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Abstract. The objective of this study was to identify hub 
genes and pathways associated with hepatocellular carcinoma 
(HCC) by centrality analysis of a co-expression network. A 
co-expression network based on differentially expressed 
(DE) genes of HCC was constructed using the Differentially 
Co-expressed Genes and Links (DCGL) package. Centrality 
analyses, for centrality of degree, clustering coefficient, close-
ness, stress and betweenness for the co-expression network 
were performed to identify hub genes, and the hub genes 
were combined together to overcome inconsistent results. 
Enrichment analyses were conducted using Gene Ontology 
and Kyoto Encyclopedia of Genes and Genomes databases. 
Finally, validation of hub genes was conducted utilizing 
reverse transcription-polymerase chain reaction (RT-PCR) 
analysis. In total, 260 DE genes between normal controls and 
HCC patients were obtained and a co-expression network with 
154 nodes and 326 edges was constructed. From this, 13 hub 
genes were identified according to degree, clustering coef-
ficient, closeness, stress and betweenness centrality analysis. 
It was found that reelin (RELN), potassium voltage-gated 
channel subfamily J member 10 (KCNJ10) and neural cell adhe-
sion molecule 1 (NCAM1) were common hub genes across the 
five centralities, and the results of RT‑PCR analysis for RELN, 
KCNJ10 and NCAM1 were consistent with the centrality 
analyses. Pathway enrichment analysis of DE genes showed 
that cell cycle, metabolism of xenobiotics by cytochrome P450 
and p53 signaling pathway were the most significant pathways. 
This study may contribute to understanding the molecular 
pathogenesis of HCC and provide potential biomarkers for its 
early detection and effective therapies.

Introduction

Hepatocellular carcinoma (HCC) is the major histological 
subtype of primary liver malignancies, accounting for ~80% of 
the total liver cancer burden (1). The majority of cases of HCC 
are associated with cirrhosis caused by infection with chronic 
hepatitis B virus (HBV) or hepatitis C virus (HCV), alcoholic 
injury, and to a lesser extent from genetically determined 
disorders such as hemochromatosis (2). However, there are 
few effective treatments and early diagnoses, partly because 
the cell- and molecular-based mechanisms that contribute to 
the pathogenesis of this tumor type are poorly understood (3).

With the advances made in high-throughput experi-
mental technologies, such technologies have been applied to 
the exploration of diagnostic gene signatures and biological 
processes of human diseases (4), which provide novel insights 
into the underlying biological mechanisms of HCC. Studies of 
HCC based on microarray expression have revealed guiding 
principles of its molecular initiation and progression, and 
these may provide guidance for the investigation of potential 
molecular biomarkers for the early detection of HCC (5,6). 
For example, Jia et al (6) suggested that phospholipase C 
β 1 (PLCB1) was a critical driver gene with causal roles in 
carcinogenesis and might have an important role in the patho-
genesis of HCC. The cytochrome P450 family 2 subfamily B 
member 6 (CYP2B6) gene has been found to be relevant to 
tumor angiogenesis or drug metabolism predisposed to the 
development of treatment-related toxicity in HCC (7).

However, the results obtained have been inconsistent for a 
variety of reasons, including small sample size, measurement 
error, and different statistical methods being used (8). The 
overlap is very low for the most significantly dysregulated 
genes across multiple studies (9). Network-based approaches, 
particularly co-expression networks, are an effective means 
of conducting a mechanistic analysis by identifying potential 
molecular markers for malignancy and connecting them 
together (10). Therefore, the present study used co-expression 
network-based centrality analysis to gain a clear insight into 
the significant and targetable tumorigenic genes of HCC and 
the integrated result of the five centralities (degree centrality, 
clustering coefficient, stress centrality, betweenness centrality 
and closeness centrality) to resolve the inconsistent outcomes 
obtained by different methods, which may be applicable to the 
early detection and treatment of HCC.
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The objective of this study was to identify hub genes 
and pathways associated with HCC on the basis of network 
centrality analysis. Co-expression networks of differen-
tially expressed (DE) genes between normal controls and 
patients with HCC were constructed using the Differentially 
Co-expressed Genes and Links (DCGL) package. Clusters 
in the network were obtained using the Molecular Complex 
Detection (MCODE) algorithm. Centrality analyses for the 
co-expression network were performed based on degree, 
clustering coefficient, closeness, stress and betweenness. 
Enrichment analyses for DE genes were performed using 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) databases. Finally, validation of hub genes 
was conducted utilizing reverse transcription-polymerase 
chain reaction (RT-PCR) analysis.

Materials and methods

Ethics statement. A total of 24 patients with HCC admitted 
to our hospital between June 2013 and December 2014 were 
enrolled in the present study. Written informed consent was 
obtained from all participants prior to tissue collection. Ethical 
approval was granted by the Institutional Ethical Committee. 

Datasets. In the present study, three gene expression profiles 
[GSE6222 (11), GSE41804 (12) and GSE51401] of patients 
with HCC and normal controls were downloaded from the 
Gene Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo/). A total of 78 HCC samples and 38 normal 
controls were collected from the three datasets. The character-
istics of the datasets are shown in Table I.

Dataset preprocessing. Prior to analysis, the quality of the 
gene microarray probe-level data was controlled by standard 
procedures, which comprising background correction (13), 
normalization (14), probe correction (15) and summariza-
tion (13). Background correction was carried out using the 
Robust Multi-array Average (RMA) algorithm to eliminate the 
influence of nonspecific hybridization (13). The perfect match 
(PM) probes were modeled as the sum of a normal noise compo-
nent N (normal with mean µ and variance σ2) and an exponential 
signal component S (exponential with mean α). The normal was 
truncated at zero to avoid any possibility of negatives, and the 
observed intensity O was adjusted by the following equation:

where a=s‑µ-σ2α and b=σ. It should be noted that φ and  are 
the standard normal distribution density and distribution func-
tions respectively, and mismatch (MM) probe intensities were 
not corrected by the above procedure.

Normalization was performed through a quantiles-based 
algorithm (14). The goal of the quantile method was to make 
the distribution of probe intensities for each array in a set of 
arrays the same. This method was a specific case of the trans-
formation:

 

where G was estimated by the empirical distribution of each 
array and F using the empirical distribution of the averaged 
sample quantiles.

Probes of PM/MM value were corrected utilizing the 
MAS approach (15). An ideal MM was subtracted from PM 
and would always be less than the corresponding PM. Thus 
it could safely be subtracted without risk of negative values 
being obtained.

Summarization of probes was dependent upon medianpol-
ishing (13). A multichip linear model was fit to data from each 
probe set. In particular for a probe set k with i=1, …, Ik probes 
and data from j=1, …, J arrays, were fitted into the following 
model:

  

where αi was a probe effect and βj was the log2 expression 
value.

In the next stage, the preprocessed probe-level dataset in 
CEL format was converted into expression measures, and 
then screened by the feature filter method of a gene filter 
package (16).

Integration of multiple datasets. For the purpose of integrating 
the three datasets into a single group and removing the batch 
effects caused by the use of different experimentation plans 
and methodologies, the GENENORM method was applied 
in order to increase the comparability of the datasets at score 
normalization, and the expression values were calculated (17). 
The modified gene expression value  was given by the 
expression:

where Xij indicated each gene expression value in each study; 
 stood for the mean gene expression value in the dataset; K 

represented the number of the studies and  was the standard 
deviation of gene expression value.

The distribution of merged data was inspected according to 
the plotMDS qualitative validation method to observe visually 
whether the samples from all studies would cluster together or 
have a dataset‑bias (18). Finally, the expression profile dataset 
containing 20,102 genes was obtained.

Identification of DE genes. Genes differently expressed 
between patients with HCC and normal subjects were identi-
fied using the empirical Bayes method of the Linear Models 
for Microarray Data package (19). The approach is applicable 
for the analysis of factorial data with high density oligonucle-
otide microarray data. The false discovery rate (FDR) was 
controlled by Benjamini-Hochberg test (20). Only the genes 
which met the criterion (P<0.05, |log2FoldChange|>2) were 
selected as DE genes in this study.

Co‑expression network construction. Some significant genes 
may not be identifiable through their own behavior, but 
exhibit quantifiable changes when considered in conjunction 
with other genes (for example, as a co-expression network). 
In this study, co-expression networks were constructed using 
DCGL to identify differentially co-expressed (DC) genes 
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and links (21). The DCGL package contains four modules: 
Gene filtration, link filtration, differential co-expression 
analysis (DCEA) and differential regulation analysis (DRA) 
modules. Differential co‑expression profile (DCp) and differ-
ential co-expression enrichment (DCe) were involved in the 
DCEA module for extracting DC genes and DC links. DCp 
worked on the filtered set of gene co‑expression value pairs, 
where each pair was composed of two co-expression values 
worked out in two different conditions separately. The subset 
of co-expression value pairs associated with a particular gene, 
in two groups for the two conditions separately, was written 
as two vectors: X=(xi1, xi2, ..., xin) and Y=(yi1, yi2, ..., yin) where 
n is the number of co-expression neighbors for a gene. A 
length-normalized Euclidean distance was used to measure 
the differential co-expression (dC) of this gene (22).

A permutation test was performed to assess the significance 
of dC. In this test, the disease samples and normal controls 
were randomly permuted, and Pearson's correlation coefficient 
(PCC) was calculated. The sample permutation was repeated N 
times, and a large number of permutation dC statistics formed 
an empirical null distribution. Non-informative correlation 
pairs were filtered out with the half‑thresholding strategy and 
pairs with FDR-adjusted P<0.05 were retained (20).

DCe was also used to identify DC genes and DC links, 
which are based on the limit fold change (LFC) model. First, 
correlation pairs were divided into 3 parts according to the 
pairing of signs of co-expression values and the number of 
co-expression values: Pairs with the same signs (N1), pairs 
with different signs (N2) and pairs with differently-signed high 
co-expression values (N3). The first two parts were processed 
with the LFC model separately to produce two subsets of DC 
links (K1, K2), while the third part (N3) was added to the set 
of DC links directly. Therefore, a total of K=N3 + K1 + K2 DC 
links were determined from a total of N gene links. For a gene 
(gi), the total numbers of links (ni) and DC links (ki) associated 
with it were counted. A binomial probability model was used 
to estimate the significance of the gene being a DC gene.

.
Differentially co-expression summarization (DCsum) was 
implemented to combine the results from the DCp and DCe 
methods. After obtaining the DC genes and DC links, the 

co-expression network was visualized using the Cytoscape 2.1 
software (www.cytoscape.org).

Cluster identification of the co‑expression network. The clus-
ters of the co‑expression network were identified by MCODE, 
which is a theoretical cluster algorithm that selects densely 
connected regions (23). The MCODE algorithm includes 
three main stages: Vertex weighting, complex prediction and 
optionally post-processing. At the stage of vertex weighting, 
all vertices based on their local network density were weighted 
using the highest k-core of the vertex neighborhood. At the 
second stage, the vertex-weighted graph was taken as input. 
A complex with the highest weighted vertex was seeded, and 
moved outward from the seed vertex recursively. It owned 
vertices in the complex whose weight was above a given 
threshold, a given percentage away from the weight of the seed 
vertex. Complexes with a core <2 (graph of minimum degree 
2) were filtered. In this study, node density cutoff = 0.1, node 
score cutoff = 0.2, K-core = 2 and maximum depth = 100 were 
set as the parameters in MCODE for the detection of clus-
ters in the co-expression network. In addition, clusters with 
<10 nodes were discarded.

Centrality analysis of the co‑expression network. In network 
analysis, the determination of the importance of a particular 
node or edge in a network is a fundamental challenge, and 
quantifying centrality and connectivity helps to identify 
portions of the network that may play important roles (24). 
In the present study, the biological importance of genes was 
characterized based on the co-expression network using 
indices of topological centrality, including local scale (degree 
and clustering coefficient) and global scale (stress centrality, 
betweenness centrality and closeness centrality). The genes at 
the ≥95% quantile distribution in the significantly perturbed 
networks were defined as hub genes.

For the graph G=(V, E), V is the set of vertices representing 
nodes in a network, and E is the set of edges representing 
relationships between the nodes. A path from node s to t is 
defined as a sequence of edges (ui, ui+1), 0≤i ≤l, where u0=s and 
ul=t. The length of a path is the sum of the weights of edges, 
and d (s, t) was used to denote the distance between s and t 
(the minimum length of any path connecting s and t in G). The 
total number of shortest paths between vertices s and t was 
denoted by σst, and the number passing through node v was 
denoted by σst (v).

Degree centrality. Degree quantifies the local topology of each 
gene by summing up the number of its adjacent genes and 

Table I. Characteristics of the datasets.

 Sample size
 -------------------------------------------
Accession number Year Total (cases/controls) Platform

GSE6222 2008 12 (10/2) Affymetrix HG-U133_Plus_2
GSE41804 2013   40 (20/20) Affymetrix HG-U133_Plus_2
GSE51401 2013   64 (48/16) Affymetrix HG-U133_Plus_2
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gives a simple count of the number of interactions of a given 
node (25). The degree CD (v) of a node v was determined using 
the following formula:

Clustering coefficient. The clustering coefficient of a node v is 
the proportion of its neighbors that are also neighbors of each 
other (26). An example is a situation in which node v is connected 
to nodes s, t and l, and only nodes s and t are also connected. 
This metric provides a measure of local cliques, where informa-
tion processing/fold change is particularly segregated from the 
rest of the network. An edge eij connected node vi and vj, and the 
local clustering coefficient C (v) for node v was given as:

where ki was the number of nodes, Ni was the neighborhood of 
vi and defined as its immediate connections as follows:

 

Closeness centrality. Closeness centrality is a measure of the 
shortest paths to access all other proteins in the network (27). 
The larger the value, the more central is the protein. The 
closeness centrality, Cc (v) was defined as the reciprocal of the 
average shortest path length and was computed as follows:

Meanwhile, in the undirected graph, d (s, s)=0 and  
d (s, t)=d (t, s).

Betweenness centrality. Betweenness centrality is a topo-
logical metric in graphs for determining how the neighbors 
of a node are interconnected and is considered the frequency 
with which a node is on the shortest path between two other 
nodes (28). The betweenness centrality of a node v was calcu-
lated by the expression:

.

Therefore, the calculation might be rescaled by dividing 
through by the number of pairs of nodes not including v, so 
that CB (v)  [0,1].

Stress centrality. Stress centrality is a metric based on the 
number of nodes in the shortest path between two other 
nodes (29). A stressed node was a node traversed by a high 
number of shortest paths. The stress, Cs (v) was calculated as 
follows:

.

Functional and pathway enrichment analysis. To further 
investigate the functions of DE genes, GO functional enrich-
ment and KEGG pathway enrichment analysis were performed 
using the online tool Database for Annotation, Visualization 
and Integrated Discovery (DAVID) (30). GO terms and KEGG 
pathways with P<0.05 were selected based on an expression 

analysis systematic explored (EASE) test implemented in the 
DAVID (31). The formula used for the EASE test was as follows:

.

in which n=a'+b+c+d was the number of background genes; a' 
was the gene number of one gene set in the gene lists; a'+b was 
the number of genes in the gene list including at least one gene 
set; a'+c was the gene number of one gene list in the background 
genes; a' was replaced with a=a'-1 in EASE.

Validation of hub genes using RT‑PCR analysis. In this study, 
RT-PCR was utilized to validate the hub genes that had the 
highest degree and the most importance in the co-expression 
network. Total RNA was obtained from 24 HCC tumor samples 
and 24 matched non-cancerous samples from adjacent tissues, 
respectively, using TRIzol regent (Invitrogen; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA). The data were normalized 
to β-actin reference. Three common hub genes, reelin (RELN), 
potassium voltage-gated channel subfamily J member 10 
(KCNJ10) and neural cell adhesion molecule 1 (NCAM1), were 
subjected to validation analysis.

RT‑PCR was performed in two steps. For the first, cDNA 
synthesis, RNA was mixed with oligo (dT)18 primers adjusted to 
10 µl and incubated at 70˚C for 5 min. Next, RNA/primer mix 
was used in 20-µl reactions containing 2 µl RNasin (40 U/µl), 
8.0 µl 5X reverse transcriptase buffer, 8.0 µl dNTPs and 2 µl 
AMV reverse transcriptase (5 U/µl) (all reagents from New 
England Biolabs, Inc., Ipswich, MA, USA). The reactions were 
incubated for 1 h at 42˚C, 15 min at 70˚C, and adjusted to a 
final volume of 50 µl. For the second‑strand synthesis, PCRs 
were conducted using specific primers (Table II), 0.2 mM 
dNTPs, 1 unit Taq DNA polymerase, 10X PCR buffer and 
2 µl first‑strand cDNA. Reactions were performed using the 
following program: 2 min at 94˚C for predenaturation, followed 
by 35 cycles of 20 sec at 94˚C, 15 sec at 60˚C and 1 min at 68˚C, 
and a final 7 min extension at 72˚C. Next, 5 µl PCR product was 
loaded onto a 1.5% agarose gel containing ethidium bromide. To 
assess the limit of detection (LOD), serial 10-fold dilutions of 
total RNA were used as a template in 25-µl RT-PCRs. The PCR 
products were purified using the QIAquick PCR purifiation kit 
(Qiagen, Hilden, Germany) and were analyzed using Quantity 
One Software for gel imaging analysis (Bio-Rad Laboratories, 
Inc., Hercules, CA, USA).

Statistical analysis. Data were presented as the mean ± stan-
dard deviation, and all statistical analyses were carried out using 
SPSS 19.0 software (SPSS, Inc., Chicago, IL, USA). Student's 
t‑test was used to determine the statistical significance of differ-
ences between groups. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Identification of DE genes. There were 20,102 genes after inte-
grating the datasets GSE6222, GSE41804 and GSE51401 into 
the merged gene expression dataset used to detect DE genes 
in this study. In total, 260 DE genes were identified between 
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patients with HCC and normal controls with the thresholds of 
P<0.05, |log2FoldChange|>2.

Co‑expression network construction and cluster identification. 
Many genes together play important roles in the accomplish-
ment of a biological function, and highly co-expressed genes 
participate in similar biological processes and pathways. 
Notably, functionally related genes are frequently co-expressed 
across samples. DCGL was applied, with the use of DCp and 
DCe methods in the DCEA module, in order to construct a 
co-expression network based on the 260 DE genes of HCC. A 
total of 326 co‑expression gene pairs were identified; the two 
genes in each pair were DC genes. Finally, a co-expression 
network with 154 nodes and 326 edges was visualized using 
Cytoscape (Fig. 1).

The MCODE algorithm was selected to mine subnetworks 
of the co-expression network. When a node density cutoff of 0.1, 
node score cutoff of 0.2, K-core of 2 and maximum depth of 100 
were set, 3 clusters were identified having a gene number >10 
(Fig. 2). In detail, cluster 1 possessed the most nodes (n=32), of 
which CD160 and CD109 connected with the greatest number 
of genes (n=16 and n=14, respectively) in the network. The total 
degree of cluster 1 was the highest (n=177).

Centrality analyses of the co‑expression network. Centralities 
indicate the likelihood of a gene being functionally capable 
of holding communicating nodes together, for a node in a 
biological network. In this study, genes at the ≥95% quantile 
distribution in the co‑expression network were defined as hub 
genes. Five types of centralities (degree, clustering coefficient, 
closeness, betweenness and stress) were calculated, based on the 
complex network, and it was found that hub genes or the top 5% 
of genes distributed in various centrality analyses of the same 
gene were not entirely consistent (Fig. 3). In total, 13 hub genes 
were obtained, of which RELN, KCNJ10 and NCAM1 were 
common hub genes across degree, clustering coefficient, close-
ness, betweenness and stress centrality analysis. In addition, 
mannosidase α class 1C member 1 (MAN1C1) was obtained 
by four methods (with clustering coefficient analysis being 
the exception), and CD160, lymphocyte antigen 6 complex, 
locus E (LY6E) and C-type lectin domain family 4 member M 
(CLEC4M) were detected using three of the five types.

Functional and pathway enrichment analysis. To identify the 
biological processes associated with gene expression changes 

in HCC, GO analysis was performed which covered three 
domains, namely molecular function (MF), biological process 
(BP) and cellular component (CC), for the 260 DE genes. The 
results showed that DE genes were enriched in 136 BP terms, 
28 CC terms and 30 MF terms under the condition of P<0.05, 
and the top 10 terms in sequence of count value are shown in 
Fig. 4. Protein binding had the highest number of counts at 135. 
BP terms with a high count were associated with cell cycle and 
mitosis. Extracellular region and plasma membrane-related 
CC terms possessed high counts. When considering the terms 
according to P‑value, the most significant terms of BP, CC and 
MF were mitosis with P=1.60E-16, spindle with P=4.44E-11 and 
carbohydrate binding with P=2.35E-07, respectively.

To further investigate the functions of DE genes, they were 
mapped to the KEGG database and 8 significant pathways with 
P<0.05 were identified (Table III). Cell cycle (P=1.21E‑06), 
metabolism of xenobiotics by cytochrome P450 (P=5.35E-04) 
and p53 signaling pathway (P=5.67E-04) were the three most 
significant pathways. In addition to metabolism of xenobiotics 
by cytochrome P450, there were two other metabolic pathways, 
drug metabolism (P=4.13E-04) and linoleic acid metabolism 
(P=1.20E-02), which indicates that HCC has an association with 
metabolic biological processes.

Validation of hub genes based on RT‑PCR. To confirm the 
hub genes identified on the basis of centrality analyses of the 
co-expression network and to investigate the key genes of HCC, 
RT-PCR analysis of three common hub genes (RELN, KCNJ10 
and NCAM1) was conducted. RELN and KCNJ10 were upregu-
lated DE genes, while NCAM1 was a downregulated DE gene. 
The RT-PCR results are shown in Fig. 5. The relative expression 
levels of RELN and KCNJ10 were increased, but that of NCAM1 
was decreased in patients with HCC compared with healthy 
controls, which confirmed the DE gene analysis. Furthermore, 
the differences in these gene expression levels between normal 
controls and HCC patients were found to be statistically signifi-
cant (for RELN and NCAM1, P<0.001; for KCNJ10, P<0.05). 
These results demonstrate that the common hub genes were 
significantly differentially expressed in patients with HCC.

Discussion

HCC is a highly prevalent malignancy worldwide with a 
heterogenetic molecular pathogenesis, that has not yet been 
fully clarified. Identifying the most significant genes and 

Table II. Primer sequences for the candidate genes. 

 Primers (5'-3')
 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Genes Forward Reverse Length (bp)

RELN ACCAGTGGGCAGTCGATGACATCAT CTTCATTAGCCAACATCAACCACAC 489
KCNJ10 CATGGGGTGAGGGTTAGGAG GGGAGTGGAGGATGGGTG 284
NCAM1 ATGGAAACTCTATTAAAGTGAACCTGA TAGACCTCATACTCAGCATTCCAGT 186
β‑actin AAGTACTCCGTGTGGATCGG TCAAGTTGGGGGACAAAAAG 651

RELN, reelin; KCNJ10, potassium voltage-gated channel subfamily J member 10; NCAM1, neural cell adhesion molecule 1.
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pathways associated with this disease contributes to under-
standing the molecular pathogenesis and providing potential 
biomarkers for effective therapies.

In the present study, hub genes were identified based on 
degree, clustering coefficient, closeness, betweenness and 
stress centrality analysis in a co-expression network of HCC 
and integrated the results of the five centralities to resolve the 
inconsistent outcomes provided by different methods. A total of 
13 hub genes were identified and RELN, KCNJ10 and NCAM1 
were common hub genes across the five centrality methods. 
In addition, the hub genes were validated utilizing RT-PCR 
analysis and the results were consistent with centrality analyses 
of the co-expression network. GO and pathway enrichment 
analysis of DE genes showed that cell cycle, mitosis and 
protein binding were the most relevant GO terms, while cell 
cycle, metabolism of xenobiotics by cytochrome P450 and p53 
signaling pathway were the most significant pathways.

RELN is an extracellular 420-kDa glycoprotein that is 
involved in the regulation of neuronal migration during brain 
development (32). Varying levels of RELN expression had 
been reported in cancers. High expression levels of RELN have 
been reported in 87.5% of esophageal cancers (33) and 39% of 

prostate cancers (34). However, the expression of RELN is lost 
or highly reduced in gastric cancer (32) and in 72% of pancre-
atic cancers (35). Literature focused on RELN expression in 
HCC is lacking. In this study, it was discovered that RELN 
was an upregulated DE gene and significantly differently 
expressed based on RT-PCR assays as a hub gene in HCC. 
Moreover, it was found that DE genes of HCC were enriched 
in extracellular-related CC GO terms; notably, RELN encodes 
a large secreted extracellular matrix protein. These results 
indicate that RELN plays a significant role in HCC progres-
sion, which is consistent with previous studies. For instance, 
Okamura et al (36) revealed that RELN was a key regulatory 
gene associated with the recurrence of HCC. Furthermore 
RELN has been suggested to be involved in ECM-receptor 
interaction and focal adhesion, which might be the mechanism 
underlying the high metastasis rate of HCC with RELN muta-
tions (37). ECM-receptor interaction containing RELN was 
found to be a significant pathway of HCC in the present study. 
Therefore, RELN appears to be significantly associated with 
HCC.

NCAM1, a downregulated DE gene, was identified as 
another common hub gene of HCC in the present study. 

Figure 1. Co-expression network of 260 differentially expressed genes. There were 154 nodes and 326 edges in the network, which was constructed using  
the Differentially Co‑expressed Genes and Links (DCGL) package. Genes (nodes) were connected by edges if their vectors were sufficiently similar. Nodes 
represent genes, and each edge is associated with a pair of co-expressed genes.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  12:  2109-2119,  2016 2115

NCAM1 encodes a cell adhesion protein which is a member 
of the immunoglobulin super family. NCAM has been found 
in cancer-initiating stem cells of the liver and is a marker 
of hepatic stem/progenitor cells (38). Balzarini et al (39) 
demonstrated a significant alteration of NCAM expression in 
HCC biopsies and underlined the importance of NCAM in 
the induction of abnormal neovascular formations in HCC 
vascular morphogenesis. As a member of the NCAM family, 
NCAM1 is a known hepatic stem/progenitor cell marker and 
has been experimentally demonstrated to be a direct target of 
miR-200c, which indicates that HCC has stem-like molecular 
characteristics and a poor prognosis (40). Furthermore, HCC 
tumor cells have been shown to be positive for NCAM1/CD56 
immunohistochemically (41). In the present study, NCAM1 
expression was confirmed in HCC by RT‑PCR assays. Hence, 
it appears that NCAM1 is associated with HCC.

Functional enrichment analysis in the present study 
suggested that DE genes were enriched in cell cycle, mitosis 
and protein binding terms significantly, which was consistent 

with the functions of hub genes and significant pathways gener-
ally. Taking the cell cycle biological process as an example, 
cell cycle is the series of events that takes place in a cell leading 
to its division and duplication, and mitosis is a part of the cell 
cycle process. Dysregulation of cell cycle components may 
lead to tumor formation, and the roles that the cell cycle plays 
in HCC have been reported (42,43). When genes such as the 
cell cycle inhibitors cyclin-dependent kinases (CDK) and p53 
mutate, they may cause cells to multiply uncontrollably, forming 
a tumor. Among the 260 DE genes of HCC identified in the 
present study, there were certain genes deeply associated with 
the cell cycle, such as CDK1, cell division cycle 20 (CDC20) 
and cyclin E2 (CCNE2). Furthermore, the p53 signaling 
pathway has a close association with the cell cycle (44).

It has been estimated that at least a third of all serious 
health problems are caused by metabolic disorders (45). 
The present study identified that HCC was associated with 
several metabolic pathways, such as metabolism of xenobi-
otics by cytochrome P450, drug metabolism and linoleic 

Figure 2. The three clusters identified in the co‑expression network of the differentially expressed genes. (A) Cluster 1, (B) cluster 2 and (C) cluster 3. Cluster 1 
possessed the greatest number of nodes (n=32), and the highest total degree (n=177). Nodes represent genes, and edges represent the interaction of genes.
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acid metabolism. Metabolism of xenobiotics by cytochrome 
P450 is a typical liver‑function‑specific pathway and is of 
importance in HCC (46). The members of cytochrome P450 
(CYP) family, involved in a myriad of biological processes, is 

frequently dysregulated in liver cancer (47). In this pathway, 
three members of the CYP family were involved: CYP2C8, 
CYP2E8 and CYP1A2. Zhang et al (48) suggested that 
CYP2C8 was post-transcriptionally regulated by microRNAs 

Figure 3. Distribution of hub genes identified by five types of centrality. (A) degree centrality; (B) clustering coefficient; (C) betweenness centrality; (D) close-
ness centrality and (E) stress centrality.

Figure 4. Top 10 Gene Ontology terms in the biological process (BP), cellular component (CC) and molecular function (MF) domains in order of count value. 
Protein binding had the most counts (n=135). BP terms with high counts were associated with cell cycle and mitosis.
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in the human liver. Therefore, metabolism of xenobiotics by 
cytochrome P450 appears to be a significant pathway in HCC.

In conclusion, the present study identified hub genes (such as 
RELN, KCNJ10 and NCAM1) and pathways (for instance, cell 
cycle, metabolism of xenobiotics by cytochrome P450 and p53 
signaling pathway) associated with HCC based on centrality 
analysis of a co-expression network and RT-PCR assays. 
This study may contribute to understanding the molecular 

pathogenesis of HCC and provide potential biomarkers for 
effective therapies of this disease.
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Figure 5. Reverse transcription-polymerase chain reaction results for the common hub genes (A) RELN, (B) KCNJ10 and (C) NCAM1 in patients with HCC 
and normal controls. Data are presented as the mean ± standard deviation *P<0.05 vs. the control group; **P<0.01 vs. the control group. M, marker; D, patients 
with HCC; C, normal control. HCC, hepatocellular carcinoma; RELN, reelin; KCNJ10, potassium voltage-gated channel subfamily J member 10; NCAM1, 
neural cell adhesion molecule 1. 

Table III. Significant enrichment pathways in hepatocellular carcinoma.

Term Count P-value Genes

Cell cycle 13 1.21E-06 CDK1, TTK, CDC20, PTTG1, SFN, MCM2, CCNB1, 
   CCNE2, MAD2L1, CCNB2, BUB1, BUB1B, CCNA2
Metabolism of xenobiotics   7 5.35E-04 GSTA4, ADH4, CYP2C8, 
by cytochrome P450   ADH1B, CYP2E1, CYP1A2, AKR1C1
p53 signaling pathway   7 5.67E-04 CCNE2, CCNB1, CDK1, CCNB2, RRM2, SFN, THBS1
Oocyte meiosis   9 1.05E-03 CCNE2, CCNB1, CDK1, MAD2L1, 
   CCNB2, BUB1, CDC20, AURKA, PTTG1
Drug metabolism   6 4.13E-03 GSTA4, ADH4, CYP2C8, ADH1B, CYP2E1, CYP1A2
Linoleic acid metabolism   4 1.20E-02 AKR1B10, CYP2C8, CYP2E1, CYP1A2
ECM-receptor interaction   6 1.46E-02 ITGA9, RELN, THBS1, COL5A2, HMMR, SPP1
Progesterone-mediated   6 1.61E-02 CCNB1, CDK1, MAD2L1, CCNB2, BUB1, CCNA2
oocyte maturation    

ECM, extracellular matrix.
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