
ORIGINAL ARTICLE

Copyright © 2018 The Korean Association of Internal Medicine
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/4.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

pISSN 1226-3303
eISSN 2005-6648

http://www.kjim.org

Korean J Intern Med 2018;33:397-406
https://doi.org/10.3904/kjim.2015.244

Division of Rheumatology, 
Department of Internal Medicine, 
Chonbuk National University 
Medical School, Research Institute 
of Clinical Medicine of Chonbuk 
National University- Biomedical 
Research Institute of Chonbuk 
National University Hospital, Jeonju, 
Korea

Received	: July 28, 2015
Revised	 : October 12, 2015
Accepted	: March 11, 2016

Correspondence to 
Wan-Hee Yoo, M.D.
Division of Rheumatology,  
Department of Internal 
Medicine, Chonbuk Nation-
al University Medical School, 
Research Institute of Clinical 
Medicine of Chonbuk National 
University-Biomedical Research 
Institute of Chonbuk National 
University Hospital, 20 Geonji-ro, 
Deokjin-gu, Jeonju 54907, Korea
Tel: +82-63-250-1672
Fax: +82-63-254-1609
E-mail: ywhim@jbnu.ac.kr

Background/Aims: To define the effect of statins on interleukin 1β (IL-1β)-induced 
osteoclastogenesis and elucidate the underlying mechanisms.
Methods: Bone marrow cells were obtained from 5-week-old male ICR (Institute 
for Cancer Research) mice, and they were cultured to differentiate them into os-
teoclasts with macrophage colony-stimulating factor and the receptor activator of 
nuclear factor (NF)-κB ligand in the presence or absence of IL-1β or atorvastatin. 
The formation of osteoclasts was evaluated by tartrate-resistant acid phospha-
tase (TRAP) staining and resorption pit assay with dentine slice. The molecular 
mechanisms of the effects of atorvastatin on osteoclastogenesis were investigated 
using reverse transcription polymerase chain reaction and immunoblotting for 
osteoclast specific molecules.
Results: Atorvastatin significantly reduced the number of TRAP-positive multi-
nucleated cells as well as the bone resorption area. Atorvastatin also downregu-
lated the expression of the NF of activated T-cell c1 messenger RNA and inhibited 
the expression of osteoclast-specific genes. A possible underlying mechanism 
may be that atorvastatin suppresses the degradation of the inhibitors of NF-κB 
and blocks the activation of the c-Jun N-terminal kinase, extracellular signal-reg-
ulated kinase, and p38; thus, implicating the NF-κB and mitogen-activated pro-
tein kinases pathway in this process.
Conclusions: Atorvastatin is a strong inhibitor of inflammation-induced osteo-
clastogenesis in inflammatory joint diseases.
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Atorvastatin inhibits osteoclast differentiation by 
suppressing NF-κB and MAPK signaling during 
IL-1β-induced osteoclastogenesis
Won-Seok Lee, Eun-Gyeong Lee, Myung-Soon Sung, Yun-Jung Choi, and Wan-Hee Yoo

INTRODUCTION

Bone erosion is a central feature of rheumatoid arthritis 
(RA), and it is associated with disease severity and poor 
functional outcome. Bone loss results from an imbal-
ance in which bone resorption by osteoclasts is favored 
over bone formation by osteoblasts [1]. A role for osteo-
clasts in bone erosion in RA was identified in multinu-
cleated cells at sites of erosion in subchondral bone and 

at the pannus/bone interface in tissue samples from pa-
tients with RA [2].

The pathogenesis of bone erosion and the role of os-
teoclasts in RA were greatly augmented by the discov-
ery of a cytokine system of osteoclast differentiation 
and activation. Osteotropic agents such as interleukin 
1 (IL-1), IL-6, IL-11, IL-15, IL-17, tumor necrosis factor 
α (TNF-α), prostaglandin E2, and the parathyroid hor-
mone induce bone loss by increasing osteoclast forma-
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tion [3,4]. A cell-surface molecule, the receptor activator 
of nuclear factor (NF)-κB ligand (RANKL), recruits TNF 
receptor-associated factor (TRAF) proteins by binding to 
its receptor, the receptor activator of NF-κB (RANK), and 
it has been found to be a key factor in the stimulation of 
osteoclast formation [5,6]. TRAFs activate various signal-
ing pathways, including c-Src, PI3-kinase/Akr, and mito-
gen-activated protein kinase (MAPK) [7]. RANKL activates 
numerous transcription factors, including c-Fos, NF of 
activated T-cell (NFAT) c1, PU1, and microphthalmia-as-
sociated transcription factors, as these are essential to 
osteoclast differentiation [8]. c-Fos is responsible for the 
expression of NF of activated T-cells (NFATc1) during 
RANKL-mediated osteoclast differentiation [9,10].

Atorvastatin is a 3-hydroxy-3-methylglutaryl coenzyme 
A (HMG-CoA) reductase inhibitor widely used as a lip-
id-lowering agent. Inhibition of the enzyme results in 
reduced conversion of HMG-CoA to mevalonate and 
subsequent isoprenoid precursors, and it mainly reduc-
es the cholesterol level in liver cells [11]. Reduced cho-
lesterol availability leads to increased liver low density 
lipoprotein (LDL) receptor synthesis and increased re-
moval of LDL from the bloodstream [12]. Several stud-
ies have shown that statins such as atorvastatin may also 
exert an immunomodulatory effect by the inhibition of 
proinflammatory cytokine production [13], as well as an 
inhibitory effect on T-cell recruitment and T-cell stim-
ulation [14,15]. Furthermore, atorvastatin may potentially 
have beneficial effects on bone metabolism in patients 
with hypercholesterolemia, mostly by reducing bone re-
sorption rather than by stimulating bone formation [16].

Herein, we showed that the inhibitory mechanism of 
atorvastatin on IL-1β-induced, RANKL-mediated osteo-
clast differentiation via the MAPK/NF-κB pathway.

METHODS

Reagents and antibodies
Recombinant human IL-1β was purchased from R&D 
System (Minneapolis, MN, USA). Atorvastatin was ob-
tained from Axon MedChem (Groningen, the Nether-
land). Human soluble RANKL and the macrophage-col-
ony stimulating factor (M-CSF) were obtained from 
PeproTech (Rocky Hill, NJ, USA). Monoclonal antibod-
ies (Abs) against extracellular signal-regulated kinase 

(ERK) 1/2, phosphate (p)-ERK, c-Jun N-terminal kinas-
es (JNK), p-JNK, p38, p-p38, NF-κB (p65), inhibitor of 
NF-κBα (IκBα), and β-actin were purchased from Cell 
Signaling Technology (Danvers, MA, USA). Abs against 
c-Fos, NFATc1, and tartrate-resistant acid phosphatase 
(TRAP) were purchased from Santa Cruz Biotechnology 
(Dallas, TX, USA). The goat anti-rabbit immunoglobulin 
G (IgG, ENZO Life Sciences, Farmingdale, NY, USA) and 
rabbit anti-goat horseradish peroxidase (HRP)-conju-
gate were purchased from Bethyl Laboratories (Mont-
gomery, TX, USA).

Osteoclast differentiation
Bone marrow cells (BMCs) were collected from the tibias 
and femurs with α-minimum essential media (α-MEM,  
WelGENE, Gyeongsan, Korea) containing antibiotics 
(Sigma-Aldrich, St. Louis, MO, USA) of 5-week-old male 
Institute for Cancer Research (ICR) mice. The animal 
experiments were approved by the Institutional Animal 
Care and Use Committee of Chonbuk National Uni-
versity (CNU), and they were conducted in accordance 
with the guidelines of CNU. The BMCs were cultured in 
α-MEM containing 10% fetal bovine serum (FBS), anti-
biotics, and M-CSF (10 ng/mL), and then they were cul-
tured for 1 day. Nonadherent cells were plated on 100-
mm petri dishes and were then cultured for 3 days in 
the presence of M-CSF (30 ng/mL). Adherent cells were 
used as bone marrow-derived macrophages (BMMs). 
The BMMs were cultured for 3 days with M-CSF (30 ng/
mL) and RANKL (100 ng/mL) to induce pre-fusion os-
teoclasts. To differentiate osteoclasts from the BMMs, 
they were cultured for 4 days with M-CSF (30 ng/mL) 
and RANKL (50 ng/mL) in the presence or absence of 
IL-1β (10 ng/mL) or atorvastatin (0.5 µM).

RNA isolation and reverse transcription-polymerase 
chain reaction
Total RNA was isolated with TRIzol reagent (Invitro-
gen, Carlsbad, CA, USA) according to the manufacturer’s 
recommended protocol. The complement (c)-DNA was 
synthesized using a Maxime RT Premix Kit (iNtRON 
Biotechnology, Seongnam, Korea), and then cDNA was 
amplified using a Maxime polymerase chain reaction 
(PCR) Premix Kit (iNtRON Biotechnology). The prim-
ers used in the PCR were as follows: NFATc1 forward, 
5′-tgtgcaagccaaattccctg-3′, reverse, 5′-atacacccccagac-
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cgcatc-3′; c-Fos forward, 5′-atcggaggagggagctgaca-3′, 
reverse, 5′-ggaaccggacaggtccacat-3′; TRAP forward, 
5′-gtgctggctggaaaccatga-3′, reverse, 5′-cccactcagcacatagc-
cca-3′; E-cadherin forward, 5′-aaatgatgtggctcccaccc-3′, 
reverse, 5′-catctcccatggtgccacac-3′; cathepsin K forward, 
5′-cagagtgggaaggcagggtc-3′, reverse, 5′-gctttctcgttcccca-
cagg-3′; osteoclast-associated receptor (OSCAR) forward, 
5′-ctttttctttctggccgcgt-3′, reverse, 5′-catggtggctcacac-
ccatc-3′; dendritic cell-specific transmembrane protein 
(DC-STAMP) forward, 5′-gcaaggaacccaaggagtcg-3′, re-
verse, 5′-cagttggcccagaaagaggg-3′; c-Src forward, 5′-ctg-
gttccacggcaagatca-3′, reverse, 5′-ttcatgttcagtgcccagcc-3′; 
and glyceraldehyde 3-phosphate dehydrogenase (GAP-
DH) forward, 5′-tcatcatctccgccccttct-3′, reverse, 5′-agcttc-
ccgttcagctctgg-3′. PCR products were electrophoresed 
on 1% agarose gel stained with ethidium bromide. Den-
sitometric analysis was performed using FusionCapt 
Advance software (Vilber Lourmat, Eberhardzell, Ger-
many).

Cell viability analysis
Cell viability was determined using a CCK-8 kit (Do-
jindo Laboratories, Kumamoto, Japan) according to the 
manufacturer’s instructions. Briefly, 2-(2-methoxy-4-ni-
trophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-
tetrazolium (CCK-8) was reduced by dehydrogenases in 
cells to yield an orange-colored product (formazan) [17]. 
The amount of formazan dye generated by dehydroge-
nases in the cells was directly proportional to the num-
ber of living cells. The BMMs were plated on 96-well 
plates with α-MEM containing 10% FBS and antibiotics 
with M-CSF (30 ng/mL) and RANKL (100 ng/mL) for 3 
days. The cells were washed with complete α-MEM me-
dia and were then incubated for 24 hours with IL-1β (10 
ng/mL) or atorvastatin (0.5 µM) in the presence of M-CSF 
(30 ng/mL) and RANKL (50 ng/mL). CCK-8 (10 µL/well) 
was added to each well of the plates, and the cells were 
incubated for 3 hours. The absorbance was measured at 
450 nm using a microplate reader.

Western blot analysis
Cultured cells were lysed in the lysis buffer (50 mM Tris-
HCl, 150 mM NACl, 5 mM ethylenediaminetetraacetic 
acid, 1% Triton X-100, 1 mM sodium fluoride, 1 mM 
sodium vanadate, and 1% deoxycholate) containing pro-
tease inhibitors. The protein concentration was deter-

mined using the Bio-Rad protein assay reagent (Bio-Rad 
Laboratories, Hercules, CA, USA). Samples containing 
30 μg of protein were boiled in sodium dodecyl sulfate 
(SDS) sample buffer at 95ºC for 5 minutes, separated by 
10% SDS-polyacrylamide gel electrophoresis, and trans-
ferred to polyvinylidene difluoride membranes. Prima-
ry Abs (10 μg/mL) against NFATc1, c-Fos, TRAP, ERK 
1/2, p-ERK, JNK, p-JNK, p38, p-p38 NF-κB (p65), IκBα, 
and β-actin were incubated overnight at 4ºC. Then the 
secondary HRP-conjugated Ab, which was goat anti-rab-
bit IgG or rabbit anti-goat IgG, was washed three times 
for 30 minutes. Reactive proteins were detected by en-
hanced chemiluminescence (Amersham Life Sciences, 
Arlington, IL, USA) using Fusion FX7 (Vilber Lourmat).

Cytochemical assessment of osteoclast formation 
(TRAP staining)
The BMMs were seeded at a density of 1.5 × 104 cells/
well in a 96-well plate in triplicate for 3 days. The cells 
were cultured for 4 days with IL-1β (10 ng/mL) or ator-
vastatin (0.5 µM) in the presence of M-CSF (30 ng/mL) 
and RANKL (50 ng/mL). After 4 days, the cells were fixed 
with 3.7% formalin and permeabilized in 0.1% Triton 
X-100 for 10 minutes. The cells were stained with TRAP 
stain solution using a leukocyte acid phosphatase kit 
(Sigma-Aldrich) according to the manufacturer’s in-
structions. TRAP positive cells containing three or more 
nuclei were counted as multinuclear osteoclasts. Photo-
graphs were taken under a light microscope (Carl Zeiss, 
Thornwood, NY, USA).

Resorption pit assay
The formation of osteoclasts was evaluated by the re-
sorption pit area as follows. The BMMs (2 × 104 cells/well) 
were seeded in a 96-well plate containing a dentine slice 
5 mm in diameter (Immunodiagnostic Systems, Gaith-
ersburg, MD, USA) with IL-1β (10 ng/mL) or atorvastatin 
(0.5 µM) in the presence of M-CSF (30 ng/mL) and RANKL 
(50 ng/mL) for 3 weeks. Cells on the dentine slices were 
rubbed with a cotton bud and stained with hematoxylin 
(Sigma-Aldrich) or TRAP. Quantification of the area of 
resorption was conducted using the IMT i-solution soft-
ware (Samwoo Scientific Co., Seoul, Korea).

Statistical analysis
All data are expressed as a mean ± standard deviation 
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of triplicate measurements. The mean values of each 
group were compared using Student t test or analysis 
of variance as appropriate, and p < 0.05 was considered 
statistically significance. Statistical analyses were per-
formed using SPSS version 16.0 (SPSS Inc., Chicago, IL, 
USA).

RESULTS

Atorvastatin inhibits RANKL-mediated or IL-β-stim-
ulated osteoclast differentiation
To determine the effects of atorvastatin on RANKL-me-
diated or IL-1β-stimulated osteoclastogenesis, we ini-
tially examined the formation of TRAP (+) multinu-
clear cells as an indicator of osteoclast differentiation, 
which satisfied most of the morphological criteria of 
osteoclasts. IL-β significantly increased the formation 
of TRAP (+) cells compared to the absence of this cyto-
kine (48.2 ± 4.3 vs. 149.4 ± 7.5, respectively; p < 0.05). Ator-
vastatin significantly decreased RANKL-mediated or 
IL-1β-stimulated formation of TRAP (+) cells compared 
to the absence of atorvastatin (34.3 ± 4.5 vs. 47.3 ± 5.2, re-
spectively; p < 0.05) (Fig. 1A).

We also measured the resorption area as another in-

dicator of osteoclast formation. IL-1β significantly in-
creased the resorption area compared to the absence of 
IL-1β (48.3 ± 4.5 vs. 80.8 ± 3.2, respectively; p < 0.05). Ator-
vastatin also significantly decreased the RANKL-medi-
ated or IL-1β stimulated formation of resorption pits 
compared to the absence of atorvastatin (40.9 ± 3.5 vs. 53.4 
± 2.5, respectively; p < 0.05) (Fig. 1B).

Atorvastatin inhibits RANKL-mediated or IL-β-stim-
ulated survival of osteoclast precursors
To evaluate the effects of atorvastatin on the growth 
properties of the BMCs from the 5-week-old male ICR 
mice, we measured cell survival with M-CSF (30 ng/mL) 
and RANKL (100 ng/mL) in the presence or absence 
of atorvastatin (0.5 μM) or IL-1 (10 ng/mL) for 3 days as 
previously described. As shown in Fig. 2A, IL-1β sig-
nificantly increased the survival of osteoclast precursor 
cells compared to the control without IL-1β (p < 0.05). 
Atorvastatin significantly inhibited the survival of osteo-
clast precursor cells compared to IL-1β (p < 0.05). How-
ever, there was no difference in the survival of osteoclast 
precursor cells between the control and cultures with 
atorvastatin. To determine the dose-dependent effects 
of atorvastatin on IL-1β-induced survival of osteoclast 
precursor cells, we added various doses of atorvastatin 
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(0.5, 1, and 5 μM) to the osteoclast precursor cell cultures 
with IL-1β (10 ng/mL) for 3 days and performed a CCK-8 
assay. The inhibitory effects of atorvastatin were signifi-
cantly enhanced as the concentration of atorvastatin in-
creased (Fig. 2B). These effects were also time dependent 
(data not shown).

Atorvastatin suppresses c-Fos and NFATc1 expres-
sion induced by RANKL or IL-1β
Osteoclast differentiation is regulated by the induction 
of various genes in response to RANKL and other os-
teotropic agents, including IL-1β and TNF-α. IL-1β is a 
very important inflammatory cytokine in RA and causes 
bone loss by increasing osteoclast formation. Both c-Fos 
and NFATc1 play essential roles in the differentiation 
of osteoclast precursors [10]. Therefore, we examined 
whether atorvastatin regulated the expression of c-Fos, 
NFATc1 messenger RNAs (m-RNAs), and proteins in 
response to RANKL or IL-1β. The densitometric value 
of reverse transcription (RT)-PCR normalized by the 
GAPDH intensity showed that atorvastatin significant-
ly decreased the RANKL-mediated or IL-1β-stimulated 
expression of c-Fos and NFATc1 mRNA (Fig. 3A). Con-
sistent with the results of the RT-PCR analyses, expres-
sion of c-Fos and NFATc1 protein levels increased in re-
sponse to RANKL and IL-1β, and the expression of c-Fos 
and NFATc1 was significantly inhibited by atorvastatin 
(Fig. 3B). Thus, atorvastatin may inhibit osteoclast differ-
entiation by inhibiting c-Fos and NFATc1 expressions 
in response to RANKL and IL-1β. Many molecules are 
implicated in cell-cell fusion, including E-cadherin [18], 

DC-STAMP [19], and Src family kinases [20]. Therefore, 
we examined whether atorvastatin regulated the expres-
sion of E-cadherin, DC-STAMP, and c-Src. The densito-
metric value of RT-PCR normalized by the GAPDH in-
tensity showed that atorvastatin significantly decreased 
RANKL or IL-1β, as well as the expression of E-cadherin, 
DC-STAMP, and c-Src mRNA (Fig. 4).

Atorvastatin suppresses MAPK signal pathways 
induced by RANKL or IL-1β
To determine the involvement of signal transduction 
and the mechanisms underlying the effect of atorvas-
tatin on IL-1β-stimulated, RANKL-mediated osteoclast 
differentiation, we evaluated the activation of MAPKs in 
the BMCs. The densitometric values on immunoblots 
normalized according to β-actin intensity showed that 
IL-1β activated intracellular MAPKs, including ERK, 
p38, JNK (p < 0.05), and atorvastatin significantly inhib-
ited RANKL-mediated or IL-1β-stimulated activation 
of intracellular MAPK, including ERK and JNK, except 
p38 (p < 0.05) (Fig. 5). These results indicated that ator-
vastatin inhibits RANKL-mediated or IL-1β-stimulated 
osteoclast differentiation and survival via intracellular 
MAPKs pathways.

DISCUSSION

The modulation of bone formation and inflammation 
are considered among the various functions of statins 
[21-23]. Numerous clinical data have shown that statins 
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modulated autoimmune disease activity or indeed mod-
ified vascular risk factors in rheumatic disease [24-26]. 
McCarey et al. [26] showed marked suppression with 

atorvastatin of acute-phase variables and a significant 
reduction in the swollen joint count in patients with 
RA presenting with active disease, despite existing dis-
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ease-modifying antirheumatic drug therapy. There are 
many experimental studies on the effect of atorvastatin 
on osteoblasts, whereas there are only a few about the 
effect of atorvastatin on osteoclasts. In a recent study, 
atorvastatin markedly reduced RANKL expression in the 
fibroblast-like synoviocytes (FLSs) of patients with RA, 
and atorvastatin inhibited osteoclastogenesis in FLSs. 
Atorvastatin inhibits osteoclastogenesis and bone de-
struction in patients with RA [27]. A recent study sug-
gested an inhabitant effect of atorvastatin on osteoclasts. 
Subsequently, no studies have reported on this effect. 
Therefore, our research team attempted to directly dif-
ferentiate osteoclasts from a mouse and observe the ef-
fect.

The present study findings showed that atorvastatin 
inhibits IL-1β-stimulated, RANKL-mediated osteoclast 
differentiation in a dose-dependent manner by inhibit-

ing activation of the ERK and p-JNK kinase as well as in-
hibiting c-Fos and NFATc1 expression. These findings 
suggest that atorvastatin has an important inhibitory 
role in bone loss by preventing osteoclast formation, 
and it may be useful as a new preventive agent for man-
aging bone destruction in inflammatory diseases such 
as RA.

IL-1 is produced by many cell types relevant in rheu-
matoid synovitis and is readily detected in the rheuma-
toid joint, both in the synovial fluid (IL-1β) and within 
cells (IL-1α > IL-1β) [28]. IL-1β is critical in the patho-
genesis of inflammatory synovitis and joint destruction 
in RA, as it induces the differentiation and activation 
of osteoclasts [29]. IL-1 can induce and enhance TRAF 
activation via heterodimeric IL-1 receptors. Thus, IL-1 
differentiates and activates osteoclasts by engaging and 
activating TRAF6 via MAPKs, c-Fos, and NFATc1 sig-
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naling pathways [3,7]. However, IL-1 alone is unable to 
stimulate NFATc1 expression, but it can do so in the 
presence of a permissive level of RANKL [30]. RANKL 
plays a crucial role in IL-1 in terms of inducing the ex-
pression of NFATc1, which in turn cooperates with oth-
er transcriptional factors to simulate gene expression 
and thus osteoclastogenesis in osteoclast precursors. 
We found that atorvastatin inhibits osteoclast differ-
entiation in a dose-dependent manner in IL-1β-stimu-
lated, RANKL-mediated conditions. This suggests that 
atorvastatin may be a potent therapeutic compound for 
RA. However, further studies are required to investigate 
the overall effects and underlying mechanisms of ator-
vastatin on the pathophysiology of osteoclastogenesis in 
in vivo systems such as animal models of RA, including 
collagen-induced arthritis.

RANKL-RANK interaction activates many transcrip-
tion factors, including NFATc1, a calcineurin and cal-
cium-regulated transcription factor. RANKL induced 
the expression of c-Fos during early osteoclastogenesis. 
The binding of c-Fos to the NFATc1 promoter region is 
increased by RANKL, which induces NFATc1 gene ex-
pression [10,31]. The presence of NFATc1 in precursor 
cells prompts them to undergo osteoclastogenesis in 
the absence of RANKL [10]. In this study, to elucidate the 
mechanisms behind the effects of atorvastatin on IL-1β-
induced, RANKL-mediated osteoclast differentiation, 
the expression of c-Fos and NFATc1 were examined. We 
found that the inhibition of osteoclast differentiation by 
atorvastatin coincided with the regulation of c-Fos and 
NFATc1. Furthermore, NFATc1 induced the expression 
of osteoclast-specific genes such as TRAP, cathepsin K, 
and OSCAR [9,32]. However, we found that atorvastatin 
synergistically reduced the expression of TRAP, cathep-
sin K, and OSCAR by inhibiting NFATc1.

The binding of RANKL to RANK also recruits TRAF-
6 to activate all MAPK pathways, namely ERK, JNK, and 
p38 as well as phosphatidylinositol 3-kinase [33]. TRAF-
6–/– mice are severely osteopetrotic either with abundant, 
dysfunctional osteoclasts [34] or without osteoclasts [35]. 
In the present study, to elucidate the mechanisms behind 
the effects of atorvastatin on IL-1β-induced, RANKL-me-
diated osteoclast differentiation, the expression of ERK, 
p38 MAPKs, and JNK were examined. We found that the 
inhibition of osteoclast differentiation by atorvastatin 
coincided with the regulation of ERK and p-JNK. How-

ever, further studies are required to define the precise 
mechanisms of these effects on osteoclast differentia-
tion in the absence or presence of stimulating factors. 
Further investigations are also required to elucidate the 
mechanisms by which intracellular signaling factors are 
more specifically or directly involved in the effects of 
atorvastatin on osteoclast differentiation.

Much progress has been made in recent years for 
understanding osteoclast fusion and its regulation. 
DC-STAMP is a significant fusion regulator [19], and 
its expression is regulated by direct and indirect mech-
anisms [36]. Regarding the direct mechanism, RANKL/
RANK downstream transcription factors, which are im-
portant for RANKL-mediated osteoclast formation, are 
critical for osteoclast fusion, and this includes c-Fos 
and NFATc1. The fact that atorvastatin down-regulated 
the fusion of osteoclast precursors led us to hypothe-
size that atorvastatin may control the expression of DC-
STAMP. However, further investigations are required to 
define several important fusogenic genes, including the 
osteoclast stimulatory transmembrane protein [37], CD9 
[38], ATP6v0d2 [39], and dose-dependent effect of ator-
vastatin on osteoclast fusion.

In conclusion, the findings presented herein demon-
strated that atorvastatin inhibits IL-1β-stimulated, RANKL- 
mediated osteoclast differentiation. This study also 
showed that atorvastatin inhibits the phosphorylation of 
MAPK pathways and the activation of c-Fos and NFATc1. 
These findings need to be validated in in vivo models 
prior to their extrapolation to the pathophysiological 
condition, and further evaluations are needed to define 
the exact mechanisms of atorvastatin’s intracellular sig-
nals on these effects. However, a better insight into the 
mechanisms of atorvastatin regarding osteoclast dif-
ferentiation may provide a new therapeutic target for 
preventing articular bone and cartilage destruction in 
inflammatory joint diseases, including RA.

KEY MESSAGE

1.	 Atorvastatin has an important inhibitory role in 
bone loss by preventing osteoclast formation.

2.	 Atorvastatin may be useful as a new preventive 
agent for managing bone destruction in inflam-
matory diseases such as rheumatoid arthritis.
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