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Abstract

The neural basis of attention is thought to involve the allocation of limited neural resources. However, the
quantitative validation of this hypothesis remains challenging. Here, we provide quantitative evidence that the
nonuniform allocation of neural resources across the whole cerebral gray matter reflects the broad-task pro-
cess of sustained attention. We propose a neural measure for the nonuniformity of whole-cerebral allocation
using functional magnetic resonance imaging. We found that this measure was significantly correlated with
conventional indicators of attention level, such as task difficulty and pupil dilation. We further found that the
broad-task neural correlates of the measure belong to frontoparietal and dorsal attention networks. Finally, we
found that patients with attention-deficit/hyperactivity disorder showed abnormal decreases in the level of the
proposed measure, reflecting the executive dysfunction. This study proposes a neuromarker suggesting that
the nonuniform allocation of neural resources may be the broad-task neural basis of sustained attention.
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Significance Statement

Quantitative evidence for the neural basis of attention, which is thought to involve neural resource allocation,
is still lacking. Here, we propose a neural measurement quantifying the nonuniformity of whole-cerebral re-
source allocation. The level of the measure had positive linear relationships with indicators of attention level,
such as task difficulty and pupil dilation. The cross-task and cross-dataset validations suggest that the
measure could be used as a neuromarker of broad-task sustained attention. Its broad-task neural correlates
belong to frontoparietal and dorsal attention networks. We further explored levels of the measure in patients
with attention-deficit/hyperactivity disorder and observed abnormal decreases reflecting their executive
dysfunctions compared with healthy individuals. This result underlines the utility of the measure as a
neuromarker.

Introduction
The limited resources for mental processing in the

human brain constrain cognitive behaviors (Luck and
Vogel, 1997; Marois and Ivanoff, 2005). The brain over-
comes this by allocating limited resources efficiently and

flexibly, depending on task demands (Raichle, 2006; Peters,
2011). Sustained attention, defined as the cognitive-behav-
ioral process of maintaining concentration on specific infor-
mation while ignoring other perceivable information, has been
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considered evidence of the allocation process of limited re-
sources in the brain (Anderson, 2004; Nobre and Kastner,
2014). Studies have shown both task-general (Giesbrecht et
al., 2003; Macaluso et al., 2003; Greenberg et al., 2010) and
task-specific (Kanwisher and Wojciulik, 2000; Fries et al.,
2001; Gazzaley et al., 2005; Falkner et al., 2010; Störmer and
Alvarez, 2014; Moore and Zirnsak, 2017) characteristics.
Common neural substrates for attention during various tasks
have indicated that there may be a central neural process in
charge of the broad-task process of sustained attention.
However, the neural basis of this process remains unclear.
Previously published theories have suggested that the

neural basis of attention is the allocation process of limited re-
sources and have conceptually modeled this process (Moray,
1967; Kahneman, 1973; Wickens, 1980; Luck et al., 1996;
Wickens, 2002; Watanabe and Funahashi, 2014). A capacity
model of attention (Kahneman, 1973) provides an organized
theory to address various aspects of attention. The model in-
cludes an allocation policy that achieves a nonuniform alloca-
tion of the available capacity in a task-relevant manner.
Previous studies have reported evidence of the nonuniform
allocation phenomenon caused by attention (Gazzaley et al.,
2005; Falkner et al., 2010; Störmer and Alvarez, 2014). The
representative neural features of attention are attentional en-
hancement and surround suppression. Neural activity encod-
ing task-relevant or attended stimuli is enhanced, whereas
neural activity associated with task-irrelevant or unattended
stimuli is suppressed (Gazzaley et al., 2005; Falkner et al.,
2010; Störmer and Alvarez, 2014). These findings indicate
that limited neural resources are allocated in a task-relevant
manner, resulting in nonuniform allocation. Furthermore, in
large-scale nonuniform allocation, it also has been observed
that neural activities of task-irrelevant networks are inhibited
while task-relevant network activities are enhanced (Vincent
et al., 2008; Hermans et al., 2014). The same consequence of
nonuniform allocations in local and large-scale levels sug-
gests theremay be a global process controlling resource allo-
cation across the whole brain. Although this qualitative
evidence supports the hypothesis of the neural basis of atten-
tion, quantitative evidence is still lacking. The absence of a
quantitative measure for nonuniform resource allocation is a
significant obstacle in the quantitative validation of this
hypothesis.
Here, we aim to provide quantitative evidence that the

nonuniform allocation of limited neural resources reflects
the broad-task process of sustained attention. We pro-
pose a neuroimaging measure that quantifies the

nonuniformity of whole-cerebral neural resource alloca-
tion (nu-NRA). Using this measure, we tested the following
hypotheses: (1) nonuniform allocation of neural resources
across the whole cerebral gray matter reflects the broad-
task sustained attention; (2) broad-task neural substrates
of nonuniform resource allocation may exist; and (3) alter-
ations in the levels of the measure are observed in pa-
tients with attention-deficit/hyperactivity disorder (ADHD)
compared with healthy individuals.
We first validated the measure using task difficulty re-

flecting attentional load, an experimental indicator of at-
tention level (Sunaert et al., 2000; Culham et al., 2001;
Chen et al., 2008). If the attentional load was controlled
without changing types of stimuli and tasks, task difficulty
well follows attentional load. We further explored the
quantitative relationships of this new measure with pupil
dilation, which is a physiological indicator (Verney et al.,
2004; Wierda et al., 2012; Alnæs et al., 2014). We then per-
formed a cross-task and cross-dataset validation and investi-
gated the neural correlates of the measure by brain mapping.
Finally, we explored alterations in the nu-NRA levels in pa-
tients with ADHD compared with healthy individuals.

Materials and Methods
Datasets
Dataset 1
Functional and structural magnetic resonance (MR) im-

ages were acquired using a 3 T MR scanner (Magnetom
Verio, Siemens) equipped with a 32-channel head coil at
the Korea Advanced Institute of Science and Technology
fMRI Center in Daejeon, Republic of Korea. Blood oxy-
genation-level-dependent (BOLD) measurements for a
task and resting-state functional MR imaging (fMRI) were
performed using a gradient echo (GE) echoplanar imaging
(EPI) sequence (repetition time (TR), 2000ms; echo time
(TE), 30ms; slice thickness, 3 mm; field of view (FOV),
192� 192� 108 mm; flip angle (FA), 90°; voxel size,
3� 3� 3 mm; 36 axial slices with interleaved-ascending
order]. T1-weighted structural MR images were collected
using a three-dimensional magnetization-prepared rapid
acquisition GE (3D-MPRAGE) sequence (TR, 1800ms;
TE, 2.52ms; FOV, 256 � 256 � 176 mm; FA, 9°; voxel
size, 1 � 1 � 1 mm; 176 sagittal slices).
Twenty-four participants (four women; age range, 19–

34 years; mean age, 25 years; all right handed) were
recruited. None of the participants had any history of neu-
rologic or psychiatric illness, and all had 20/20 vision. One
participant was excluded from analyses because the
upper part of the brain was outside the field of view of the
fMRI. Task performance and physiological data were missing
for seven participants and were, thus, excluded from the cor-
responding analyses. The present study was approved by
the Institutional Review Board of the Korea Advanced
Institute of Science and Technology. Participants were pro-
vided with monetary compensation commensurate with task
performance.
The visuospatial n-back working memory task was de-

signed to induce various attentional load levels without
changing the stimuli. We implemented this task using

This research was supported by the Brain Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Science and ICT (Grant 2016M3C7A1913844). Data were provided in part by
the Human Connectome Project, WU-Minn Consortium (Principal
Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by
the 16 NIH Institutes and Centers that support the NIH Blueprint for
Neuroscience Research; and by the McDonnell Center for Systems
Neuroscience at Washington University.
Correspondence should be addressed to Yong Jeong at yong@kaist.ac.kr.
https://doi.org/10.1523/ENEURO.0358-21.2022

Copyright © 2022 Chung et al.

This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Research Article: New Research 2 of 13

March/April 2022, 9(2) ENEURO.0358-21.2022 eNeuro.org

mailto:yong@kaist.ac.kr
https://doi.org/10.1523/ENEURO.0358-21.2022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Psychtoolbox-3 (www.psychtoolbox.org). Stimuli were
projected onto the participants’ eyes through a head-
mounted display (NordicNeuroLab VisualSystem HD).
Red, green, or blue circles were used as stimuli, with the
color representing the target feature. Each color was first
set to the maximum RGB level [e.g., red, (255, 0, 0)], and
the luminance was reduced by half to decrease visual fa-
tigue during the tasks [red, (165, 0, 0); green, (0, 130, 0);
blue, (0, 0, 212)]. The circles were presented at 4.5°
eccentricity (radius, 1.5°) to the left or right of the central
fixation point. Throughout all tasks, participants were in-
structed to focus their eyes consistently on the central fix-
ation cross. During the n-back task, participants were
required to memorize the color of the previous nth stimuli
and match it with the present target on the attended side.
Participants performed 1-back, 2-back, and 3-back tasks
while attending to left or right stimuli. After a 30 s fixation
block, task cues were presented for 5 s, followed by a 1 s
delay. The cues consisted of a number representing the
n-back type and an eye icon. The left n-back task began
after 3 s of the “left” spatial cue presentation and a 1 s
delay. After the left n-back task, the right n-back task
began following the presentation of a “right” spatial cue.
Each spatial n-back task consisted of 40 trials, and each
trial included 2 s of stimulus presentation followed by a
0.5 s delay. Participants were able to respond regarding
whether the present stimuli matched the previous nth tar-
get during this 2.5 s period. Fifteen or 16 “yes” trials were
pseudorandomly assigned to each spatial n-back task. In
addition, we included a passive-viewing task beginning
with a “P” task cue as a control for the n-back task, using
the same visual stimuli and task design but requiring no
working memory load. Participants were not instructed to
memorize anything or pay spatial attention following spa-
tial cues during the passive-viewing task. We also ac-
quired 3min of resting-state fMRI (eyes open) and
structural T1 MRI data before the task fMRI.

Dataset 2
Dataset 2 was a subset of the Human Connectome

Project (HCP) database. Functional imaging data obtained
during the resting state (eyes open) and five cognitive tasks
(working memory, emotion, gambling, relational, and social)
were selected for cross-task and cross-dataset validation. All
tasks have been described in detail previously (Barch et al.,
2013). Whole-brain EPIs were acquired using a 3 T MR scan-
ner (Skyra, Siemens) equipped with a 32-channel head coil
(TR, 720ms; TE, 33.1ms; FOV, 208� 180� 72 mm; FA, 52°;
2.0 mm isotropic voxels). Two runs for each resting-state and
task fMRI were acquired, with right-to-left and left-to-right
phase encoding. All analyses were performed separately for
each phase encoding and then averaged. Structural T1 MRI
data were also acquired using a 3D-MPRAGE sequence (TR,
2400ms; TE, 2.14ms; FOV, 224 � 320 mm; FA, 8°; 0.7 mm
isotropic voxels). Information regarding the data acquisition
and processing pipelines has been provided in detail previ-
ously (Glasser et al., 2013; Van Essen et al., 2013).
We selected 98 participants (68 women; age range,

22–35 years), referring to the list of HCP participants
provided by Tavor et al. (2016). Minimally prepro-
cessed structural MRI and fMRI data were used. The

Human Connectome Project dataset was downloaded
from https://db.humanconnectome.org.

Dataset 3
Dataset 3 was a subset of the Consortium for

Neuropsychiatric Phenomics database (Poldrack et al.,
2016; Bilder et al., 2020). Functional and structural MR
images were acquired using a 3 T MR scanner (Trio,
Siemens). Functional MRI data were collected using an
EPI sequence (TR, 2000ms; TE, 30ms; slice thickness, 3
mm; FOV, 64 � 64 � 192 mm; FA, 90°; 34 axial slices with
4 mm thickness). T1-weighted structural MR images were
collected using a 3D-MPRAGE sequence (TR, 1900ms;
TE, 2.52ms; slice thickness, 1 mm; FOV, 256 � 256 � 250
mm; 176 sagittal slices).
We selected 106 healthy individuals (50 women; age

range, 21–50 years; mean age, 32 years; all right handed)
and 34 patients with ADHD (19 women; age range, 21–
50 years; mean age, 35 years; all right handed) with no ali-
asing artifacts on the anatomic images and performing all
tasks. We further excluded two subjects from the ADHD
group because of uncertain ADHD clinical diagnostic
scale information. The resting-state (eyes open) and spa-
tial capacity working memory task fMRI data were
analyzed.
During the task, participants were required to memorize

an array of one, three, five, or seven circles (Loads 1–7)
pseudorandomly positioned around a central fixation
cross and were asked to respond whether the target circle
was in the same position as one of the arrays. Half of the
trials were “yes” trials, whereas the remaining half were
“no” trials. The task design has been described in detail
previously (Poldrack et al., 2016).

Preprocessing steps
All preprocessing steps were performed using SPM12

(Wellcome Trust Center for Neuroimaging) and in-house
codes in MATLAB R2018a (MathWorks). Functional scans
acquired during the first 6 s were discarded to allow for
equilibration effects (three scans for Datasets 1 and 3 with
2 s TR; 9 scans for Dataset 2 with 0.72 s TR). Slice-timing
correction and spatial realignment to the first scan were
achieved via rigid body transformation, following which
images were spatially coregistered to T1 MRI scans.
Images were then spatially normalized to the Montreal
Neurologic Institute space (International Consortium for
Brain Mapping) and spatially smoothed using a 4 mm full-
width at half-maximum Gaussian kernel. Raw fMRI scans
from Dataset 2, which had already been normalized, en-
tered the smoothing step immediately. Brain tissues were
then segmented using a normalized T1 MRI scan. Voxels
with the highest corresponding probability values were
assigned to each tissue mask (gray matter, white matter,
CSF, soft tissue, and bone). We excluded cerebellar regions
from the masks using an automated anatomic labeling tem-
plate (Tzourio-Mazoyer et al., 2002). Subsequently, the
fMRI scans underwent noise reduction steps. First,
motion correction was performed to regress out head
motion effects using the motion parameters acquired
from the realignment step (6 parameters for Datasets 1
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and 3; 12 parameters for Dataset 2). Then, they were
passed through a high-pass filter at 0.008 Hz. Finally,
we regressed out the white matter, CSF, soft tissue,
and bone signals, while linear and quadratic temporal
trends were also considered nuisance parameters.

Assumptions and computation of the nu-NRA
We first assumed that fMRI is a suitable method for

measuring the quantity of neural resources used in the
brain. This method measures the BOLD signal reflecting
blood oxygenation coupled to underlying neuronal de-
mand by neurovascular coupling (Raichle, 1998; Hillman,
2014). We then assumed that brain regions need some
neural resources to maintain the default mode of the
brain; this would differ across regions. We considered the
resting state as the default mode of the brain (Raichle et
al., 2001; Greicius et al., 2003; Fransson, 2005; Buckner
et al., 2008), reflecting default neural resource utilization.
We averaged BOLD signals across resting-state scans
(rsBOLD) to extract the average default utilization for each
participant. This was finally z-normalized across voxels to
standardize the BOLD signal amplitudes, which are not
comparable across sessions and participants. The default
utilization ðUv;DÞ was calculated as follows:

uv;D ¼ 1
S

XS

s¼1

rsBOLDv;s

Uv;D ¼
uv;D � 1

V

XV

v¼1
uv;DffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXV

v¼1
ðuv;D � 1

V

XV

v¼1
uv;DÞ2

V � 1

vuut
;

where v and s index the voxels and scans, and V
and S represent the number of voxels and scans,
respectively.
Based on the default resources assumption, we de-

fined the amount of allocated neural resources caused
by task demands as the change from the default

utilization (Fig. 1a). At each task scan, we z-normalized
BOLD signals across voxels to extract resource utiliza-
tion ðUv;sÞ. This normalized signal subtracts out the de-
fault utilization ðUv;DÞ, and the resulting value is
assigned to the amount of allocation ðAv;sÞ at the task
scan s. The amount of resource allocation ðAv;sÞ is cal-
culated as follows:

Uv;s ¼
BOLDv;s � 1

V

XV

v¼1
BOLDv;sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXV

v¼1
ðBOLDv;s � 1

V

XV

v¼1
BOLDv;sÞ2

V � 1

vuut

Av;s ¼ Uv;s � Uv;D:

Finally, we defined the nu-NRA to quantify the non-
uniformity of neural resource allocation across the whole
cerebral gray matter (Fig. 1b). We calculated the nonuni-
formity based on the spatial SD of the resource allocation
ðAv;sÞ as follows:

nu� NRAs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXV

v¼1
ðAv;s � 1

V

XV

v¼1
Av;sÞ

V � 1

vuut
:

We computed a raw measure within the segmented
cerebral gray matter mask using the high pass-filtered
fMRI scans. The raw measure then underwent a nuisance
regression step similar to the fMRI preprocessing to be a
final nu-NRA. We regressed out nu-NRA signals within the
other tissues.

Assessing pupil dilation
Dataset 1 included pupil information acquired using

an eye-tracking camera (60 Hz) equipped with the
VisualSystem HD (NordicNeuroLab). Both eyes were
not always well detected because of the pupillary dis-
tance variance across the participants. Previous stud-
ies have shown that left and right pupil sizes are
positively correlated during tasks (Blumenfeld, 2002;
Foroughi et al., 2017). Thus, we manually selected

Figure 1. Definition of resource allocation and the nu-NRA. a, The amount of neural resource allocation ðAv;sÞ is defined as the
change in neural resource utilization ðUv;sÞ at each task scan from the default utilization ðUv;DÞ. b, We defined the nu-NRA by calcu-
lating the spatial SD across the whole-cerebral resource allocation at each task scan to quantify the nonuniformity of resource allo-
cation. A higher level of the measure indicates a brain state with more nonuniform resource allocation across the whole cerebral
gray matter.
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the eye with the better detection rate in evaluating the
number of misdetection events and used it for the
analysis. Pupil height and width time series were low-
pass filtered (third-order Butterworth; cutoff, 4 Hz).
The pupil diameter was determined by averaging the
height and width. Pupil dilation for each trial was cal-
culated based on the percent changes in the average
pupil diameter during the trial from the average in
the preceding spatial cue block (4 s). We excluded out-
liers using the interquartile method, thresholding at
1.5 times the interquartile range.

Brain mapping of the nu-NRA
We created an individual map by calculating voxel-

wise Pearson correlations between the measure and
BOLD signal time series for each participant and task.
Correlations were transformed into z scores via Fisher’s
z-transformation. We then applied a voxelwise one-
sample t test across individual maps, and the resulting t
scores constructed a group map for each task. The

statistical significance of the spatial similarities among
the group maps was assessed using a randomization
procedure. We permuted nu-NRA time courses and
performed brain mapping within individuals. One hun-
dred permuted group maps were extracted for each task.
All permuted spatial similarities among the tasks were col-
lapsed into a randomization distribution to correct mul-
tiple comparisons. Finally, we explored broad-task
neural substrates by finding overlapping voxels with
significant [false discovery rate (FDR)-corrected, p,
0.05; Benjamini and Hochberg, 1995; Groppe et al.,
2011] positive correlations across all tasks. We ren-
dered volumetric results of brain mapping onto the
brain surface using BrainNet Viewer (Xia et al., 2013).

Data availability
Dataset 1 and a code for the nu-NRA computation

are freely available online at https://data.mendeley.
com/datasets/7ydmfmk8kt/2. The code is available as
Extended Data 1.

Figure 2. Task performance and the level of the nu-NRA during the visuospatial n-back working memory task in Dataset 1. a, Left,
Task accuracy across conditions. Task accuracies gradually decrease from the 1-back to the 3-back task. Right, Response times
across conditions. Response times are longer in the 2-back and 3-back tasks than in the 1-back task. b, The nu-NRA level across
conditions. Levels gradually increase from the passive-viewing task to the 3-back task (Extended Data Fig. 2-1, results on network
activations). c, The temporal dynamics of the nu-NRA during the n-back task. The graph is a group-averaged time series of the nu-
NRA during all n-back tasks collapsed into one graph. The shaded region indicates cross-individual variance (SE). §p, 0.08,
*p,0.05, **p, 0.01, ***p, 0.001. Error bars indicate SEM values.
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Results
Task performance and level of the nu-NRA during the
visuospatial n-back working memory task
Task performances were compared across conditions

(Fig. 2a). Task accuracies were different (repeated-measures
ANOVA: F(2,14) =14.529, p, 0.0001, partial h2=0.66), and a
gradual decrease in accuracy was observed from 1-back to
3-back tasks [within-participant contrast (linear trend):
F(1,15) =27.261, p, 0.001, partial h2=0.65]. Post hoc pair-
wise t tests confirmed the decrease (1-back vs 2-back:
t(15) =3.153, p, 0.01; 2-back vs 3-back: t(15) =2.440, p,
0.05). Response timeswere also different across these condi-
tions (repeated-measures ANOVA: F(2,14) =9.006, p,0.01,
partial h2=0.69), and the response times in the 2-back and
3-back tasks were longer than those in the 1-back task (1-
back vs 2-back: t(15) = �4.397, p,0.001, Cohen’s d =
�0.79; 1-back vs 3-back: t(15) = �3.987, p,0.001, Cohen’s
d = �0.63). This result indicates that the task well introduces
different loads for the participants across the conditions.
We then evaluated the levels of the nu-NRA across the

conditions (Fig. 2b). We z-normalized levels within the condi-
tions using the mean and SD of that from all fixation and cue
blocks for each participant. We assigned the averaged lev-
els to the conditions with a delay of three scans (6 s) by con-
sidering the hemodynamic response lag (Liao et al., 2002).
As expected, the levels of the nu-NRA gradually increased
from the passive-viewing condition to the 3-back task (re-
peated-measures ANOVA: F(3,13) = 3.151, p, 0.05, partial
h2=0.43; within-participant contrast (linear trend):
F(1,15) =8.998, p, 0.01, partial h2= 0.38]. Post hoc pairwise
t tests confirmed the significant differences between in-
creases (passive viewing vs 2-back: t(15) =�2.346, p, 0.05,
Cohen’s d = �0.55; passive viewing vs 3-back: t(15) =
�2.626, p, 0.05, Cohen’s d = �0.61; 1-back vs 3-back:
t(15) = �1.947, p=0.071, Cohen’s d = �0.44). This indicates
that the level of the measure is greater when participants ex-
perience greater task difficulty.
We further explored the time courses of the nu-NRA

during the tasks. The measure was collapsed across all n-
back tasks. We observed task-relevant changes in nu-
NRA levels, which were lowest during fixation and

increased after three scans (i.e., 6 s) following stimulus
onset. Gradual decreases were observed in the first block
(left attention), but the overall levels during the tasks were
higher than those during fixation and cue periods. These
findings are similar to the typical dynamics of neural acti-
vation during sustained attention (Visscher et al., 2003;
Dosenbach et al., 2006; Petersen and Dubis, 2012), which
is represented by the activity associated with task initia-
tion and maintenance (Fig. 2c). This suggests that the nu-
NRA may reflect the attention level during a visuospatial
n-back working memory task.

Relationship between nu-NRA level and pupil dilation
We also investigated whether the nu-NRA exhibits

quantitative relationships with the physiological indicator
of attention level. The amount of pupil dilation is a well
known physiological indicator of attention and cognitive
control. The pupil dilates as a function of attentional load
or mental efforts (Verney et al., 2004; Wierda et al., 2012;
Alnæs et al., 2014). We first performed a within-partici-
pant linear regression between pupil dilation and the nu-
NRA for all trials collapsed across task conditions. The
nu-NRA level for each trial was calculated by interpolation
and averaged from the scan series, considering the he-
modynamic response lag of 6 s. We removed outliers
using Cook’s distance of ,n/4 (Cook, 1977; Hadi and
Simonoff, 1993). We performed nonparametric tests for a
group-level analysis on the t scores of b estimates (linear
term). We shuffled pupil diameters across nu-NRA levels
within participants. We repeated the shuffling 5000 times
and calculated a permutation p-value for the group statis-
tic. The regression of the most significant participants and
a group-level result is shown in Figure 3. The nu-NRA was
positively correlated with pupil dilation (permutation
p, 0.05). This result further supports the notion that the
nu-NRA may quantitatively reflect the attention level.

Cross-task and cross-dataset validation of the nu-
NRA
We first evaluated the nu-NRA levels during the working

memory task in Dataset 2 (Fig. 4a). The level was higher

Figure 3. Relationship between the nu-NRA and pupil dilation. Individual- and group-level analyses between nu-NRA and pupil dila-
tion. The representative subject (subject 11) shows the highest positive correlation among all study participants. The group-level result
confirmed the relationship (Extended Data Fig. 3-1, results on network activations). b -Estimates are linear terms of regression coeffi-
cients. They were transformed into t scores for the analysis. *p, 0.05, **p, 0.01, ***p, 0.001. Error bars indicate SEM values.
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(paired t test: t(97) = 2.07, p, 0.05, Cohen’s d=0.21) dur-
ing the 2-back task with greater task difficulty (paired t
test: t(97) = �7.54, p,10�10, Cohen’s d = �0.76) and lon-
ger response time (paired t test: t(97) = 14.63, p,10�10,
Cohen’s d=1.48) compared with the 0-back task. This
corresponds with the result from Dataset 1, demonstrat-
ing that the level of the measure reflects task difficulty re-
gardless of the dataset. We also explored the levels of the
nu-NRA during the other tasks from Dataset 2. The level
was higher, although the statistical significance was mar-
ginal (paired t test: t(97) = 1.80, p=0.075, Cohen’s
d=0.18), during the relation condition with greater task
difficulty (paired t test: t(97) = 12.81, p, 10�10, Cohen’s
d=1.29) and longer response time (paired t test:
t(97) = 18.2, p, 10�10, Cohen’s d=1.84) compared with
the matching condition, as we expected (Fig. 4b). During
the gambling task, there was no level difference between
conditions with different guesses (Fig. 4c). This also

matches the expectation because the conditions have
the same task and stimulus, except for the response.
However, the levels of the nu-NRA did not always follow
the task difficulty when the stimulus was different
across conditions (Fig. 4d,e). The emotion (paired t test
for accuracy: t(97) = �3.52, p, 0.001, Cohen’s d =
�0.38) and social tasks (paired t test for accuracy: t(97)
= �3.58, p, 0.001, Cohen’s d = �0.34) showed lower
levels of the measure during the difficult conditions
(paired t test for the emotion task: t(97) = �3.76,
p, 0.001, Cohen’s d = �0.36; paired t test for the social
task: t(97) = �3.38, p, 0.01, Cohen’s d = �0.36).
Different conditions in these tasks used different types
of stimuli instead of only controlling the attentional
load. Thus, task difficulty reflecting the stimulus type
rather than the attentional load may induce different re-
sults from the working memory, the relational, and the
gambling task (see Discussion).

Figure 4. Levels of the nu-NRA across task conditions in Dataset 2 (Extended Data Fig. 4-1, results of network activations). a, The
2-back working memory task shows a higher level of the measure with greater task difficulty and longer response time than the 0-
back task. b, The relational task shows a higher level of the measure with greater task difficulty and longer response time than the
matching task. c, There is no difference in the nu-NRA level between smaller and larger conditions with no difference in task diffi-
culty and response time. d, The task with face stimuli shows a higher level of the measure with lower task difficulty than the task
with shape stimuli. e, The mental condition with socially interacting stimuli shows a higher level of the measure with lower task diffi-
culty and shorter response time than the condition with randomly moving stimuli. §p, 0.08, *p, 0.05, **p, 0.01, ***p, 0.001. Error
bars indicate SEM values.
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We performed brain mapping of the nu-NRA to investi-
gate the neural correlates across the cerebral gray matter.
Group nu-NRA maps of working memory showed distinct
regions with strong temporal correlations (Fig. 5a). They
showed strong cross-dataset spatial similarity (r=0.51).
BOLD signals of the dorsal attention, frontoparietal, and
visual networks (LaBar et al., 1999; Corbetta and
Shulman, 2002; Fox et al., 2006; Ptak, 2012; Vossel et al.,
2014) exhibit strong positive correlations with the mea-
sure, whereas the default-mode and sensory-motor
networks (Lee et al., 2012) show strong negative
correlations.
We also performed cross-task and cross-dataset vali-

dation for brain mapping (Fig. 5b). All cross-task and
cross-dataset spatial similarities between the group maps
were positively significant (permutation p-value, 0.005
for the lowest value; Extended Data Fig. 5-1). However,
there is a possibility that the significant similarities were
solely achieved by visual regions that broadly and consis-
tently showed positive similarities across the tasks
(Extended Data Fig. 5-2). Thus, we explored broad-task
neural correlates of the nu-NRA by searching overlapping
regions, which showed significant positive correlations
across the tasks (FDR-corrected, p, 0.05; Fig. 5c). We
found bilateral parietal and right middle frontal regions,
which belong to dorsal attention and frontoparietal

networks, as well as visual network (LaBar et al., 1999;
Corbetta and Shulman, 2002; Fox et al., 2006; Yeo et al.,
2011; Ptak, 2012; Vossel et al., 2014). These results sug-
gest that the bilateral parietal and right middle frontal re-
gions may be the central neural substrates for the broad-
task process of sustained attention controlling the nonun-
iformity of resource allocation.
However, the brain mapping results also suggested the

possibility that the nu-NRA level could represent certain
large-scale network activations rather than the nonuni-
formity of whole-brain resource allocation. To validate the
possibility, we calculated network activations and tested
them with the same analyses using the seven large-scale
networks from the study by Yeo et al. (2011). The parcella-
tion includes visual, somatomotor, dorsal attention, ven-
tral attention, limbic, frontoparietal, and default mode
networks (DMNs). As shown in Extended Data Figure 2-1,
only the network activation of DMNs showed a linear
trend (negative) along the task difficulty [repeated-meas-
ures ANOVA; attentional load: F(3,13) = 5.31, p, 0.05, par-
tial h2 = 0.55; within-participant contrast (linear trend):
F(1,15) = 9.506, p,0.01, partial h2 = 0.39] in Dataset 1.
Dorsal attention and frontoparietal network activation
showed elevated levels during higher attentional loads
but without statistical significance. The amount of
pupil dilation was also not correlated with task-

Figure 5. Brain mapping of the nu-NRA. a, Brain mapping of the nu-NRA based on the working memory tasks in Datasets 1 and 2.
Group nu-NRA maps are spatially similar across the datasets (Extended Data Fig. 5-3, comparison results). b, Cross-task and cross-
dataset comparisons between group nu-NRA maps. All pairs show significant similarities (Extended Data Fig. 5-1, the permutation
test). Group nu-NRA maps for the other tasks in Dataset 2 are presented in Extended Data Figure 5-2. WM1, Working memory task in
Dataset 1; WM2, working memory task in Dataset 2; EMO, emotion task in Dataset 2; GAM, gambling task in Dataset 2; REL, relational
task in Dataset 2; SOC, social task in Dataset 2. c, The broad-task neural correlates of nu-NRA are found by searching overlapping
voxels with significant positive correlations across tasks (FDR-corrected, p,0.05). L, left hemisphere; R, Right hemisphere.
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positive network activations (Extended Data Fig. 3-1).
However, it was negatively correlated with the visual
(permutation, p, 0.05) and somatomotor (permuta-
tion, p, 0.05) networks. It might be that large-scale
sensory networks also include surrounding inhibition
in task-unrelated sensory regions and focal excitation
in task-relevant sensory regions. Also, as shown in
Extended Data Figure 4-1, network activations partly
followed the task difficulty with distinct patterns
across the tasks in Dataset 2. Dorsal attention network
activations followed the task difficulty only in the rela-
tional task (paired t test: t(97) = 2.73, p,0.01, Cohen’s
d = 0.28) and the emotion task (paired t test:
t(97) = 5.08, p, 0.001, Cohen’s d = 0.51). Frontoparietal
network activation followed the task difficulty during
the working memory task (paired t test: t(97) = 12.70,
p, 0.001, Cohen’s d = 1.28) and relational task (paired
t test: t(97) = 9.25, p, 0.001, Cohen’s d = 0.93), but not
during other tasks. There was no network in which ac-
tivation followed the task difficulty in all tasks or fol-
lowed the results from the level of nu-NRA. To sum up
the results, the nu-NRA signal did not simply represent
specific network activations but conveyed compre-
hensive information of all network activations.

Levels of the nu-NRA in patients with ADHD
ADHD is a psychiatric disorder characterized by persis-

tent inattention and/or hyperactivity-impulsivity that inter-
feres with functioning in daily life (American Psychiatric
Association, 2013). Many studies have demonstrated
that patients with ADHD show executive dysfunctions
because of alterations in the resource allocation pro-
cess (Gualtieri and Johnson, 2006; Kratz et al., 2011;
Dörrenbächer and Kray, 2019). We thus expected that
patients with ADHD would experience difficulties allo-
cating sufficient neural resources during a higher re-
source-demanding task. This may lead to a decrease
in the level of the nu-NRA in this task. We first com-
pared the task accuracy between healthy individuals
and patients with ADHD using the spatial capacity

working memory task (Dataset 3). Both groups showed
a gradual decrease in task accuracy from Load 1 to
Load 7 [repeated-measures ANOVA; healthy individuals:
F(3,103)= 51.76, p, 10�10, partial h2=0.60; within-participant
contrast (linear trend): F(1,105)=118.11, p, 10�10, partial
h2=0.53; repeated-measures ANOVA; patients with ADHD:
F(3,29) = 18.96, p, 10�6, partial h2=0.66; within-participant
contrast (linear trend): F(1,31) =58.58, p, 10�7, partial
h2=0.65]. The patients with ADHD exhibited no task accu-
racy difference at Load 1 and Load 3, but lower accuracy at
Load 5 and Load 7 (two-sample t test: t(136) = �3.16,
p, 0.01, Cohen’s d = �0.64; t(136) = �2.26, p,0.05,
Cohen’s d = �0.46, respectively) compared with the healthy
individuals (Fig. 6a). We then explored the levels of the nu-
NRA during the delayed period between the target offset and
probe onset (Fig. 6b). The nu-NRA level tended to increase
with increases in capacity load in healthy individuals [re-
peated-measures ANOVA: F(3,103) =15.55, p, 10�7, partial
h2=0.31; within-participant contrast (linear trend):
F(1,105)=42.33, p, 10�8, partial h2= 0.29], but not in the pa-
tients [repeated-measures ANOVA: F(3,29) =1.54, p=0.226,
partial h2=0.14; within-participant contrast (linear trend):
F(1,31) =3.36, p=0.076, partial h

2= 0.098]. As expected, the
group comparison showed a significantly lower level of the
measure at Load 7 in the patients with ADHD (two-sample t
test: t(136) = �2.17, p,0.05, Cohen’s d = �0.44). These re-
sults support the hypothesis whereby executive dysfunction
during a higher resource-demanding task in patients with
ADHDmay result from insufficient resource allocation of neu-
ral resources.

Discussion
Attention is considered a central process in task-rele-

vant information selection. Its task-selective process has
been studied intensively for decades (Kanwisher and
Wojciulik, 2000; Fries et al., 2001; Gazzaley et al., 2005;
Falkner et al., 2010; Störmer and Alvarez, 2014; Moore
and Zirnsak, 2017), while its task-general process has re-
ceived less attention (Giesbrecht et al., 2003; Macaluso et
al., 2003; Greenberg et al., 2010). The nonuniform

Figure 6. Task performance and level of the nu-NRA during spatial capacity working memory task in healthy individuals and patients
with ADHD. a, Task accuracy across the conditions. Task accuracies gradually decrease from Load 1 to Load 7 in both groups. The
patients with ADHD show lower accuracy at Load 5 and Load 7 than the healthy individuals. b, The nu-NRA level across conditions.
In healthy individuals, levels gradually increase from Load 1 to Load 7 with rapid increases from Load 5 to Load 7. However, pa-
tients with ADHD do not show any level increase at Load 7. §p,0.08, *p,0.05, **p, 0.01, ***p, 0.001. Error bars indicate SEM
values.

Research Article: New Research 9 of 13

March/April 2022, 9(2) ENEURO.0358-21.2022 eNeuro.org

https://doi.org/10.1523/ENEURO.0358-21.2022.f3-1
https://doi.org/10.1523/ENEURO.0358-21.2022.f4-1


allocation of limited neural resources has been suggested
to be the neural basis of the broad-task process of sus-
tained attention, but this hypothesis lacks quantitative
evidence (Moray, 1967; Kahneman, 1973; Wickens, 1980;
Luck et al., 1996; Wickens, 2002; Gazzaley et al., 2005;
Falkner et al., 2010; Störmer and Alvarez, 2014;
Watanabe and Funahashi, 2014). In the present study, we
propose a measure that can provide quantitative evi-
dence that the nonuniform allocation of neural resources
reflects the broad-task process of attention. The most
significant assumption is that the brain needs default
amounts of neural resources that differ across brain re-
gions to maintain the default mode (Fig. 1a). Based on
this premise, the measure for neural resource allocation
was calculated as BOLD signal changes from the resting
state to task states. Finally, the nu-NRA was defined as
the nonuniformity of the allocation across the whole cer-
ebral gray matter (Fig. 1b). We first validated the nu-NRA
using a working memory task with different difficulty lev-
els. Task difficulty is an experimental indicator of atten-
tional load (Sunaert et al., 2000; Culham et al., 2001;
Chen et al., 2008), if the attentional load is controlled
without changing types of stimuli and tasks. Participants
pay more attention during difficult tasks to gain more
task-relevant information to respond correctly. Gradual
increases in the nu-NRA were observed, along with in-
creases in working memory load (Fig. 2b). This indicates
that increased attention may require a more nonuniform
allocation of neural resources. The temporal dynamics of
the measure showed the typical neural activity of sus-
tained attention (Fig. 2c), which represents task initiation
and task maintenance activity (Visscher et al., 2003;
Dosenbach et al., 2006; Petersen and Dubis, 2012). We
adopted an additional conventional indicator of attention
level to ensure robust validation. The nu-NRA exhibited
positive correlations with pupil dilation (Fig. 3), demon-
strating that it accurately reflects the level of attention.
We further performed cross-task and cross-dataset val-
idations. We chose the HCP data as a validation dataset
because of many subjects and many types of tasks. nu-
NRA levels reflected the task difficulty well across dif-
ferent tasks whose attentional load was controlled with-
out changing types of stimuli and tasks (Fig. 4). We
hypothesized that broad-task neural substrates of non-
uniform resource allocation might exist. We performed
brain mapping and found that the broad-task neural
correlates of the nu-NRA belong to frontoparietal and
dorsal attention networks as well as a visual network
(Fig. 5). We finally applied the measure to obtain sup-
porting results for an existing hypothesis about the neu-
ral basis of executive dysfunction in patients with ADHD
(Gualtieri and Johnson, 2006; Kratz et al., 2011;
Dörrenbächer and Kray, 2019). According to this hy-
pothesis, patients with ADHD experience an alteration
in the allocation of sufficient resources to brain regions.
The patients in our study exhibited low task accuracy
and abnormal decreases in the nu-NRA level during the
highest-load tasks (Fig. 6). This finding suggests that
executive dysfunction in ADHD may be caused by alter-
ations in resource allocation.

Task difficulty and the nu-NRA level
Task difficulty reflecting task load has been used as an

experimental inducer or indicator of attention level
(Sunaert et al., 2000; Culham et al., 2001; Chen et al.,
2008). In the n-back working memory tasks, we only in-
duced different memory loads without changing the types
of stimuli or tasks. The nu-NRA level had a positive linear
relationship with task difficulty during the tasks, introduc-
ing different task loads with the same stimuli in the pres-
ent study (Figs. 2a,b, 4a–c, 6). However, the levels were
lower during the conditions with greater task difficulty in
the emotion and social tasks (Fig. 4d,e). They introduced
the same task load with different stimuli, not different task
loads with the same stimulus for the conditions. Thus,
task difficulty may be influenced by stimulus type rather
than the task load. Emotional faces and interactively mov-
ing objects are more salient stimuli capturing more atten-
tion (Schupp et al., 2007; Pratt et al., 2010; Kerzel and
Schönhammer, 2013). They may attract more resources
for task-relevant brain regions and enhance task perform-
ance. Thus, the levels of the nu-NRA would be higher de-
spite the lower task difficulty. This demonstrates that the
nu-NRA reflects the general level of sustained attention,
not just task difficulty itself.

Retinotopy of the nu-NRAmap
The nu-NRA maps for the working memory tasks re-

flected retinotopy in the visual cortex (Engel et al., 1997;
Raz and Levin, 2014), corresponding to their stimuli (Fig.
5a). In Dataset 1, the stimuli were presented in the periph-
eral visual field, and the medial parts of the primary visual
cortex showed strong positive correlations. Interestingly,
the lateral parts showed negative correlations. This may
be a consequence of surround suppression by lateral at-
tention (Falkner et al., 2010; Störmer and Alvarez, 2014).
By contrast, the stimuli for the working memory task in
Dataset 2 were presented at the center, and the lateral
parts had strong positive correlations with the nu-NRA.
Furthermore, object-responsive lateral occipital regions
also showed positive correlations (Grill-Spector et al.,
2001; Grill-Spector and Sayres, 2008). We statistically
confirmed our subjective observations by directly com-
paring the nu-NRA maps between datasets (two-sample t
tests, FDR-corrected, p,0.05; Extended Data Fig. 5-3).
These results correspond with the retinotopy of visual-
spatial attention (Tootell et al., 1998; Brefczynski and
DeYoe, 1999). This further supports the notion that the
nu-NRA, which quantifies the overall nonuniformity of re-
source allocation, temporally reflects the attention level.

The nu-NRA as a neuromarker of general attention
level
Our successful cross-task and cross-dataset valida-

tions highlighted that the nu-NRA could be used as a neu-
romarker of attention level in a wide range of tasks. The
computation of the nu-NRA is consistent regardless of
task designs or imaging protocols. It does not require any
task information like onsets of cues and stimuli for the
computation. We could rather predict the onsets from the
temporal dynamics of the nu-NRA (Fig. 2c). The generality
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and utility of the measure allow researchers to apply this
method to their existing fMRI dataset easily. The neuro-
marker may help quantify the universal level of attention in
multiple-task paradigms, especially in multisensory re-
search. The mechanism of attentional resource allocation
is still a part of the debate about whether the resources
are shared across sensory modalities (Soto-Faraco and
Spence, 2002; Chan and Newell, 2008; Finoia et al., 2015;
Wahn and König, 2015a,b, 2017). Previous research has
investigated whether the task performance decreases
during a dual-task condition compared with a single-task
condition under an assumption that the overall resource
demands are consistent across conditions. Thus, the neu-
romarker would provide a quantitative validation for the
assumption in multisensory research. The neuromarker
may also help to investigate the temporal effects of non-
uniform resource allocation on other cognitive processes.
Arousal and attention processes are highly interactive
with each other (Posner, 1994; Harth, 1995; Coull, 1998;
Portas et al., 1998; Foucher et al., 2004). Thus, their ef-
fects are difficult to separate. Suppose the nu-NRA can
be used as a quantitative proxy of attention level with an
fMRI arousal index (Chang et al., 2016). In that case, we
could temporally distinguish their independent and inter-
active effects on various behavioral and neural phenom-
ena. This will lead to the specification of the neural basis
of attention and arousal. Furthermore, the nu-NRA could
be an additional parameter to the computational models
of other neural processes, such as perceptual learning or
hierarchical predictive coding (Lu et al., 2011; Bastos et
al., 2012; Dosher and Lu, 2017). This would aid in under-
standing the role of the resource allocation process in
human cognition.

Study limitations
The present study has some limitations, despite the ro-

bust validation on the neural basis of broad-task sus-
tained attention. First, the computation of the nu-NRA
could be affected by the length of resting-state fMRI
scans. It is well known that there is BOLD signal variation
across the resting state. Thus, the short duration may
poorly estimate the default resource utilization by averag-
ing. We did not validate the optimal duration for the esti-
mation, but we used several proper durations (3min for
Dataset 1, 15min for Dataset 2, and 5min for Dataset 3)
according to previous studies (Whitlow et al., 2011; Birn
et al., 2013). However, the effect of the length of the rest-
ing state remains to be further explored. In addition, a
comparison between resting conditions, eyes open,
closed, and fixated is necessary because of their differen-
ces in resting-state fMRI features (Patriat et al., 2013;
Agcaoglu et al., 2019). Second, the nu-NRA level is sensi-
tive to protocol types that direct comparison of nu-NRA
levels between different datasets. However, the normal-
ized nu-NRA level could be compared between subjects
using the same experimental design. Third, the level of
the nu-NRA did not solely reflect the task difficulty in sev-
eral tasks. In Dataset 2, the difference the level of the nu-
NRA between different conditions from the relational task,
which introduced matching and relation trials with

different attentional load without changing types of stimu-
li, showed a marginal significance (Fig. 4b). This result
may be caused by the longer processing times (.500 ms)
for relation trials than matching trials. Relation trials asked
participants to do multistep processing. They first found a
relation between each pair and then compared the rela-
tions between different pairs. Thus, the task difficulty may
depend on how long the attention is maintained for a cer-
tain level rather than how much greater the attention level
is. However, the computation of the nu-NRA level would
reflect how much greater the attention level is rather than
how long the attention is maintained. In Dataset 3, the nu-
NRA level reflected the trend of the task accuracy but not
the exact differences between the task conditions (Fig. 6).
The level showed minor differences between lower-ca-
pacity loads, but task accuracy showed significant differ-
ences in both groups. In addition, the between-group
analysis showed lower accuracy with no difference in the
level of the measure during Load 5. This result indicated
that other factors, such as problems at a memory-encod-
ing stage, might cause task performance differences in
the resource allocation process. Alterations in the memo-
ry encoding may not be reflected in the measure. Further
studies are necessary to develop multidimensional meas-
ures for measuring sustained attention levels to validate
these mismatches.

References

Agcaoglu O, Wilson TW, Wang Y, Stephen J, Calhoun VD (2019)
Resting state connectivity differences in eyes open versus eyes
closed conditions. Hum Brain Mapp 40:2488–2498.

Alnæs D, Sneve MH, Espeseth T, Endestad T, van de Pavert SHP,
Laeng B (2014) Pupil size signals mental effort deployed during
multiple object tracking and predicts brain activity in the dorsal at-
tention network and the locus coeruleus. J Vis 14(4):1, 1–20.

American Psychiatric Association (2013) Diagnostic and statistical
manual of mental disorders, Ed 5, pp 59–65. Arlington, VA:
American Psychiatric Publishing.

Anderson JR (2004) Cognitive psychology and its implications, Ed 6.
New York: Worth Publishers.

Barch DM, Burgess GC, Harms MP, Petersen SE, Schlaggar BL,
Corbetta M, Glasser MF, Curtiss S, Dixit S, Feldt C, Nolan D,
Bryant E, Hartley T, Footer O, Bjork JM, Poldrack R, Smith S,
Johansen-Berg H, Snyder AZ, Van Essen DC (2013) Function in
the human connectome: task-fMRI and individual differences in
behavior. Neuroimage 80:169–189.

Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ
(2012) Canonical microcircuits for predictive coding. Neuron
76:695–711.

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate:
a practical and powerful approach to multiple testing. J R Stat Soc
Ser B Methodol 57:289–300.

Bilder R, Poldrack R, Cannon T, London E, Freimer N, Congdon E,
Karlsgodt K, Sabb F (2020) UCLA Consortium for
Neuropsychiatric Phenomics LA5c Study. OpenNeuro. [Dataset]
doi: 10.18112/openneuro.ds000030.v1.0.0.

Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR, Nair VA,
Meyerand ME, Prabhakaran V (2013) The effect of scan length on
the reliability of resting-state fMRI connectivity estimates.
Neuroimage 83:550–558.

Blumenfeld H (2002) Neuroanatomy through clinical cases. New
York: Sinauer Associates.

Brefczynski JA, DeYoe EA (1999) A physiological correlate of the
“spotlight” of visual attention. Nat Neurosci 2:370–374.

Research Article: New Research 11 of 13

March/April 2022, 9(2) ENEURO.0358-21.2022 eNeuro.org

http://dx.doi.org/10.1002/hbm.24539
https://www.ncbi.nlm.nih.gov/pubmed/30720907
http://dx.doi.org/10.1167/14.4.1
http://dx.doi.org/10.1016/j.neuroimage.2013.05.033
https://www.ncbi.nlm.nih.gov/pubmed/23684877
http://dx.doi.org/10.1016/j.neuron.2012.10.038
https://www.ncbi.nlm.nih.gov/pubmed/23177956
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1016/j.neuroimage.2013.05.099
https://www.ncbi.nlm.nih.gov/pubmed/23747458
http://dx.doi.org/10.1038/7280
https://www.ncbi.nlm.nih.gov/pubmed/10204545


Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s de-
fault network: anatomy, function, and relevance to disease. Ann N
Y Acad Sci 1124:1–38.

Chan JS, Newell FN (2008) Behavioral evidence for task-dependent
“what” versus “where” processing within and across modalities.
Percept Psychophys 70:36–49.

Chang C, Leopold DA, Schölvinck ML, Mandelkow H, Picchioni D,
Liu X, Ye FQ, Turchi JN, Duyn JH (2016) Tracking brain arousal
fluctuations with fMRI. Proc Natl Acad Sci U S A 113:4518–4523.

Chen Y, Martinez-Conde S, Macknik SL, Bereshpolova Y, Swadlow
HA, Alonso J (2008) Task difficulty modulates the activity of specif-
ic neuronal populations in primary visual cortex. Nat Neurosci
11:974–982.

Cook RD (1977) Detection of influential observation in linear regres-
sion. Technometrics 19:15–18.

Corbetta M, Shulman GL (2002) Control of goal-directed and stimu-
lus-driven attention in the brain. Nat Rev Neurosci 3:201–215.

Coull JT (1998) Neural correlates of attention and arousal: insights
from electrophysiology, functional neuroimaging and psychophar-
macology. Prog Neurobiol 55:343–361.

Culham JC, Cavanagh P, Kanwisher NG (2001) Attention response
functions: characterizing brain areas using fMRI activation during
parametric variations of attentional load. Neuron 32:737–745.

Dörrenbächer S, Kray J (2019) Impairments in resource allocation
and executive control in children with ADHD. Clin Child Psychol
Psychiatry 24:462–481.

Dosenbach NUF, Visscher KM, Palmer ED, Miezin FM, Wenger KK,
Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE
(2006) A core system for the implementation of task sets. Neuron
50:799–812.

Dosher B, Lu ZL (2017) Visual perceptual learning and models. Annu
Rev Vis Sci 3:343–363.

Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in
human visual cortex and the spatial precision of functional MRI.
Cereb Cortex 7:181–192.

Falkner AL, Krishna BS, Goldberg ME (2010) Surround suppression
sharpens the priority map in the lateral intraparietal area. J
Neurosci 30:12787–12797.

Finoia P, Mitchell DJ, Hauk O, Beste C, Pizzella V, Duncan J (2015)
Concurrent brain responses to separate auditory and visual tar-
gets. J Neurophysiol 114:1239–1247.

Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006)
Spontaneous neuronal activity distinguishes human dorsal and
ventral attention systems. Proc Natl Acad Sci U S A 103:10046–
10051.

Foroughi CK, Sibley C, Coyne JT (2017) Pupil size as a measure of
within-task learning. Psychophysiology 54:1436–1443.

Foucher JR, Otzenberger H, Gounot D (2004) Where arousal meets
attention: a simultaneous fMRI and EEG recording study.
Neuroimage 22:688–697.

Fransson P (2005) Spontaneous low-frequency BOLD signal fluctua-
tions: an fMRI investigation of the resting-state default mode of
brain function hypothesis. Hum Brain Mapp 26:15–29.

Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of os-
cillatory neuronal synchronization by selective visual attention.
Science 291:1560–1563.

Gazzaley A, Cooney JW, Rissman J, D’Esposito M (2005) Top-down
suppression deficit underlies working memory impairment in nor-
mal aging. Nat Neurosci 8:1298–1300.

Giesbrecht B, Woldorff MG, Song AW, Mangun GR (2003) Neural
mechanisms of top-down control during spatial and feature atten-
tion. Neuroimage 19:496–512.

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B,
Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen
DC, Jenkinson M, for the Wu-Minn HCP Consortium (2013) The
minimal preprocessing pipelines for the Human Connectome
Project. Neuroimage 80:105–124.

Greenberg AS, Esterman M, Wilson D, Serences JT, Yantis S (2010)
Control of spatial and feature-based attention in frontoparietal cor-
tex. J Neurosci 30:14330–14339.

Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional con-
nectivity in the resting brain: a network analysis of the default
mode hypothesis. Proc Natl Acad Sci U S A 100:253–258.

Grill-Spector K, Sayres R (2008) Object recognition: insights from ad-
vances in fMRI methods. Curr Dir Psychol Sci 17:73–79.

Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital
complex and its role in object recognition. Vision Res 41:1409–
1422.

Groppe DM, Urbach TP, Kutas M (2011) Mass univariate analysis of
event-related brain potentials/fields I: a critical tutorial review.
Psychophysiology 48:1711–1725.

Gualtieri CT, Johnson LG (2006) Efficient allocation of attentional re-
sources in patients with ADHD: maturational changes from age 10
to 29. J Atten Disord 9:534–542.

Hadi AS, Simonoff JS (1993) Procedures for the identification of mul-
tiple outliers in linear models. J Am Stat Assoc 88:1264–1272.

Harth E (1995) The sketchpad model, a theory of consciousness,
perception and imagery. Conscious Cogn 4:346–368.

Hermans EJ, Henckens MJAG, Joëls M, Fernández G (2014)
Dynamic adaptation of large-scale brain networks in response to
acute stressors. Trends Neurosci 37:304–314.

Hillman EMC (2014) Coupling mechanism and significance of the
BOLD signal: a status report. Annu Rev Neurosci 37:161–181.

Kahneman D (1973) Attention and effort, pp 7–11. Englewood Cliffs,
NJ: Prentice Hall.

Kanwisher N, Wojciulik E (2000) Visual attention: insights from brain
imaging. Nat Rev Neurosci 1:91–100.

Kerzel D, Schönhammer J (2013) Salient stimuli capture attention
and action. Atten Percept Psychophys 75:1633–1643.

Kratz O, Studer P, Malcherek S, Erbe K, Moll GH, Heinrich H (2011)
Attentional processes in children with ADHD: an event-related po-
tential study using the attention network test. Int J Psychophysiol
81:82–90.

LaBar KS, Gitelman DR, Parrish TB, Mesulam MM (1999)
Neuroanatomic overlap of working memory and spatial attention
networks: a functional MRI comparison within subjects.
Neuroimage 10:695–704.

Lee MH, Hacker CD, Snyder AZ, Corbetta M, Zhang D, Leuthardt
EC, Shimony JS (2012) Clustering of resting state networks. PLoS
One 7:e40370.

Liao CH, Worsley KJ, Poline JB, Aston JAD, Duncan GH, Evans AC
(2002) Estimating the delay of the fMRI response. Neuroimage
16:593–606.

Lu ZL, Hua T, Huang CB, Zhou Y, Dosher BA (2011) Visual percep-
tual learning. Neurobiol Learn Mem 95:145–151.

Luck SJ, Vogel EK (1997) The capacity of visual working memory for
features and conjunctions. Nature 390:279–281.

Luck SJ, Hillyard SA, Mouloua M, Hawkins HL (1996) Mechanisms of
visual-spatial attention: resource allocation or uncertainty reduc-
tion? J Exp Psychol Hum Percept Perform 22:725–737.

Macaluso E, Eimer M, Frith CD, Driver J (2003) Preparatory states in
crossmodal spatial attention: spatial specificity and possible con-
trol mechanisms. Exp Brain Res 149:62–74.

Marois R, Ivanoff J (2005) Capacity limits of information processing
in the brain. Trends Cogn Sci 9:296–305.

Moore T, Zirnsak M (2017) Neural mechanisms of selective visual at-
tention. Annu Rev Psychol 68:47–72.

Moray N (1967) Where is capacity limited? A survey and a model.
Acta Psychol 27:84–92.

Nobre AC, Kastner S (2014) Attention: time capsule 2013. In: The
Oxford handbook of attention (Nobre AC, Nobre K, Kastner S,
eds), pp 1201–1222. New York: Oxford UP.

Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME,
Prabhakaran V, Birn RM (2013) The effect of resting condition on
resting-state fMRI reliability and consistency: a comparison be-
tween resting with eyes open, closed, and fixated. Neuroimage
78:463–473.

Peters A (2011) The selfish brain: competition for energy resources.
Am J Hum Biol 23:29–34.

Research Article: New Research 12 of 13

March/April 2022, 9(2) ENEURO.0358-21.2022 eNeuro.org

http://dx.doi.org/10.1196/annals.1440.011
https://www.ncbi.nlm.nih.gov/pubmed/18400922
http://dx.doi.org/10.3758/pp.70.1.36
https://www.ncbi.nlm.nih.gov/pubmed/18306959
http://dx.doi.org/10.1073/pnas.1520613113
https://www.ncbi.nlm.nih.gov/pubmed/27051064
http://dx.doi.org/10.1038/nn.2147
https://www.ncbi.nlm.nih.gov/pubmed/18604204
http://dx.doi.org/10.1080/00401706.1977.10489493
http://dx.doi.org/10.1038/nrn755
https://www.ncbi.nlm.nih.gov/pubmed/11994752
http://dx.doi.org/10.1016/S0301-0082(98)00011-2
https://www.ncbi.nlm.nih.gov/pubmed/9654384
https://www.ncbi.nlm.nih.gov/pubmed/11719212
http://dx.doi.org/10.1177/1359104518816115
https://www.ncbi.nlm.nih.gov/pubmed/30525944
http://dx.doi.org/10.1016/j.neuron.2006.04.031
https://www.ncbi.nlm.nih.gov/pubmed/16731517
http://dx.doi.org/10.1146/annurev-vision-102016-061249
https://www.ncbi.nlm.nih.gov/pubmed/28723311
http://dx.doi.org/10.1093/cercor/7.2.181
https://www.ncbi.nlm.nih.gov/pubmed/9087826
http://dx.doi.org/10.1523/JNEUROSCI.2327-10.2010
https://www.ncbi.nlm.nih.gov/pubmed/20861383
http://dx.doi.org/10.1152/jn.01050.2014
https://www.ncbi.nlm.nih.gov/pubmed/26084914
http://dx.doi.org/10.1073/pnas.0604187103
https://www.ncbi.nlm.nih.gov/pubmed/16788060
http://dx.doi.org/10.1111/psyp.12896
https://www.ncbi.nlm.nih.gov/pubmed/28593652
http://dx.doi.org/10.1016/j.neuroimage.2004.01.048
https://www.ncbi.nlm.nih.gov/pubmed/15193597
http://dx.doi.org/10.1002/hbm.20113
https://www.ncbi.nlm.nih.gov/pubmed/15852468
http://dx.doi.org/10.1126/science.1055465
http://dx.doi.org/10.1038/nn1543
https://www.ncbi.nlm.nih.gov/pubmed/16158065
http://dx.doi.org/10.1016/S1053-8119(03)00162-9
http://dx.doi.org/10.1523/JNEUROSCI.4248-09.2010
https://www.ncbi.nlm.nih.gov/pubmed/20980588
http://dx.doi.org/10.1073/pnas.0135058100
https://www.ncbi.nlm.nih.gov/pubmed/12506194
http://dx.doi.org/10.1111/j.1467-8721.2008.00552.x
http://dx.doi.org/10.1016/S0042-6989(01)00073-6
https://www.ncbi.nlm.nih.gov/pubmed/11322983
http://dx.doi.org/10.1111/j.1469-8986.2011.01273.x
https://www.ncbi.nlm.nih.gov/pubmed/21895683
http://dx.doi.org/10.1177/1087054705283758
https://www.ncbi.nlm.nih.gov/pubmed/16481670
http://dx.doi.org/10.1080/01621459.1993.10476407
http://dx.doi.org/10.1006/ccog.1995.1042
https://www.ncbi.nlm.nih.gov/pubmed/7497112
http://dx.doi.org/10.1016/j.tins.2014.03.006
https://www.ncbi.nlm.nih.gov/pubmed/24766931
http://dx.doi.org/10.1146/annurev-neuro-071013-014111
https://www.ncbi.nlm.nih.gov/pubmed/25032494
http://dx.doi.org/10.1038/35039043
https://www.ncbi.nlm.nih.gov/pubmed/11252779
http://dx.doi.org/10.3758/s13414-013-0512-3
https://www.ncbi.nlm.nih.gov/pubmed/23918550
http://dx.doi.org/10.1016/j.ijpsycho.2011.05.008
https://www.ncbi.nlm.nih.gov/pubmed/21641942
http://dx.doi.org/10.1006/nimg.1999.0503
https://www.ncbi.nlm.nih.gov/pubmed/10600415
http://dx.doi.org/10.1371/journal.pone.0040370
https://www.ncbi.nlm.nih.gov/pubmed/22792291
http://dx.doi.org/10.1006/nimg.2002.1096
https://www.ncbi.nlm.nih.gov/pubmed/12169246
http://dx.doi.org/10.1016/j.nlm.2010.09.010
https://www.ncbi.nlm.nih.gov/pubmed/20870024
http://dx.doi.org/10.1038/36846
https://www.ncbi.nlm.nih.gov/pubmed/9384378
http://dx.doi.org/10.1037/0096-1523.22.3.725
https://www.ncbi.nlm.nih.gov/pubmed/8666960
http://dx.doi.org/10.1007/s00221-002-1335-y
https://www.ncbi.nlm.nih.gov/pubmed/12592504
http://dx.doi.org/10.1016/j.tics.2005.04.010
https://www.ncbi.nlm.nih.gov/pubmed/15925809
http://dx.doi.org/10.1146/annurev-psych-122414-033400
https://www.ncbi.nlm.nih.gov/pubmed/28051934
http://dx.doi.org/10.1016/0001-6918(67)90048-0
http://dx.doi.org/10.1016/j.neuroimage.2013.04.013
https://www.ncbi.nlm.nih.gov/pubmed/23597935
http://dx.doi.org/10.1002/ajhb.21106
https://www.ncbi.nlm.nih.gov/pubmed/21080380


Petersen SE, Dubis JW (2012) The mixed block/event-related design.
Neuroimage 62:1177–1184.

Poldrack RA, Congdon E, Triplett W, Gorgolewski KJ, Karlsgodt KH,
Mumford JA, Sabb FW, Freimer NB, London ED, Canon TD, Bilder
RM (2016) A phenome-wide examination of neural and cognitive
function. Sci Data 3:160110–160112.

Portas CM, Rees G, Howseman AM, Josephs O, Turner R, Frith CD
(1998) A specific role for the thalamus in mediating the interaction
of attention and arousal in humans. J Neurosci 18:8979–8989.

Posner MI (1994) Attention: the mechanism of consciousness. Proc
Natl Acad Sci U S A 91:7398–7403.

Pratt J, Radulescu PV, Guo RM, Abrams RA (2010) It’s Alive! animate
motion captures visual attention. Psychol Sci 21:1724–1730.

Ptak R (2012) The frontoparietal attention network of the human
brain: action, saliency, and a priority map of the environment.
Neuroscientist 18:502–515.

Raichle ME (1998) Behind the scenes of functional brain imaging: a
historical and physiological perspective. Proc Natl Acad Sci U S A
95:765–772.

Raichle ME (2006) The brain’s dark energy. Science 314:1249–1250.
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA,
Shulman GL (2001) A default mode of brain function. Proc Natl
Acad Sci U S A 98:676–682.

Raz N, Levin N (2014) Cortical and white matter mapping in the visual
system-more than meets the eye: on the importance of functional
imaging to understand visual system pathologies. Front Integr
Neurosci 8:68.

Schupp HT, Stockburger J, Codispoti M, Junghöfer M, Weike AI,
Hamm AO (2007) Selective visual attention to emotion. J Neurosci
27:1082–1089.

Soto-Faraco S, Spence C (2002) Modality-specific auditory and vis-
ual temporal processing deficits. Q J Exp Psychol A 55:23–40.

Störmer VS, Alvarez GA (2014) Feature-based attention elicits sur-
round suppression in feature space. Curr Biol 24:1985–1988.

Sunaert S, Hecke PV, Marchal G, Orban GA (2000) Attention to
speed of motion, speed discrimination, and task difficulty: an fMRI
study. Neuroimage 11:612–623.

Tavor I, Parker Jones O, Mars RB, Smith SM, Behrens TE, Jbabdi S
(2016) Task-free MRI predicts individual differences in brain activ-
ity during task performance. Science 352:216–220.

Tootell RB, Hadjikhani N, Hall EK, Marrett S, Vanduffel W, Vaughan
JT, Dale AM (1998) The retinotopy of visual spatial attention.
Neuron 21:1409–1422.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard
O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical
labeling of activations in SPM using a macroscopic anatomical

parcellation of the MNI MRI single-subject brain. Neuroimage
15:273–289.

Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E,
Ugurbil K (2013) The WU-Minn Human Connectome Project: an
overview. Neuroimage 80:62–79.

Verney SP, Granholm E, Marshall SP (2004) Pupillary responses on
the visual backward masking task reflect general cognitive ability.
Int J Psychophysiol 52:23–36.

Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008)
Evidence for a frontoparietal control system revealed by intrinsic
functional connectivity. J Neurophysiol 100:3328–3342.

Visscher KM, Miezin FM, Kelly JE, Buckner RL, Donaldson DI,
McAvoy MP, Bhalodia VM, Peterson SE (2003) Mixed blocked/
event-related designs separate transient and sustained activity in
fMRI. Neuroimage 19:1694–1708.

Vossel S, Geng JJ, Fink GR (2014) Dorsal and ventral attention sys-
tems: distinct neural circuits but collaborative roles. Neuroscientist
20:150–159.

Wahn B, König P (2015a) Audition and vision share spatial attentional
resources, yet attentional load does not disrupt audiovisual inte-
gration. Front Psychol 6:1084.

Wahn B, König P (2015b) Vision and haptics share spatial attentional
resources and visuotactile integration is not affected by high atten-
tional load. Multisens Res 28:371–392.

Wahn B, König P (2017) Is attentional resource allocation across sen-
sory modalities task-dependent? Adv Cogn Psychol 13:83–96.

Watanabe K, Funahashi S (2014) Neural mechanisms of dual-task in-
terference and cognitive capacity limitation in the prefrontal cor-
tex. Nat Neurosci 17:601–611.

Whitlow CT, Casanova R, Maldjian JA (2011) Effect of resting-state
functional MR imaging duration on stability of graph theory metrics
of brain network connectivity. Radiology 259:516–524.

Wickens CD (1980) The structure of attentional resources. In:
Attention and performance VIII (Nickerson RS, ed), pp 239–257.
Hillsdale, NJ: Erlbaum.

Wickens CD (2002) Multiple resources and performance prediction.
Theor Issues Ergon Sci 3:159–177.

Wierda SM, van Rijn H, Taatgen NA, Martens S (2012) Pupil dilation
deconvolution reveals the dynamics of attention at high temporal
resolution. Proc Natl Acad Sci U S A 109:8456–8460.

Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization
tool for human brain connectomics. PLoS One 8:e68910.

Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D,
Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR,
Fischl B, Liu H, Buckner RL (2011) The organization of the human
cerebral cortex estimated by intrinsic functional connectivity. J
Neurophysiol 106:1125–1165.

Research Article: New Research 13 of 13

March/April 2022, 9(2) ENEURO.0358-21.2022 eNeuro.org

http://dx.doi.org/10.1016/j.neuroimage.2011.09.084
https://www.ncbi.nlm.nih.gov/pubmed/22008373
https://www.ncbi.nlm.nih.gov/pubmed/27922632
http://dx.doi.org/10.1523/JNEUROSCI.18-21-08979.1998
https://www.ncbi.nlm.nih.gov/pubmed/9787003
http://dx.doi.org/10.1073/pnas.91.16.7398
https://www.ncbi.nlm.nih.gov/pubmed/8052596
http://dx.doi.org/10.1177/0956797610387440
https://www.ncbi.nlm.nih.gov/pubmed/20974713
http://dx.doi.org/10.1177/1073858411409051
https://www.ncbi.nlm.nih.gov/pubmed/21636849
http://dx.doi.org/10.1073/pnas.95.3.765
https://www.ncbi.nlm.nih.gov/pubmed/9448239
https://www.ncbi.nlm.nih.gov/pubmed/17124311
http://dx.doi.org/10.1073/pnas.98.2.676
https://www.ncbi.nlm.nih.gov/pubmed/11209064
http://dx.doi.org/10.3389/fnint.2014.00068
https://www.ncbi.nlm.nih.gov/pubmed/25221482
http://dx.doi.org/10.1523/JNEUROSCI.3223-06.2007
https://www.ncbi.nlm.nih.gov/pubmed/17267562
http://dx.doi.org/10.1080/02724980143000136
https://www.ncbi.nlm.nih.gov/pubmed/11873849
http://dx.doi.org/10.1016/j.cub.2014.07.030
https://www.ncbi.nlm.nih.gov/pubmed/25155510
http://dx.doi.org/10.1006/nimg.2000.0587
https://www.ncbi.nlm.nih.gov/pubmed/10860790
http://dx.doi.org/10.1126/science.aad8127
https://www.ncbi.nlm.nih.gov/pubmed/27124457
http://dx.doi.org/10.1016/S0896-6273(00)80659-5
https://www.ncbi.nlm.nih.gov/pubmed/9883733
http://dx.doi.org/10.1006/nimg.2001.0978
https://www.ncbi.nlm.nih.gov/pubmed/11771995
http://dx.doi.org/10.1016/j.neuroimage.2013.05.041
https://www.ncbi.nlm.nih.gov/pubmed/23684880
http://dx.doi.org/10.1016/j.ijpsycho.2003.12.003
https://www.ncbi.nlm.nih.gov/pubmed/15003370
http://dx.doi.org/10.1152/jn.90355.2008
https://www.ncbi.nlm.nih.gov/pubmed/18799601
http://dx.doi.org/10.1016/S1053-8119(03)00178-2
http://dx.doi.org/10.1177/1073858413494269
https://www.ncbi.nlm.nih.gov/pubmed/23835449
http://dx.doi.org/10.3389/fpsyg.2015.01084
https://www.ncbi.nlm.nih.gov/pubmed/26284008
http://dx.doi.org/10.1163/22134808-00002482
https://www.ncbi.nlm.nih.gov/pubmed/26288905
http://dx.doi.org/10.5709/acp-0209-2
https://www.ncbi.nlm.nih.gov/pubmed/28450975
http://dx.doi.org/10.1038/nn.3667
https://www.ncbi.nlm.nih.gov/pubmed/24584049
http://dx.doi.org/10.1148/radiol.11101708
https://www.ncbi.nlm.nih.gov/pubmed/21406628
http://dx.doi.org/10.1080/14639220210123806
http://dx.doi.org/10.1073/pnas.1201858109
https://www.ncbi.nlm.nih.gov/pubmed/22586101
http://dx.doi.org/10.1371/journal.pone.0068910
https://www.ncbi.nlm.nih.gov/pubmed/23861951
http://dx.doi.org/10.1152/jn.00338.2011
https://www.ncbi.nlm.nih.gov/pubmed/21653723

	Nonuniformity of Whole-Cerebral Neural Resource Allocation, a Neuromarker of the Broad-Task Attention
	Introduction
	Materials and Methods
	Datasets
	Dataset 1
	Dataset 2
	Dataset 3

	Preprocessing steps
	Assumptions and computation of the nu-NRA
	Assessing pupil dilation
	Brain mapping of the nu-NRA
	Data availability

	Results
	Task performance and level of the nu-NRA during the visuospatial n-back working memory task
	Relationship between nu-NRA level and pupil dilation
	Cross-task and cross-dataset validation of the nu-NRA
	Levels of the nu-NRA in patients with ADHD

	Discussion
	Task difficulty and the nu-NRA level
	Retinotopy of the nu-NRA map
	The nu-NRA as a neuromarker of general attention level
	Study limitations

	References


