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Simple Summary: Neurotrophins are a family of proteins known for regulating nervous system
development and neuronal survival and plasticity. These proteins act by activating specific receptor
proteins on the cell surface. More recently, neurotrophins and their receptors emerged as mechanisms
contributing to cancer progression. Cancer is the most common cause of disease-related death in
children. Here, we review the evidence indicating a role for neurotrophin-mediated cell signaling in
medulloblastoma, the most common type of malignant brain cancer of the childhood. In addition,
by analyzing gene transcript profiles in datasets of tumors from patients with medulloblastoma,
we revealed novel findings supporting neurotrophin receptors as potential molecular prognostic
markers of patient survival.

Abstract: Neurotrophins are a family of secreted proteins that act by binding to tropomyosin receptor
kinase (Trk) or p75NTR receptors to regulate nervous system development and plasticity. Increasing
evidence indicates that neurotrophins and their receptors in cancer cells play a role in tumor growth
and resistance to treatment. In this review, we summarize evidence indicating that neurotrophin
signaling influences medulloblastoma (MB), the most common type of malignant brain cancer
afflicting children. We discuss the potential of neurotrophin receptors as new therapeutic targets
for the treatment of MB. Overall, activation of TrkA and TrkC types of receptors seem to promote
cell death, whereas TrkB might stimulate MB growth, and TrkB inhibition displays antitumor effects.
Importantly, we show analyses of the gene expression profile of neurotrophins and their receptors in
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MB primary tumors, which indicate, among other findings, that higher levels of NTRK1 or NTRK2
are associated with reduced overall survival (OS) of patients with SHH MB tumors.

Keywords: nerve growth factor; brain-derived neurotrophic factor; tropomyosin receptor kinase;
neurotrophin; medulloblastoma; brain tumor

1. Introduction

Driver oncogenes in many types of cancer encode growth factor receptors belonging to the receptor
tyrosine kinase (RTK) superfamily, and most molecularly targeted therapies successfully incorporated
into clinical practice to date act by targeting RTKs [1,2]. Neurotrophins, protein growth factors that
activate RTKs of the tropomyosin receptor kinase (Trk) family, are known to be critically involved in
regulating neuronal development and have also been increasingly implicated in tumor progression
and resistance to treatment in several types of cancer, including those of possible neural origin [3–5].
In children, brain cancers are the most common solid tumors and the leading cause of cancer-related
mortality. The most common type of malignant childhood brain tumor is medulloblastoma (MB).
Conventional multimodal treatment with chemotherapy, radiotherapy, and surgery has improved cure
rates over the last decades, but unfortunately, about one-third of patients will relapse. Survivors may
often experience long-term neurological, cognitive, and endocrinological deficits secondary to curative
intent [6,7]. Smarter treatment modalities are needed to improve outcomes and reduce morbidity.
Here, we review the emerging evidence indicating that neurotrophin signaling is involved in MB
pathogenesis, discuss some of the potential biological, prognostic and clinical implications and propose
the neurotrophin/Trk pathway as a promising target in MB treatment.

2. MB Biology

2.1. Molecular Subgroups of MB

Some of the most important advances in our understanding of MB are related to its classification
into four consensus molecular subgroups with distinct genomic, epigenetic, and clinical features: WNT,
SHH, Group 3, and Group 4 [7–9]. This classification has quickly become critically important for
guiding patient risk stratification, treatment, and selection in clinical trials [9,10]. The WNT and SHH
subgroups are defined by mutations leading to aberrant activation of the Wingless and Sonic hedgehog
pathways, respectively, whereas Group 3 MB has been associated with amplification of genes involved
in the Notch and transforming growth factor β (TGFβ) pathways, and Group 4 with an increased
representation of genes involved in chromatin modification [11,12]. Patients who exhibit tumors of the
more aggressive Group 3 and Group 4 subgroups have a particularly poor prognosis, with patients with
Group 3 MB showing a 5-year survival of around 50% and a high rate of metastasis at diagnosis [9,10,13].
More recently, significant intra- and intertumoral heterogeneity has been reported within specific
subgroups, and at least 12 unique subtypes within subgroups have been identified [7,14–18].

2.2. MB Origins

Identifying the cellular origin of MB is crucial to understand how normal cells transform into
cancer cells. Several childhood tumor types are believed to emerge from errors in development,
either directly from embryonal cells or from more mature prenatal cell types that acquire embryonal
properties, including aberrant self-renewal capacity [19,20]. In MB, embryonic neural stem cells (NSCs)
and different types of neural precursors have been proposed as candidate cells of origin [21,22].

Different molecular subtypes of MB mirror fetal transcription programs from distinct cerebellar
cell lineages that may appear transitionally during development [23]. Cell types that descend from
cerebellar stem cells, including typical and Nestin-expressing progenitors (NEPs) committed to the
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granule neuron lineage, can give rise to SHH-subtype MB upon genetic ablation of Ptch 1, which
encodes the Sonic hedgehog receptor protein patched homolog 1 [24,25]. SHH MB can also arise from
a rare and transient Sox2+ GNPC population [26]. Different embryonic cerebellar progenitor cells likely
originate Group 3 MB [27,28], and deep cerebellar nuclei (DCNs) or their precursors are among the
candidate cells of origin of Group 4 MB [29]. In contrast, WNT-subtype MB can originate outside the
cerebellum, from neuron precursors of the dorsal brainstem [30]. Recent findings indicate that SHH
MB transcriptionally resembles the granule cell hierarchy, whereas Group 3 MB mirrors Nestin+ stem
cells, and Group 4 MB resembles unipolar brush cells. In addition, bulk tumors can contain a mixed
population of transcriptionally distinct cells [23].

3. Neurotrophin Regulation of Nervous System Development and Function

Multiple signaling pathways involved in normal neural development and plasticity are hijacked
and amplified by cancer to promote tumor growth. Neurotrophins and their receptors play a critical
role in regulating nervous system development and neuronal survival and plasticity. Trk neurotrophin
receptors, TrkA (encoded by the NTRK1 gene), TrkB (encoded by NTRK2), and TrkC (encoded by
NTRK3) are activated primarily by their endogenous ligands, nerve growth factor (NGF), brain-derived
neurotrophic factor (BDNF), and neurotrophin 3 (NT-3), respectively. NT-3 also activates TrkA,
and TrkB can also be activated by NT-3 and neurotrophin NT-4/5 (NT-4/5). Trk activation by
neurotrophins induces receptor homodimerization and transphosphorylation of critical tyrosine
residues, leading to intracellular signal transduction mediated by activation of multiple protein
kinase pathways, including phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase
(MAPK), and phospholipase C-gamma (PLCγ)/protein kinase C (PKC), ultimately resulting in
cAMP response element-binding protein (CREB) phosphorylation and changes in gene expression.
Other intracellular mechanisms mediating the actions of neurotrophins include increased synaptic
insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors,
through a mechanism dependent on PKC and Ca2+/calmodulin kinase II (CaMKII), as well as
modulation of voltage-gated ion channel function. Neurotrophins and proneurotrophins also act
by binding the p75 neurotrophin receptor (p75NTR, also known as CD271), a member of the tumor
necrosis factor receptor superfamily, to promote either the activation of nuclear factor-kappa B (NF-kB)
signaling pathway, and induce prosurvival signals, or activate the c-Jun N-terminal kinases (JNK)
signaling pathway to generate cell death [31–34]. Mechanisms of neurotrophin-independent Trk
activation, for instance through transactivation dependent of G protein-couple receptors (GPCRs),
have also been described [35].

Trks and p75NTR are expressed in embryonic NSCs, and NGF, BDNF, or NT-3 promote NSC
survival [36,37]. In contrast, expression of TrkA or TrkC in the absence of neurotrophins triggers cell
death in embryonic stem cells [38]. Thus, changes in NGF availability may crucially regulate the survival
or naturally occurring death of neurons during development, particularly in the peripheral nervous
system [39]. TrkB is mostly expressed in central nervous system (CNS) neurons, does not trigger cell
death, and its stimulation by BDNF can stimulate the survival or differentiation of neurons derived from
NSCs [36,38–40]. Neurotrophin signaling is also crucially involved in mediating activity-dependent
refinement of neural circuits during development [41]. After neuronal differentiation and throughout
adulthood, neurotrophins promote neurite outgrowth, axon formation, synapse maturation, long-term
plasticity, memory, neuronal survival, and resistance to stress [31–33]. A summary of selected signaling
pathways mediating the actions of neurotrophins is shown in Figure 1.
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Figure 1. Signaling mechanisms mediating the actions of neurotrophins. Neurotrophin/Trk signaling 
involves neurotrophin binding to Trks, leading to receptor dimerization, autophosphorylation of 
tyrosine residues, and the recruitment of cytosolic adaptor proteins such as Src homology collagen 
protein (Shc). Shc recruits the adaptor growth factor receptor-bound protein 2 (GRB2) which is linked 
to the Ras exchange factor son of sevenless (SOS) leading to the activation of a RAS- MAPK pathway 
(RAS-RAF-MEK-ERK). Activated extracellular-regulated kinase (ERK) translocates to the nucleus and 
transactivates transcription factors such as STAT1/3, Elk1, and Myc, modulating gene expression to 
induce proliferation, differentiation or development. Shc can also recruit GRB2-associated-binding 
protein 1 (Gab1), driving activation of the PI3K-PDK1-Akt cascade. Phosphorylated Akt can regulate 
cell survival, growth, and angiogenesis via activation or inactivation of downstream targets. Akt can 
play an anti-apoptotic role through inactivation of Forkhead box protein O1 (FOXO1) transcription 
factor, Bcl-2-associated death promoter (BAD) and glycogen synthesis kinase (GSK-3β). Akt activates 
several proteins important for cell survival such as mammalian target of rapamycin (mTOR), murine 
double minute 2 (MDM2) and NF-k β. Phosphorylation of PLCγ by Trk receptors enables catalysis of 
phosphatidylinositol 4,5-biphosphate (PIP 2) cleavage to diacylglycerol (DAG) and inositol 
triphosphate (IP 3), which releases calcium from intracellular stores, activating calmodulin (CaM) and 
Ca 2+ /CaM-dependent protein kinases (CaMKs). Together, these signaling molecules stimulate 
multiple intracellular enzymes that regulate the activity of transcription factors, such as cAMP 
response element-binding protein (CREB) and ion channels involved in the control of synaptic 
plasticity. Trk transactivation may be mediated by G protein-couple receptors (GPCRs). GPCR-
activated members of c-Src family induce a neurotrophin-independent transactivation of a Trk via 
trans-phosphorylation of cytosolic tyrosines, which provide docking sites for triggering intracellular 
signaling cascades like PI3K-PDK1-Akt and MAPK. Binding of neurotrophins to p75NTR can activate 
either the NF-kB signaling pathway producing prosurvival signals, or c-Jun N-terminal kinase (JNK) 
signaling to induce cell death. P75NTR can activate the kinase NIK, which in turn stimulates IKK 
complexes that phosphorylate IKB, leading to its ubiquitination and proteasomal processing and 
subsequent releasing of NF-kB. This creates transcriptionally competent NF-κB complexes that 
translocate to the nucleus and induce the expression of survival genes. Neurotrophin binding to 
p75NTR can also induce activation of apoptosis signal-regulating kinase 1 (ASK1), which, in turn, 
activates JNK. JNK itself, or via c-JUN phosphorylation, stimulates p53-mediated apoptosis by 
regulating its targets such as Bcl-2-associated X protein (BAX). Pro-neurotrophins can also bind to 
p75NTR to initiate cell apoptosis via the JNK signaling pathway [31,33,34,42]. 

  

Figure 1. Signaling mechanisms mediating the actions of neurotrophins. Neurotrophin/Trk signaling
involves neurotrophin binding to Trks, leading to receptor dimerization, autophosphorylation of
tyrosine residues, and the recruitment of cytosolic adaptor proteins such as Src homology collagen
protein (Shc). Shc recruits the adaptor growth factor receptor-bound protein 2 (GRB2) which is linked
to the Ras exchange factor son of sevenless (SOS) leading to the activation of a RAS- MAPK pathway
(RAS-RAF-MEK-ERK). Activated extracellular-regulated kinase (ERK) translocates to the nucleus and
transactivates transcription factors such as STAT1/3, Elk1, and Myc, modulating gene expression to
induce proliferation, differentiation or development. Shc can also recruit GRB2-associated-binding
protein 1 (Gab1), driving activation of the PI3K-PDK1-Akt cascade. Phosphorylated Akt can regulate cell
survival, growth, and angiogenesis via activation or inactivation of downstream targets. Akt can play
an anti-apoptotic role through inactivation of Forkhead box protein O1 (FOXO1) transcription factor,
Bcl-2-associated death promoter (BAD) and glycogen synthesis kinase (GSK-3β). Akt activates
several proteins important for cell survival such as mammalian target of rapamycin (mTOR),
murine double minute 2 (MDM2) and NF-k β. Phosphorylation of PLCγ by Trk receptors enables
catalysis of phosphatidylinositol 4,5-biphosphate (PIP 2) cleavage to diacylglycerol (DAG) and inositol
triphosphate (IP 3), which releases calcium from intracellular stores, activating calmodulin (CaM)
and Ca2+/CaM-dependent protein kinases (CaMKs). Together, these signaling molecules stimulate
multiple intracellular enzymes that regulate the activity of transcription factors, such as cAMP response
element-binding protein (CREB) and ion channels involved in the control of synaptic plasticity.
Trk transactivation may be mediated by G protein-couple receptors (GPCRs). GPCR-activated members
of c-Src family induce a neurotrophin-independent transactivation of a Trk via trans-phosphorylation
of cytosolic tyrosines, which provide docking sites for triggering intracellular signaling cascades
like PI3K-PDK1-Akt and MAPK. Binding of neurotrophins to p75NTR can activate either the NF-kB
signaling pathway producing prosurvival signals, or c-Jun N-terminal kinase (JNK) signaling to
induce cell death. P75NTR can activate the kinase NIK, which in turn stimulates IKK complexes that
phosphorylate IKB, leading to its ubiquitination and proteasomal processing and subsequent releasing
of NF-kB. This creates transcriptionally competent NF-κB complexes that translocate to the nucleus and
induce the expression of survival genes. Neurotrophin binding to p75NTR can also induce activation
of apoptosis signal-regulating kinase 1 (ASK1), which, in turn, activates JNK. JNK itself, or via c-JUN
phosphorylation, stimulates p53-mediated apoptosis by regulating its targets such as Bcl-2-associated
X protein (BAX). Pro-neurotrophins can also bind to p75NTR to initiate cell apoptosis via the JNK
signaling pathway [31,33,34,42].
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4. Neurotrophin Signaling in Cancer

Trk was originally identified as an oncogene in a colon cancer sample. Specifically, the altered gene
consisted of an NTRK1 gene fusion containing sequences from non-muscle tropomyosin (TPM3) [43].
The recurrence of this TPM3-NTRK1 gene fusion as an oncogene in colon cancer has been more recently
confirmed, along with evidence that it is associated with sensitivity to TrkA inhibition [44]. NTRK1
fusions are now known to occur in many other solid tumor types, including lung adenocarcinoma,
papillary thyroid carcinoma, secretory breast carcinoma, and glioblastoma (GBM) [45,46]. In addition,
evidence indicating that NGF/TrkA, BDNF/TrkB, TrkC, or p75NTR play a role in cancer has rapidly
accumulated over the past few years, with most studies showing that neurotrophins and their receptors
are expressed in cancer cells and influence experimental tumor growth, cellular survival, proliferation,
migration, invasion, neovascularization, metastasis, and treatment resistance in many peripheral
solid tumor types including colorectal, breast, small cell and non-small cell lung, cervical, bladder,
gallbladder, laryngeal, renal, head and neck, and oral squamous cell cancers [3,5,47–61].

Neurotrophins and Trk receptors also play a role in brain tumor types other than MB. Expression
of NGF and BDNF has been found in samples of human astrocytoma [62]. Human malignant glioma
samples and cancer stem cells (CSCs) isolated from human gliomas express NGF, BDNF, NT3, TrkB,
and TrkC. Neurotrophin activation of TrkB and TrkC enhanced CSC viability through a mechanism
dependent on the extracellular-regulated kinase (ERK) and Akt pathways. Conversely, knockdown or
pharmacological inhibition of TrkB and TrkC decreased glioma CSC growth [63]. TrkA and TrkB can be
activated in GBM cells, and combined inhibition of Trk and c-Met reduces the resistance against CDK4/6
inhibition in experimental GBM [64]. Selective TrkB inhibition effectively and dose-dependently
impairs the viability of human GBM cells in vitro [65]. A systematic screening of a library of human
tyrosine kinases for their oncogenic potential in glioma and found compelling evidence indicating that
TrkB plays a role in tumor formation [66]. Furthermore, TrkB-containing exosomes in GBM cells can
promote the transference of tumor aggressiveness among cells [67].

In pediatric solid tumors, the role of neurotrophin signaling has been mostly investigated in
neuroblastoma (NB), a cancer type derived from embryonal neural crest cells that later give rise to the
sympathetic nervous system and accounts for around 15% of pediatric cancer deaths [68]. NB tumors
expressing high levels of TrkA show a favorable prognosis, whereas BDNF and TrkB expression is
associated with worst outcomes [69,70]. TrkB stimulation by BDNF protects TrkB-expressing human
NB cell lines against cytotoxic chemotherapeutics, and the protective effect of BDNF is prevented
by inhibition of TrkB or PI3K [71,72]. BDNF protects NB cells from paclitaxel by downregulating
the proapoptotic protein Bim through a mechanism dependent on MAPK [73]. BDNF has also been
shown to stimulate, and NGF to inhibit, NB cell invasion [74], and BDNF activation of TrkB promotes
metastasis in experimental NB through the PI3K and MAPK pathways [75]. In contrast, TrkA activation
by NGF decreases N-myc expression through MAPK signaling, resulting in a reduction in the number
of NB cells, and promotes NB cell differentiation [76]. p75NTR can induce apoptosis in NB cells and
TrkA inhibits this effect [77,78], and p75NTR expression enhances the cytotoxic effect of the redox-active
chemotherapeutic drug fenretinide in NB [79]. When co-expressed with TrkA and TrkB, p75NTR
enhances Trk receptor sensitivity to low levels of ligand [80].

In Ewing sarcoma (ES), another type of pediatric solid tumor with possible origin in embryonal
neural crest cells [81], treating human ES cells with TrkA or TrkB selective inhibitors reduced cell
proliferation, and the effects were optimized when the two inhibitors were combined. Moreover,
the pan-Trk inhibitor K252a induced changes in morphology, reduced levels of β-III tubulin,
and decreased mRNA expression of NGF, BDNF, TrkA, and TrkB in ES cells, in addition to potentiating
the effects of cytotoxic chemotherapy even in chemoresistant ES cells [82]. The possibility that
Trk receptors are involved in carcinogenesis in tumors derived from embryonal neural crest cells
is supported by evidence that constitutive activation of TrkB is sufficient to promote malignant
transformation, accompanied by increased expression of MYCN and other cancer-associated genes
and reduced expression of tumor suppressor genes, in neural crest cells. Importantly, neural crest cells
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with constitutively active TrkB form rapidly growing and invasive tumors when injected into NOD
SCID mice [83].

In brain tumor types that afflict children (other than MB), NTRK mutations have been reported in
pediatric low-grade and diffuse high-grade gliomas [63,84–86]. Activating fusions of NTRK1, NTRK2,
or NTRK3 occur in approximately 40% of pediatric high-grade gliomas and NTRK2 fusions in about
3% of pediatric pilocytic astrocytomas [63,87,88]. To date, such genetic alterations in NTRK genes have
not been reported in MB. TrkA and p75NTR are expressed in ependymoma [89]. NGF expression
was reported to be increased, whereas BDNF expression was reduced, both in tumor samples and
cerebrospinal fluid (CSF), in children with low-grade astrocytomas and ependymomas [90]. Although
that study did not find changes in plasma levels of neurotrophins, recent findings in children with
acute leukemia suggests that BDNF should be further investigated as a potential biomarker in pediatric
cancers [91].

5. Neurotrophins and Their Receptors in MB

5.1. NGF and TrkA

Early studies in the 1990s, aimed at investigating the protein expression of neurotrophins and
neurotrophin receptors in MB, were done at a time when MB was classified as type of primitive
neuroectodermal tumor (PNET), thus MB samples were analyzed together with other PNETs. TrkA
was found in 5 out of 20 and NGF in 6 out of 20 MB specimens, although NGF and TrkA were not
expressed within the same tumors [92]. Washiyama et al. [93] found TrkA immunoreactivity in cells
from 8 of 29 PNET samples, 27 of which were posterior fossa pediatric MBs. An immunohistochemical
study focusing on neuronal differentiation in the nodules of nodular/desmoplastic MBs found that
TrkA and NGF were expressed in 13 of 14 tumor samples, and were mostly localized within nodules,
which is consistent with a role for Trks in apoptosis and neuronal differentiation in MB [94]. In a more
recent study, TrkA was identified in 14 of 21 cases of pediatric patients with newly diagnosed MB,
and TrkA expression was correlated to the apoptotic index [95].

NGF and TrkA were also identified in MB cell lines [96]. As mentioned above, although
neurotrophin signaling is generally associated with cell survival, both TrkA and TrkC promote neuronal
death in the developing nervous system [38]. Experimental studies using cultured cells have consistently
supported the hypothesis that TrkA activation by NGF stimulates cell death and hinders growth in
MB [47,97,98], and TrkA expression in MB is associated with neuronal differentiation, low proliferation,
and apoptosis [99]. Treating MED-H MB cells with NGF resulted in growth inhibition and increased
differentiation [95]. D283-MED and DAOY MB cells engineered to overexpress TrkA undergo apoptosis
when treated with NGF, an effect that is blocked by anti-NGF antibodies or the pan-Trk inhibitor
K252a [100]. The TrkA-mediated apoptosis is blocked by mutations in the ATP binding site or tyrosines
490 and 785. In addition, expression of a dominant negative Ras inhibitor prevents NGF-induced ERK
activation and apoptosis, whereas ERK inhibition alone does not affect apoptosis [101]. NGF-induced
apoptosis is associated with a reduced expression of the DNA-damage-inducible gene gadd45, possibly
through BRCA1 and independently of c-Jun NH2-terminal kinase (JNK) or p38 MAPK [102]. NGF was
found to impair proliferation and increase TrkA expression, but also to reduce the cytotoxic effect of
cisplatin in MB cells [103]. Ectopic expression of the transcription factor Zhangfei in ONS-76 MB cells
resulted in increased expression of TrkA and apoptosis markers [104]. Zhangfei enhances expression
of Brn3a, an inducer of TrkA expression, promoting autocrine NGF stimulation of TrkA that leads to
MAPK-dependent neuronal differentiation and cell death in ONS-76 MB cells [105]. In addition to
promoting apoptosis and autophagy, NGF activation of TrkA can lead to cell death through casein
kinase 1 (CK1)-mediated stimulation of macropinocytosis [106], which involves inhibition of RhoB and
FRS2-scaffolded Src and H-Ras activation of RhoA [107]. Moreover, TrkA-induced cell death in MB cells
depends on the cerebral cavernous malformation 2 (CCM2) protein and can be blocked by inhibition of
the germinal center kinase class III kinase and CCM2 interactor STK25, but not STK24 [97,98,108].
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5.2. BDNF and TrkB

An early immunohistochemical study detected the presence of BDNF and TrkB in 8 out of 20 MB
samples, with co-expression of both molecules in 6 of the cases [92]. Another study found BDNF- and
TrkB-positive tumor cells in 6 out of 27 and 18 out of 29 samples, respectively [93]. MB cell lines express
both BDNF and TrkB [109,110], and TrkB blockade by the selective inhibitor ANA-12 can induce
a pronounced inhibition of survival and viability, as well as cell cycle arrest, in cell lines (D283-MED
and UW-228) associated with different MB molecular subgroups. In addition, we have recently shown
that TrkB inhibition slows the growth of D283-MED MB tumors xenografted into nude mice in vivo,
increased apoptosis, reduced ERK activity, increased expression of signal transducer and activator
of transcription 3 (STAT3), and resulted in differential modulation of p21 expression [111] (Figure 2).
However, TrkB activation by BDNF may also reduce cell viability under certain experimental conditions,
either when given to MB cells alone [109] or combined with a histone deacetylase inhibitor [112]. It is
worth noting that differences in results obtained with different cell lines may be related to distinct
origins and biological features. For example, D283-MED cells, which produce tumors in mice that
respond to TrkB inhibition [111], are representative of Group 3/4 MB and derive from a metastatic
site [113]. Studies have begun to uncover molecular differences between MB metastases and primary
tumors [114]. In addition, it should be noted that high-passage cell lines present limitations as models
of tumors actually found in patients. Moreover, factors including molecular diversification of BDNF
and controlling mechanisms related to trafficking and subcellular compartmentalization of different
Bdnf mRNA forms may influence the response to BDNF/TrkB in different tumor models [115].
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Figure 2. TrkB inhibition decreases proliferation and survival pathways leading to a reduction of tumor
growth and increased apoptosis and differentiation features in medulloblastoma (MB) cells. Scheme
depicting mouse xenografted with MB cells. In the absence of TrkB antagonist, MB cells continue
to grow at high proliferation rates. Treating mice with TrkB antagonist, ANA-12, promotes delay in
tumor growth in vivo and cellular changes consistent with growth arrest, apoptosis and differentiation
mediated by downregulation of ERK pathway, decreased KI67 and Nestin expression markers and
increased expression of p21 and TUBB3 genes (modified from [111]).

5.3. NT3, NT4/5, and TrkC

As with NGF/TrkA and BDNF/TrkB, immunohistochemical studies have found the expression of
NT-3 and TrkC in subsets of MB samples. TrkC was observed in 17 of 20 MB tumors analyzed, and 3
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of these tumors also co-expressed NT-3 [92], whereas other studies found TrkC in 48%, NT-3 in 9%,
and NT-4/5 in 19% of 29 [93], TrkC in 71% of 22 [116], and TrkC in 52% of 21 [95] MB cases. Importantly,
higher TrkC expression has been associated with a favorable outcome in MB. Thus, among 12 MB
samples, all of which expressed mRNA encoding NT-3 and TrkC, patients with tumors expressing
high levels of TrkC mRNA had significantly longer progression-free intervals and higher overall
survival [117]. High TrkC mRNA expression was linked to a higher 5-year cumulative survival
compared to patients with low expression (89% versus 46% respectively), with TrkC mRNA levels
being the most powerful predictor of clinical outcome [118]. A more favorable outcome was also
found among patients combining low MYC with high TrkC mRNA expression [119,120]. High TrkC
expression is found particularly in MB tumors in the SHH subgroup [121]. Given that TrkC is expressed
at higher levels in most mature cerebellar granule cells during CNS development, it has been proposed
that MB tumors with a more favorable outcome could be derived from more differentiated cells [122].
TrkC expression has been incorporated as a predictor of MB patient survival in models combining
clinical and biological markers [123], as well as in proposed risk stratification systems for MB [124].

When treated with NT-3, MB cells undergo apoptosis, and TrkC overexpression inhibits the growth
of MB xenografts in nude mice. In addition, TrkC levels in individual cells from MB biopsies correlated
with apoptosis [125], and TrkC mRNA levels were correlated to vincristine-induced apoptosis in
DAOY and primary culture MB cells [126]. However, experimentally-induced TrkC overexpression in
DAOY cells did not impact response to chemotherapy [121]. Tumors with reduced TrkC levels show
decreased apoptosis in the Ptc+/- mouse model of MB [127]. NT-3-induced TrkC activation reduces
MB cell invasion through a mechanism possibly involving heparanase inhibition [128]. Proteomic
experiments have identified many proteins related to regulating gene expression, protein synthesis,
apoptosis, proliferation, differentiation, migration, invasion, and cell metabolism as candidate effectors
of NT-3 activation of TrkC in DAOY cells [129,130]. A truncated isoform of TrkC (t-TrkC), which
is overexpressed and displays pro-proliferative actions in MB, and has its expression regulated by
microRNAs miR-9 and miR-125a, has been identified [131].

5.4. p75NTR

In an immunohistochemical analysis of 167 MB samples, p75NTR was detected in 17% of classic
MBs, in all of the desmoplastic (nodular) MBs, and 71% of those MBs with a significant desmoplastic
component [132]. Immunostaining for p75NTR was also positive in nine (12%) of 75 MB tumors, being
four classic, two desmoplastic, and three anaplastic MBs [133]. The ratio between TrkC and p75NTR
expression correlates with meningeal spread in childhood MB samples [128], and p75NTR may play
a role in a functional axis with heparanase in regulating MB invasion [134]. MB cells overexpressing
p75NTR show increased apoptosis [135]. Blocking p75(NTR) proteolytic processing with a γ-secretase
inhibitor impairs p75NTR-mediated migration, invasion, and spinal metastasis in experimental
MB [136]. The presence of p75NTR in MB cell subpopulations may be related to a higher capacity for
self-renewal [137], although other findings have suggested that p75NTR expression identifies lower
self-renewing progenitors or stem cells and expression of SHH pathway genes in MB [138]. In fact,
it was recently demonstrated, through immunohistochemical analysis and transcriptome data across
763 primary tumors, that p75NTR is a novel potential diagnostic and prognostic marker for SHH
MB. The ERK/MAPK pathway was upregulated in p75NTR-positive tumors, and inhibiting MAPK
signaling reduced stem/progenitor cell proliferation, survival, as well as migration [139]. A summary
of findings from studies investigating neurotrophin signaling in MB is presented in Table 1.



Cancers 2020, 12, 2542 9 of 22

Table 1. Summary of studies examining the involvement of neurotrophin receptors in MB.

Receptor TrkA TrkB TrkC Truncated
TrkC p75NTR

Type of
alteration

Expression and
activation by

NGF [100]

Expression
and

activation by
BDNF [93]

Inhibition
[110,111]

Overexpression
and NT-3
activation

[117]

Overexpression
[131]

Expression
[137]

Inhibition
[136]

Main
functional

effect

↑Cell death
(apoptosis

[101] or
micropinocytosis

[106])
↓Proliferation

and
↑differentiation

[94]

↓Cell
viability

[109]
BDNF+

HDACi ↓
Cell viability

[112]

↓Cell viability,
proliferation
and survival

[110]
↑Apoptosis

and
differentiation↓
Subcutaneous
tumor growth
in nude mice

[111]

↑Apoptosis
and

differentiation
[125]

↑Proliferation
Targeted by
miR-9 and

miR-125a to
inhibit cell

proliferation
[131]

Marker for
SHH

progenitor/stem
cells [137]

↓Migration,
proliferation
and spinal
metastasis

[136]

Clinical
evidence

Apoptotic
index and
neuronal

differentiation
[95]

Unknown Unknown

Higher overall
survival [118]

Favorable
outcome [120]

High
expression in

SHH MB [121]

Unknown

Potential
diagnostic and

prognostic
marker for
SHH group

[138,139]

Unknown

↑ increase; ↓ decrease.

5.5. Gene Expression Profile of Neurotrophins and Their Receptors in MB Primary Tumors

Analysis of data sets derived from 763 subgrouped primary MB samples from patients in previously
published patient cohorts [11,15] and normal human cerebellum samples [140] revealed an increased
expression of NTRK1 in WNT tumors compared to all other MB groups (Figure 3), particularly in the
WNT α subtype, common in young patients with monosomy of chromosome 6 and displaying good
prognosis (Figure 4). High levels of NTRK1 were also observed in the SHH β subtype (Figure 4A),
which characterizes the poorest prognosis within the SHH subgroup. The impact of NTRK1 expression
on survival of patients with SHH MBs was evaluated using the Kaplan–Meier method, dividing the
patients within groups displaying high and low expression of NTRK1. High expression of NTRK1 was
related to decreased overall survival (OS) probability in patients with SHH MB (Figure 5A).

High TrkC mRNA expression is frequent in SHH MB [121]. Our analysis showed NTRK3 to
be increased across all 4 subtypes of SHH tumors (Figure 4A). Evaluation of OS revealed that high
NTRK3 levels are associated with improved survival (Figure 3A) across all MB subgroups. In addition,
patients with Group 4 MB displaying high expression of both NTRK3 and NT-3 present a higher
OS (Figure 5A). Consistent with these data, the hazard ratio analysis indicated that NTRK3 can be
considered a protective marker and associated with good prognosis.

Expression of BDNF was overall lower in MB in comparison with normal cerebellum (Figure 3C).
Downregulation of BDNF may be a common feature not only in MB but among other brain tumor
types [141]. WNT tumors showed the lowest expression of BDNF among MB subgroups (Figure 3C),
whereas the highest expression of BDNF was observed in the SHHγ and SHHβ subtypes (Figure 4B).
Both SHH subtypes are more prevalent in infants, and SHHβ tumors are frequently metastatic and
have a worse overall survival compared with SHHγ [7,18]. Interestingly, SHHγ and SHHβ tumors
display genes involved in developmental pathways, receptor tyrosine kinase signaling, bioelectrical
activity and features of synaptic transmission [15].

Expression of BDNF across MB samples was investigated using the Kaplan–Meier method and
showed that high expression was related to decreased OS (Figure 5A). Moreover, hazard ratio analysis
suggested BDNF as a potential risk marker in MB (Figure 5B). We also detected decreased levels of
NTRK2 in subgroups SHH, Group 3, and Group 4 compared to normal cerebellum (Figure 3A), whereas
increased levels were observed in Group 4 (Figure 3B), particularly in the Group 4α subtype (Figure 4A).
Group 4 is the most prevalent subgroup comprising >40% of all MBs, and Group 4α are enriched for
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MYCN and CDK6 amplifications. Genes linked to cell migration and neuronal development are also
enriched in this subtype [18]. High levels of NTRK1 and NTRK2 correlated with decreased OS survival
in MB-SHH patients (Figure 5A,B). A correlation map of NTRK and neurotrophin expression across
MB samples is shown in Figure 5C, and Table 2 details statistical differences found among subgroups.
Taken together, these data support the view that expression of neurotrophins and their receptors in MB
has clinical implications, and these genes should be further investigated as potential biomarkers of
molecular subgroups and subtypes of MB.
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Figure 3. Transcript levels of neurotrophins and their receptors in tumors across the 4 MB molecular
variants compared to expression in normal human cerebellum. Expression levels were examined in
previously described transcriptome data sets comprising samples from Pfister (n = 223 MB samples; [22]),
Roth (n = 9 normal cerebellum samples; [11]), and Cavalli et al. [15] (n = 763 MB samples). Expression
of NTRKs (A,B) and neurotrophins (C,D) across all samples is presented in boxplot format as
log2-transformed signal intensity. All subgroups were compared using a Kruskal–Wallis test followed
by the False Discovery Rate method. Data are shown as median and whiskers: min to max. Statistical
differences in comparison to normal cerebellum are shown in panels A and C, and differences between
all subgroups in panels B and D; *** p ≤ 0.001 for significance.

NTRK1, NTRK2, NTRK3, NGF, BDNF, and NT-3 expression levels were examined in a previously
described transcriptome data sets comprising a total of 986 patient samples and 9 normal cerebellum
samples, from the Cavalli cohort [15] (n = 763 samples profiled on the Affymetrix Gene 1.1 ST array
as previously described and normalized using the RMA method, and subgrouped using similarity
network fusion, GSE85217), Pfister (n = 223 MB samples generated using Affymetrix Human Genome
U133 Plus 2.0 Array), and Roth (n = 9 normal cerebellum samples, generated using Affymetrix
Human Genome U133 Plus 2.0 Array, GSE3526). Expression of the 6 markers across all samples was
normalized within the ’R2: Genomics Analysis and Visualization Platform (http://r2.amc.nl)’ and
presented in box plot format as log2-transformed signal intensity. MB subtype classification was based
on Cavalli et al. [28]. The number of patients with each MB subtype was as follows: 49 WNT α, 21 WNT

http://r2.amc.nl
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β, 65 SHH α, 35 SHH β, 47 SHH γ, 76 SHH δ, 67 Group 3 α, 37 Group 3 β, 40 Group 3 γ, 98 Group 4 α,
109 Group 4 β, and 119 Group 4 γ. All subgroups and subtypes were compared using a Kruskal–Wallis
test for significance and False Discovery Rate method. Statistical analyses were performed with the
GraphPad prism 8.0 software; p ≤ 0.001 was considered statistically significant. Overall survival
(OS) was measured from the time of initial diagnosis to the date of death or the date of last follow
up, using combined OS and gene expression data from Cavalli et al. [15]. Expression of 6 markers
across all samples was normalized within the ‘R2: Genomics Analysis and Visualization Platform
(http://r2.amc.nl)’. Survival distribution was estimated according to the Kaplan–Meier method using
a median cut-off and log-rank statistics; p ≤ 0.05 was considered statistically significant. Statistical
analyses were performed with the GraphPad prism 8.0 software.
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Figure 4. Transcript levels of neurotrophins and their receptors in tumors across the 12 MB molecular
subtypes. Expression levels were examined in previously described transcriptome data set comprising
tumor samples from patients in the Cavalli cohort (n = 763 MB samples) [15]. Expression of NTRKs (A)
and neurotrophins (B) across all samples is presented in boxplot format as log2-transformed signal
intensity. Comparisons among subgroups were performed using a Kruskal–Wallis test followed by the
False Discovery Rate method. Data are shown as median and whiskers: min to max; the red dotted line
displays the median of expression of each gene according to MB subtype. Sample characteristics and
general methods for expression profiling analyses were as described in the legend for Figure 3.
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Figure 5. Prognostic value of neurotrophins and their receptors in MB patients. Kaplan–Meier overall
survival curve from MB patients according to the expression level neurotrophins and their receptors
(A). Kaplan–Meier plot of MB overall survival stratified by the median of expression for each marker
in the Cavalli cohort [15] are classified into low or high expression levels. The statistical significance
was determined using a log-rank test (p ≤ 0.05). Log of Hazard Ratios of NTRKs and neurotrophins
(B). Markers with a hazard ratio smaller than 1.00 represent “protective markers” and those with
hazard ratios larger than 1.00 represent “risk markers”. (C). Heatmap of the correlation matrix of the
NTRKs and neurotrophins in all molecular subgroups from the cohort. The correlation coefficient
is colour-coded from red (−1) representing a negative correlation to blue (1) representing a positive
correlation. Sample characteristics and general methods for expression profiling analyses were as
described in the legend for Figure 3.

Table 2. Differences between high and low gene expression levels of neurotrophins and their receptors
and their respective Hazard Ratio values across the 4 MB molecular variants in tumors from patients
from the Cavalli cohort [15].

Marker Subgroups p-Value
(High vs Low Gene Expression Levels) Hazard Ratio 95% CI

All 0.0727 0.7512 0.55 to 1.02

WNT 0.2113 0.1654 0.009 to 2.77

NTRK1 SHH 0.0195 2.142 1.13 to 4.05

Group3 0.0728 0.5038 0.28 to 0.89

Group4 0.8478 1.046 0.65 to 1.66

NTRK2

All 0.7805 1.045 0.76 to 1.42

WNT 0.0531 0.1022 0.01 to 1.03

SHH 0.0328 2.014 1.06 to 3.81

Group3 0.7083 0.987 0.55 to 1.75

Group4 0.254 1.321 0.80 to 2.16
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Table 2. Cont.

Marker Subgroups p-Value
(High vs Low Gene Expression Levels) Hazard Ratio 95% CI

All <0.0001 0.5242 0.38 to 0.71

WNT 0.0574 0.1067 0.01 to 1.07

NTRK3 SHH 0.4931 0.8012 0.42 to 1.51

Group3 0.1206 0.6388 0.35 to 1.13

Group4 0.0097 0.5352 0.33 to 0.85

NGF

All 0.0784 0.743 0.55 to 0.99

WNT 0.9105 0.8902 0.08 to 9.41

SHH 0.8937 1.044 0.55 to 1.97

Group3 0.5987 0.8576 0.48 to 1.52

Group4 0.2205 0.7505 0.47 to 1.19

All 0.0104 1.503 1.10 to 2.05

WNT 0.1552 0.08509 0.008 to 0.86

BDNF SHH 0.7331 0.8956 0.47 to 1.69

Group3 0.7175 1.111 0.62 to 1.97

Group4 0.1912 1.377 0.83 to 2.26

NT-3

All 0.5943 1.088 0.79 to 1.48

WNT 0.9406 0.9141 0.08 to 9.74

SHH 0.6472 0.8559 0.44 to 1.66

Group3 0.1234 1.571 0.88 to 2.78

Group4 0.0135 0.5557 0.34 to 0.88

Bold face representing variables with p-values ≤ 0.05. CI, confidence interval.

6. Conclusions

Oncogenic gene fusions involving the NTRK family have been recently identified across
several tumor types and emerged as therapeutic targets. For example, among brain tumors,
glioblastoma, pilocytic astrocytoma, and pontine glioma can show gene fusions involving NTRK2
or NTRK3 [63,87,142,143]. A number of small-molecule acting as pan-Trk inhibitors are currently
being evaluated in clinical trials [144–146]. A recent phase 1 and 2 clinical study examining the
effects of the pan-Trk inhibitor larotrectinib in children and adults with various types of peripheral
solid cancers harboring NTRK gene fusions found pronounced and durable responses regardless
of patient age or tumor type [147]. A case of a potent response to larotrectinib in a 3-year old
female patient with a Trk fusion-driven pediatric high-grade glioma has been recently reported [148].
Although to date, oncogenic genetic alterations in the NTRK family have not been identified in MB,
the findings reviewed here show accumulating evidence indicating that Trk expression can influence
MB progression and should be further explored as a potential biomarker and therapeutic target.
As reviewed above, the role of Trks in MB illustrates how childhood brain cancers can hijack molecular
pathways involved in regulating neuronal survival, death, and differentiation during embryonic
development. The differential roles of different subtypes of Trk receptors in MB, where stimulation
of TrkA and TrkC can promote cell death whereas TrkB can likely display either pro- or antitumoral
actions, makes it harder to predict what the clinical effects of pan-Trk inhibitors would be in MB
patients. Further understanding of how neurotrophin signaling regulates MB tumor progression
should increase our understanding of MB disease pathology and development of potential targeted
therapeutic approaches.
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The novel transcript analyses included in this review provide new insights into the role of
neurotrophins and their receptors in MB. It is particularly worth highlighting that higher BDNF levels
when all subgroups were analyzed together as well as higher NTRK1 and NTRK2 in SHH tumors were
associated with reduced OS. These findings support the evidence from cultured cells and a mouse
model indicating that TrkB inhibition can reduce MB cell viability and tumor growth.
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