcomposition, made up of soil characterization data, to accurately predict both taxo-

nomic and location-specific classes of soils. Overall, the WE composition best discriminated

the different soil classes.

Supporting information

S1 Table. List of physical and chemical methods used to characterize the soil horizon samples.

(DOCX)

S2 Table. Variation array for the clr-transformed WE composition.

(DOCX)

Quantitative soil analogies using different compositional datasets

PLOS ONE | https://doi.org/10.1371/journal.pone.0212214 February 19, 2019 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212214.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212214.s002
https://doi.org/10.1371/journal.pone.0212214


S3 Table. Variation array for the clr-transformed ME composition.

(DOCX)

S4 Table. Variation array for the clr-transformed PSD composition.

(DOCX)

S5 Table. Eigenvalues and % explained variance (EV) with the number of components

obtained from the robust PCA analysis for the different compositions.

(DOCX)

S6 Table. Results of normality tests on robust PCA loadings using the Shapiro-Wilk nor-

mality tests.

(DOCX)

S7 Table. MANOVA results on the robust PCA scores for the water-extracted composition.

(DOCX)

S8 Table. MANOVA results on the robust PCA scores for the Mehlic-III extracted compo-

sition.

(DOCX)

S9 Table. MANOVA results on the robust PCA scores for the particle-size composition.

(DOCX)

S1 Fig. Missing data matrix for the water-extracted characterization data.

(DOCX)

S2 Fig. Missing data matrix for the ME characterization data.

(DOCX)

S3 Fig. Scree plots from the robust PCA of the different compositions. (A) WE composi-

tion. (B) ME composition. (C) PSD composition. (D) CEC composition.

(DOCX)

S4 Fig. Results from the PCA of the WE composition combining the solid-phase CNS data

as non-compositional data. (A) Loadings plot (B) Scores plot.

(DOCX)

Acknowledgments

The use of trade, product, or firm names in this report is for descriptive purposes only and

does not imply endorsement by the U.S. Government. The tests described and the resulting

data presented herein, unless otherwise noted, were obtained from research conducted under

the Environmental Quality Technology Program of the US Army Corps of Engineers by the U.

S. Army Engineer Research and Development Center (ERDC). Permission was granted by the

Chief of Engineers to publish this information. The findings of this report are not to be con-

strued as an official Department of the Army position unless so designated by other authorized

documents. The authors express gratitude to Dr. Elizabeth Ferguson, Technical Director of the

U.S. Army ERDC Environmental Quality Technology Program for support of this research.

Author Contributions

Conceptualization: Mark A. Chappell, Jennifer M. Seiter.

Formal analysis: Mark A. Chappell.

Quantitative soil analogies using different compositional datasets

PLOS ONE | https://doi.org/10.1371/journal.pone.0212214 February 19, 2019 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212214.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212214.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212214.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212214.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212214.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212214.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212214.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212214.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212214.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212214.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212214.s013
https://doi.org/10.1371/journal.pone.0212214


Funding acquisition: Mark A. Chappell, Jennifer M. Seiter.

Investigation: Mark A. Chappell, Haley M. West, Brian D. Durham, Beth E. Porter, Cynthia L.

Price.

Methodology: Mark A. Chappell.

Project administration: Mark A. Chappell.

Resources: Mark A. Chappell.

Supervision: Mark A. Chappell, Cynthia L. Price.

Visualization: Mark A. Chappell.

Writing – original draft: Mark A. Chappell.

Writing – review & editing: Mark A. Chappell.

References
1. Mayo M, Collier ZA, Hoang V, Chappell MA. Uncertainty in Multi-Media Fate and Transport Models: A

Case Study for TNT Life Cycle Assessment. Sci Tot Environ. 2014; 494–495:104–12.

2. Cowan CE, Mackay D, Feijtel TCJ, van de Meent D, Guardo AD, Davies J, et al., editors. The Multi-

Media Fate Model: A Vital Tool for Predicting the Fate of Chemicals. Socieity of Environmental Toxicol-

ogy and Chemistry (SETAC); 1995 April 14–16, 1994; November 4–5, 1994; Leuven, Belgium and

Denver, Colorado.

3. Mackay D. Multimedia Enviornmental Models: The Fugacity Approach. 2nd ed: CRC Press; 2001.

4. Chappell MA, Price CL, Miller LF. Solid-phase considerations for the environmental fate of nitrobenzene

and triazine munition constituents in soil. Appl Geochem. 2011; 26:S330–S3.

5. Chappell MA. Solid-phase considerations for the environmental fate of TNT and RDX in soil. In: Chap-

pell MA, Price CL, George RD, editors. Environmental Chemistry of Explosives and Propellant Com-

pounds in Soils and Marine Systems: Distributed Source Characterization and Remedial Technologies.

1069: American Chemical Society; 2011. p. 1–25.

6. Wold S, Sjostrom M. SIMCA: A Method for Analyzing Chemical Data in Terms of Similarity and Analogy.

Chemometrics: Theory and Application. ACS Symposium Series. 52: American Chemical Society;

1977. p. 243–82.

7. IUSS Working Group. World Reference Base for Soil Resources 2014, update 2015: International soil

classification system for naming soils and creating legends for soil maps. Rome: FAO, 2015 Contract

No.: 106.

8. Nachtergaele FO, Spaargaren O, Deckers JA, Ahrens B. New developments in soil classification. Geo-

derma. 2000; 96(4):345–57. http://dx.doi.org/10.1016/S0016-7061(00)00023-9.

9. De Bakker H. Purposes of soil classification. Geoderma. 1970; 4(3):195–208. http://dx.doi.org/10.1016/

0016-7061(70)90003-0.

10. Norris JM. The application of multivriate analysis to soil studies. III. Soil variation. J Soil Sci. 1972; 23

(1):62–75. https://doi.org/10.1111/j.1365-2389.1972.tb01642.x

11. Zumberge JE. Prediction of source rock characteristics based on terpane biomarkers in crude oils: A

multivariate statistical approach. Geochimica et Cosmochimica Acta. 1987; 51(6):1625–37. http://dx.

doi.org/10.1016/0016-7037(87)90343-7.
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