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Clear Cell Renal Carcinoma (ccRCC) accounts for nearly 80% of renal

carcinoma cases, and immunotherapy plays an important role in ccRCC

therapy. However, the responses to immunotherapy and overall survival for

ccRCC patients are still hard to predict. Here, we constructed an immune-

related predictive signature using 19 genes based on TCGA datasets. We also

analyzed its relationships between disease prognosis, infiltrating immune cells,

immune subtypes, mutation load, immune dysfunction, immune escape, etc.

We found that our signature can distinguish immune characteristics and predict

immunotherapeutic response for ccRCC patients with better prognostic

prediction value than other immune scores. The expression levels of

prognostic genes were determined by RT-qPCR assay. This signature may

help to predict overall survival and guide the treatment for patients with ccRCC.

KEYWORDS

clear cell renal carcinoma, immune microenvironment, immune-related genes,
prognostic signature, immunotherapy
Introduction

Clear cell renal carcinoma (ccRCC) accounts for nearly 80% of renal carcinoma

cases, and 76,080 new ccRCC cases and 13,000 ccRCC-related deaths were reported in

the United States in 2020 (1, 2). Surgery is the most traditional treatment for ccRCC.

However, with its innate high invasiveness and strong resistance to traditional therapy,
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such as radiotherapy and chemotherapy, advanced ccRCC

is associated with high morbidity and mortality rates (3).

Therefore, searching for new therapeutic targets and

strategies and improving the prognosis of ccRCC are of

high importance.

The prognosis of malignant tumours is intimately connected

with pathological immune responses, which include antigen

presentation, phagocytosis, and lymphocyte activation.

Immune checkpoint inhibitors (ICIs), a type of cancer

immunotherapy, are a revolutionary breakthrough in cancer

treatment and have experienced significant advances in the last

decade. ICIs targeting CTLA4 or PD-1 can effectively release T

cells from suppression and restore antitumour immunity in the

tumour microenvironment (TME) and have been applied in

clinical practice (4). Although ICIs improve the prognosis for

some patients, the overall clinical effects, including low immune-

related adverse events and low response rates, are still

unsatisfactory (5). However, the understanding of the TME of

ccRCC is still limited, and we urgently require more robust

biomarkers that can predict the prognosis and immune status

and guide further treatment.

In this paper, we developed a prognostic signature for

ccRCC to predict the prognosis after immunotherapy and

traditional therapy. This paper mainly focused on immune-

related genes in ccRCC transcriptomic data and constructed

an immune-related gene prognostic signature with key immune-

related genes, which were also related to the prognosis of ccRCC

patients, identified in these data. The molecular and immune

profiles of the signature were also characterized, and its

prognostic value for immunotherapy patients was assessed and

compared with tumour immune dysfunction and exclusion

(TIDE) and the tumour inflammation signature (TIS). Our

study indicated that our signature is a robust biomarker for

predicting the prognosis of patients who receive conventional

and immunotherapy.
Materials and methods

Acquisition the raw data

We retrieved the RNA sequencing (RNA-seq) profiles,

clinical data, and gene mutation information from 72 normal

and 539 clear cell renal carcinoma tissue in TCGA-KIRC

datasets in The Cancer Genome Atlas (TCGA) (https://tcga-

data.nci.nih.gov/tcga/). The RNA-seq and survival time for all

samples in GSE29609 and GSE22541 were downloaded from the

Gene Expression Omnibus (GEO) database (https://www.ncbi.

nlm.nih.gov/geo/), and platform annotation file GPL1708 and

GPL570 were also retrieved to annotate the probes. We obtained

immune-related genes as comprehensive as possible in two
Frontiers in Immunology 02
online databases, the ImmPort (https://www.immport.org/

shared/home) and InnateDB (https://www.innatedb.com/).
Screening the differentially expressed
immune-related genes

The RNA-seq profiles of all the 611 samples were combined to

construct a mRNA matrix with Ensemble gene ID used for

annotation. Then, Ensemble gene IDs were mapped to their

corresponding gene symbols using human GTF file obtained from

Ensembl (http://asia.ensembl.org). To identify the differentially

expressed genes, the RNA-seq profiles obtained from TCGA were

analyzed using limma R package with |log2FC| > 1.0, P < 0.05, and

FDR < 0.05 as selection criteria, and the results were visualized using

pheatmap R package. The DEIRGs were the intersection of these

genes and immune-related genes obtained from ImmPort and Innate.

The DEIGRs were then performed Gene Ontology (GO) and Kyoto

Encyclopedia of Genes (KEGG) enrichment analysis using

clusterProfiler, enrichplot, GOplot package of R to examine the

enrichment of terms.

We performed Weighted correlation network analysis

(WGCNA) to identify hub genes. The Pearson correlation

coefficient between each pair of genes was calculated and used

to construct a similarity matrix, which was transformed into

an adjacency matrix with a signed network and a soft

threshold of b = 3. Then, a topological matrix was

constructed, and the topological overlap measure (TOM)

was used to describe correlations between genes. We

clustered these genes using 1-TOM, which represented the

distance of genes, and identified seven modules using the

dynamic pruning tree. The genes in the brown module,

which were most significant between tumour and normal

tissue, were considered hub genes and used to construct the

coexpression network with a weight between two genes greater

than 0.2. Gene expression was retrieved from the TCGA and

GEO databases, and then, batch correction was completed.

The best cut-off value for overall survival (OS) was calculated

using “surv_cutpoint” function of the R package “survminer”,

and the survival- and immune-related hub genes were used for

the following study. The mutation of each survival-related

gene in each sample was also analysed and visualized by the

maftools package of R.
Construction and validation of
the signature

A total of 19 genes that significantly affect OS were identified

and used to construct the ccRCC signature using multivariate

Cox regression analysis. We calculated the risk score for each
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sample in the TCGA and GEO databases by multiplying the

expression level of genes by their weight in the multivariate Cox

model and adding them together. The Kaplan–Meier (K-M)

survival curves of the TCGA and GEO cohorts were used to

evaluate the prognostic power for constructing the signature.

Univariate and multivariate Cox regression analyses were also

performed to assess its independent prognostic value.
Comprehensive analysis of molecular
and immune characteristics and ICI
therapy in different subgroups

The gene set enrichment analysis (GSEA) method, based on

the HALLMARK and KEGG gene sets, was used with the

clusterProfiler package of R to identify the signalling pathways

in which DEIRGs were involved (P<0.05 and FDR<0.25). Then,

the cBioPortal database (cBioPortal for Cancer Genomics) was

used to download genetic alteration information and the quality

and quantity of genetic mutations in two subgroups, which were

divided by riskScore using the Maftools R package. Then, the

expression matrix of 539 ccRCC samples was uploaded to the

CIBERSORT database and iterated 1,000 times to determine the

proportions of 22 types of immune cells. The proportions of

immune cells and clinicopathological factors of patients were

compared between the two subgroups, and a landscape map

illustrated the results. To evaluate the immune and molecular

functions of subgroups, ssGSEA of gene signatures was

performed, and their scores were compared between

subgroups. The prognostic value of our signature for patients

receiving immunotherapy was also assessed by survival analysis.

Additionally, the time-dependent ROC curve was obtained to

calculate the AUC, and the prognostic value of our signature,

TIDE, and TIS were also compared with the timeROC package

of R.
Cell culture and transfection

CcRCC cell-lines ACHN, 769-P, 786-O and normal cell line

HK-2 were purchased from the Chinese Academy of Sciences

Committee on Type Culture Collection Cell Bank (Shanghai,

China). ACHN cells were cultured with Minimum Essential

Medium (Biological Industries, CT, USA) supplemented with

10% FBS (Gibco, USA), and other cells were cultured in RPMI-

1640 medium (Biological Industries, CT, USA) supplemented

with 10% FBS (Gibco, USA). siRNA BMP1, siRNA VIM and

siRNA negative control were purchased from Thermo Scientific

(CA, USA), and transfected with Lipofectamine 2000 reagent

(Invitrogen, CA, USA). All the siRNA primer sequences were

listed in Table S1.
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RNA extraction and real-time
quantitative polymerase chain reaction

Total RNAs of ccRCC cell-Line ACHN, 769-P, 786-O and

normal cell line HK-2 were extracted using TRIzol (Novabio,

China). RNA and PrimeScript RT kit (Novabio, China) were

used to synthesize complementary DNA (cDNA). According to

the manufacture’s protocol, real-time quantitative polymerase

chain reaction (RT-qPCR) was performed with gene-specific

primers to determine the relative expression of genes using

SYBR green and was analyzed using ABI 7500 Real-Time PCR

system (Applied Biosystem). All the genes’ primers were

purchased from EnzyArtisan (Shanghai, China), and the

primer sequences were listed in Table S1. All experiments

were performed for three independent measures.
Western blotting

The experimental proteins were extracted using the whole

cell lysates (Beyotime, Shanghai, China) and their concentration

were measured by BCATM Protein Assay Kit (Thermo

Scientific, MA, USA). After dividing the proteins with SDS-

PAGE, proteins were transferred to polyvinylidene difluoride

(PVDF) membrane (Millipore, MA, USA), and blocked in 5%

skim milk in 0.1% TBST at 4°C overnight. The proteins were

probed with BMP1, VIM and GAPDH, after which they were

incubated with secondary antibody. Proteins were visualized

with an ECL chemiluminescence kit (Boster, Wuhan, China).
CCK8 assay

To measure the cell proliferative capacity, 769-P cells were

seeded in to 96-well plates for CCK-8 assay. After 24 and 48

hours, the cells in each well were incubated with 10 µl CCK8

reagent (Beyotime) for 1 hour, after which the absorbance at a

wavelength of 450 nm was measured. Three independent

experiments were performed for replication.
Transwell invasion assay

To measure the cell invasive capacity, we conducted

Transwell invasion assay. 769-P cells were suspended in 200 ml
serum-free RPMI 1640 medium with 1% bovine serum albumin

and were added to the upper compartments of a 24-well Matrigel

invasion chamber containing polycarbonate filters with 8-mm

pores and coated with Matrigel (BD Biosciences, CA, USA). The

lower chamber was added with 1640 medium with 10% FBS.

After incubation for 24 hours, the invaded cells were fixed with

4% methanol, then stained with 0.1% crystal violet and counted.
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Statistical analysis

We compared continuous variables between two groups

using independent t test, categorical data using c2 test, and the

TIDE score between groups using Wilcoxon test. Besides, we

performed univariate survival analysis using K-M survival

analysis with log-rank test, and multivariate survival analysis

using the Cox regression model.A two-side P < 0.05 was

considered significant throughout this paper.
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Results

Immune-relate hub genes

A total of 6,812 genes were identified by the differential

expression analysis for 539 tumors and 72 normal samples,

including 1,909 genes downregulated and 4,903 upregulated

(Figure 1A). The DEIRGs were the intersection of 6,812 genes

and immune-related genes, including 166 genes downregulated

and 780 genes upregulated (Figure 1B). The top GO term was
A B

C D

FIGURE 1

(A) Heatmap showing 1,909 genes downregulated and 4,903 upregulated in tumor samples by analyzing TCGA cohort. (B) Heatmap showing
166 immune-related genes downregulated and 780 immune-related genes upregulated in tumor samples. (C, D). The top10 GO and KEGG
terms by analyzing 946 DEIRGs.
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adaptive immune response based on somatic recombination of

immune receptors built from immunoglobulin superfamily

domains, and the top KEGG term was cytokine-cytokine

receptor interaction. The top 10 GO and KEGG terms were

shown in Figures 1C, D.

WGCNA was performed to identify the significant immune-

related genes. The logarithm log(k) of the node in the

coexpression network with connectivity K was negatively

correlated with the logarithm log(P(k)) of the probability of

the node. As shown in Figure 2A, the correlation coefficient was

greater than 0.9, and the optimal soft-thresholding power was 3.

All these DEIRGs were partitioned into seven modules based on

soft-thresholding power and average linkage hierarchical

clustering (Figures 2B, C). The Pierson correlation coefficient

between sample features and modules was calculated in each

module, and the brown module was the most highly correlated

with ccRCC. A total of 137 genes in the brown module were used

for further analysis. After merging these 137 genes with their

clinical data in TCGA, 54 genes closely related to ccRCC patient

OS were identified using K-M analysis (Figure S1). The

frequency of mutations of each gene was obtained, and the

rates of PDGFRA, PLAU, BMP1, FREM1, SEMA6D, KITLG,

TEK, PRKCQ, and TRIM55 mutation were greater than 1%

(Figure S2).
Survival outcomes in different groups

We carried out multivariate Cox regression analysis to identify

immune-related genes in order to predict prognosis for all ccRCC

samples by the formula IRGP = TMSB4Y*(-0.36) + PLAU*(-0.217) +

GNAI1*(0.399) + VIM*(0.299) + CDH1*(0.258) + VAV3*(-0.351) +

SEMA3G*(-0.356) + SEMA6D*(-0.431) + BMP1*(0.627) + CHGA*

(0.945) + IL11*(0.683) + TSLP*(0.787) + TACR1*(0.579) + TEK*

(-0.327) + THRB*(-0.621) + PRKX*(-0.486) + TNIP1*(-0.606) +

GATA4*(-1.142) + SREBF2*(0.705) (each gene name in this formula

represents its expression level).

The results of univariate Cox regression analysis for the

clinicopathological characteristics of 539 ccRCC samples in the

TCGA cohort showed that age, grade, stage, and risk score were

significantly related to the prognosis of ccRCC (Figure 3A).

Multivariate Cox regression analysis showed the same

conclusion as that of univariate Cox regression, which

indicated that our signature could independently predict the

prognosis of ccRCC patients (Figure 3B).

K-M analysis was carried out again to compare the OS of

the two subgroups, which were divided using the median risk

score as the cut-off value. The OS in the low-risk group was

markedly longer than that in the high-risk group (P < 0.001,

Figure 3C). We then used GSE29609 (n = 39) and GSE22541

(n = 24) to validate our signature. The patients’ OS for

GSE29609 between the two groups was not significantly
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different (P = 0.327). For the GSE22541, whose ccRCC

samples were all metastasis, the patients in high-risk group

had worse prognosis (P = 0.003).
Molecular characteristics of
different subgroups

We carried out GSEA to determine the enriched gene sets.

IRDEGs in the high-risk group primarily enriched the

interaction between small molecules and receptors

(Figure 4A), and IRDEGs in the low-risk group primarily

enriched the interaction between drug metabolism and acid

metabolism-related pathways (Figure 4B).

Then, gene mutations in the two subgroups were analysed to

investigate their further biological function in terms of

immunological nature. The mutation frequencies of the top 20

most mutated genes are shown in Figures 4C, D. Generally, the

mutation frequency in the high-risk group was much higher

than that in the low-risk group. The mutation rates of TTN,

SETD2, BAP1, MTOR, DNAH9, MUC16, HMCN1, SPEN, and

PTEN were obviously higher in the high-risk group.

Additionally, the mutation rates of LRP2, ANK3, CSMD3,

FBN2, ARID1A, and MACF1 were slightly higher in the low-

risk group than in the high-risk group. However, 40% of samples

in the low-risk group had PBRM1 mutations compared to 30%

in the high-risk group. In the two subgroups, missense

mutations were the most common mutation type. The rates of

mutation of VHL, PBRM1, and TTN were higher than 10% in

both subgroups. To examine whether the risk scores and TMB

were correlated, we performed regression analysis. The results

showed that the risk score was significantly correlated with TMB

(r = 0.18, p = 0.001), and the risk scores in high-risk group was

higher than that in low-risk group (P = 0.011) (Figure S3).
Immune characteristics of
different subgroups

All samples were divided into two groups by riskScores, and

we used the Wilcoxon test to explore the difference in the

distribution of immune cells between the two subgroups. The

results indicated that resting memory CD4 T cells, monocytes,

M1 macrophages, M2 macrophages, resting dendritic cells, and

resting mast cells were more related to low risk scores, while

plasma cells, activated memory CD4 T cells, regulatory T helper

cells, gamma delta T cells, and M0 macrophages were more

related to high risk scores (Figure 5A). Figure 5B shows that

there were significant differences between the two subgroups in

terms of grade, stage, and TNM stage. The distribution of cells in

the TME of 530 patients in the TCGA cohort is shown

in Figure 5C.
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A

B C

FIGURE 2

(A) Determination of the soft-thresholding power in the WGCNA analysis. The correlation coefficient was greater than 0.9, and the optimal soft-
thresholding power was 3. (B) WGCNA of immune-related differentially expressed genes with a soft threshold b = 3. (C) Gene modules related
to ccRCC obtained by WGCNA.
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Then, some gene signatures were applied to identify the

immune and molecular functions between the two subgroups.

Patients with higher risk scores received higher scores of

immune functions, including APC costimulation, DCs, CD8+

T cells, checkpoints, cytolytic activity, inflammation promotion,

macrophages, CCR, parainflammation, T cell coinhibition and

stimulation, T helper cells, Tfhs, Th1/2 cells, regulatory T cells

(Tregs), and tumour infiltrating lymphocytes (TILs) (Figure S4).

K-M analysis indicated that immune functions were

correlated with prognosis. We found that patients with high

scores of resting DCs, naïve B cells, M2 macrophages, resting

masting cells, monocytes, and resting CD4 memory cells had a

worse outcome, while patients with higher scores of M0

macrophages, masting cells, plasma cells, activated memory

CD4 T cells, follicular helper T cells, and Tregs had a better

outcome (Figure S5). Thus, the robust predictive value of our

signature might rely on better immune control.
Relationship between subgroups and
other immune clinical subtypes

To determine the immunophenotype, the cophenetic

correlation coefficients were calculated to identify the best k

value, and k = 6 was selected after comprehensive consideration

(named C1, C2, C3, C4, C5, and C6). We found that most of the
Frontiers in Immunology 07
patients represented by the 510 TCGA samples were in the C3

subtype, and most of these patients belonged to the low-risk

group. However, patients in other subtypes were more likely to

be in the high-risk group (P < 0.001) (Figure 6A). For patients

with different ccRCC stages, the tumour stage increased

significantly with increasing risk scores (P < 0.001) (Figure 6B).
The cenefit of ICI therapy in different
subgroups

TIDE modeled tumour immune escape in the context of

different cytotoxic T lymphocyte levels, and higher TIDE scores

indicated a higher likelihood of immune evasion. As shown in

Figure 7A, the patients with higher risk scores had higher TIDE

scores than those with lower risk scores, whichmeant that patients

with lower risk scores were more sensitive to ICI therapy than

patients with higher risk scores. In other words, patients with

lower TIDE scores probably had a better prognosis than those in

the high-risk group who had high TIDE scores. In addition, we

found that patients with higher risk scores were more likely to be

affected by T cell dysfunction, while there was no significant

difference in microsatellite instability (MSI) score or T cell

exclusion between the two subgroups. Moreover, the AUCs of

our signature at 1, 2, and 3 years were 0.826, 0.768, and 0.795,

respectively, which meant that the signature had great predictive
A B

C D

FIGURE 3

Prognostic analysis of the signature. (A) Univariate Cox regression analysis for the clinicopathological characteristics of 539 ccRCC samples in
the TCGA cohort. (B) Multivariate Cox regression analysis for the clinicopathological characteristics of 539 ccRCC samples in the TCGA cohort.
(C) K-M analysis of the signature in TCGA cohort. (D) K-M analysis of the signature in GSE29609 and GSE22541.
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performance (Figure 7B). Compared with TIDE and TIS, the 3-

year AUCs of our signature displayed a much higher performance

(TIDE, AUC = 0.537; TIS, AUC = 0.489) (Figure 7C).
Prognostic genes verified by RT-qPCR

To validate the different expression of our prognostic genes

in this signature, RT-qPCR was performed to analyze the mRNA

expression in ccRCC cell lines and normal cell line. BMP1, IL-11,

TSLP, and VIM were significantly upregulated in certain or all

ccRCC cell lines, TNIP1 was downregulated in ACHN cells, and
Frontiers in Immunology 08
PLAU had different expression level in different cell lines

(Figure 8A). The RT-qPCR results for other genes with

significant different express levels among ACHN, 786-O, and

769-P, or their express levels were too low in certain cell lines

were shown in Figure S6.
BMP1 and VIM genes affected the
proliferation and invasion of 769-P cells

For verification, we explored the functions of two genes,

BMP1 and VIM, significantly highly expressed in all three
A B

C D

FIGURE 4

Molecular characteristics of subgroups. (A) Gene sets enriched in high-risk group (P < 0.05). (B) Gene sets enriched in low-risk group (P < 0.05).
(C, D). Mutated genes in the mutated ccRCC samples of two subgroups. Top 20 mutated genes (rows) are ordered by mutation rate; samples
(columns) are arranged to emphasize mutual exclusivity among mutations.
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A

B

C

FIGURE 5

The landscape of the TME in ccRCC and the characteristics of different subgroups. (A) The distribution of TME cells in different subgroups. The
thick lines are the median value, the bottom and top of the boxes are the 25th and 75th percentiles respectively. Significant statistical difference
between subgroups were explores with the Wilcoxon test (ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001). (B) The clinicopathologic
characteristics of different subgroups. (C) The distribution of cells in the TME of 530 patients.
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ccRCC cells, which had been verified in qRT-PCR. After siRNA

transfection, the western blot analysis showed siRNA effectively

represses the target genes in 769-P cells (Figure 8B). The CCK-8

assay showed the proliferation ability of 769-P cells with BMP1

or VIM knockdown was significantly reduced compared with

cells in negative control group (Figure 8C). The Transwell assay

showed that the invasion ability of 769-P cells with BMP1 and

VIM knockdown was significantly suppressed (Figure 8D). All

the results demonstrated that the candidate genes BMP1 and

VIM were risk factors for ccRCC, which was in consistence with

our signature.
Discussion

Immunotherapies in the form of ICIs that target coinhibitory

immune checkpoints to regulate the immune response have been

widely used and have brought ccRCC therapy to a new era.
Frontiers in Immunology 10
However, in many cases, patients fail to respond or suffer from

secondary drug resistance after a short effective course and cancer

progression (6). There is still no well-accepted signature to predict

patients’ response to immunotherapy for ccRCC. Thus, it is of

interest to identify a robust biomarker for ccRCC patients to predict

immunotherapy sensitivity.

The TME of tumours exhibits different responses to ICIs due

to polygenic effects, and WGCNA is an effective approach to

identify key immune-related genes. Combined with clinical data

from TCGA, 19 key genes that affect OS were identified and used

to construct the risk model. Our risk model was an independent

prognostic immune-related indictor for ccRCC, with higher risk

scores representing worse prognosis in TCGA. However, the

result of K-M analysis of GSE29609 was not statistically

significant (Figure 3D). This result most likely occurred to do

the small sample size, which may result in bias and statistical

error. For metastatic ccRCC patients in the GSE22541, which

only contained metastatic samples, patients in high-risk group
A

B

FIGURE 6

Distribution of immune subtypes and the clinicopathologic characteristics in different subgroups. (A) Heatmap and table showing the
distribution of tumour immune subtypes (C1, C2, C3, C4, C5, C6) between subgroups. (B) Heatmap and table showing the distribution of
clinicopathologic characteristics between subgroups.
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had significant shorter overall survival. It may suggest that our

signature is more applicable for metastatic ccRCC patients.

However, we should note that the sample size was also too

small, the results may not accurate enough. To demonstrate the

accuracy of the risk model, prospective studies with large

samples should be performed in the future.

This risk model included nineteen genes. Among these

genes, several familiar genes play a critical role in the

regulation of cancer. Bone morphogenetic protein 1 (BMP1), a

secreted metalloprotease, initially cleaves and releases the TGF-b
complex from the matrix. BMP1 is involved in the TFG-b and

BMP signalling pathways, and it has been reported that BMP1

expression upregulation is involved in gastric, lung, and colon

cancer progression (7–9). A recent study pointed out that high

expression of BMP1 might cause poor outcomes, and

knockdown of BMP1 could suppress ccRCC progression (10).

Fragments of chromogranin A (CHGA), an acidic glycoprotein

frequently used as a prognostic factor for many neuroendocrine

tumours, can affect critical components of the TME, such as

fibroblasts and endothelial cells, as well as tumour progression

and immunotherapy in patients (11, 12). Interleukin 11 (IL-11)

is commonly thought to exert pro-oncogenic effects through the

JAK-STAT3 signalling pathway, whose overactivation could

suppress the immune response by the differentiation of
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macrophages, DCs, and polymorphonuclear leukocytes (13,

14). Thymic Stromal Lymphopoietin (TSLP) regulates barrier

immunity in tumors by activating T cells and DCs to promote

TME favorable. A study indicated that CAFs in GATA3+ breast

tumours could produce TSLP+ DCs, which exist in tumour-

draining lymph nodes but not in nondraining lymph nodes. In

addition, TSLP plays a role in the mechanisms underlying the

TME of cervical cancer, gastric, and ovarian cancer (15–18).

Substantial evidence indicates that the mutation of tumour

necrosis factor a-induced protein 3-interacting protein 1

(TNIP1) may increase the risk of SLE and LN by regulating

the canonical NF-kB pathway (19). Additionally, miR-210-3p

persistently activates the NF-kB pathway by targeting its

negative regulator TNIP1 in prostate cancer and therefore

promotes EMT, invasion, migration, and bone metastasis (20).

The expression of GATA Binding Protein 4 (GATA4) showed

the most significant negative correlation with risk scores in our

signature. GATA4 probably suppresses lung cancer through the

TGF-b2/Wnt7B signalling pathway, and GATA deficiency

blunted the therapeutic effect of MEK1/2 inhibition in a

mouse model (21). Sterol regulatory element binding

transcription factor 2 (SREBF2), an important regulator of

cholesterol biosynthesis, has been proven to be significantly

differentially expressed in the prostate cancer DU145 cell line,
A B

C

FIGURE 7

The prognostic value of the signature for patients with ccRCC. (A) TIDE, MSI, and T-cell dysfunction and exclusion score in different subgroups.
The scores between the two subgroups were compared by the Wilcoxon test (ns, not significant; ***P < 0.001). (B) ROC analysis of our
signature on OS at 1-, 2-, and 3-years follow-up. (C) ROC analysis of our signature, TIS, and TIDE on overall survival.
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and its expression, and thus its pro-oncogenic role, might be

regulated by miR-28-5p (22).

Further study focusing on the immunological nature of our

signature was necessary; therefore, we explored gene mutations

in different subgroups. VHL and PBRM1 had similar mutation

frequencies and the two highest mutation frequencies in patients

with ccRCC, and this result was concordant with previous

reports that PBRM1 inactivation generally coincided with

mutation of VHL because they are found close together on

chromosome arm 3p. Focal or whole-arm deletions generally
Frontiers in Immunology 12
affect VHL and PBRM1 simultaneously. Interestingly,

conventional wisdom suggests that PBRM1 is a tumour

suppressor gene, and its silencing would cause proliferation,

migration, and colony formation in ccRCC. PBRM1 mutation

affects p53-dependent chromatin regulation and triggers

immune escape mediated by p-53 in ccRCC tumours (23).

Additionally, the inactivation of PBRM1 was associated with a

less immunogenic TME, resulting in decreased immune

infiltration and poor response to ICIs, especially in ccRCC

(24–26). Interestingly, the mutations of PBRM1 in our
A

B

D

C

FIGURE 8

(A) RT-qPCR confirmed the difference of the prognostic gene expression in normal renal and renal cell carcinomas. (B) Western blotting
showed that the BMP1 and VIM genes were effectively suppressed after siRNA transfection. (C) CCK-8 assay suggested that the proliferation
ability of 769-P cells was reduced with BMP1 and VIM knockdown. (D) Transwell assay showed that the invasion ability of 769-P cells was
reduced with BMP1 and VIM knockdown. *P < 0.05, **P < 0.01, ***P < 0.001.
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signature were in contrast to the traditional view that mutations

were more common in patients with lower risk scores (40% vs.

30%). A recent study reported that the role of PBRM1 in ccRCC

was context-dependent. The mutation of PBRM1 in ccRCC 786-

O cells, in which HIF1a was not fully expressed, suppressed

survival and proliferation by decreasing the expression of a key

pro-oncogenic factor, HIF2a, which results in the accumulation

of hypoxia-inducible factors that drive dysregulated

angiogenesis (27, 28). It is worth noting that the subgroups in

our signature were divided by the OS of patients in TCGA

regardless of the difference in cell lines, and the signature was

constructed from an overall perspective. In the future, it will be

valuable to reveal different mechanisms by which mutations in

PBRM1 exert diverse effects on cancer progression and the TME

among ccRCC cell lines. For TTN, which exhibited the third

highest mutation rate in both subgroups and whose mutation

was more common in patients with high risk scores, it has been

reported that its mutation contributed to TMB and affected the

cell cycle, metabolism, DNA repair, immune cell infiltration,

immune checkpoint expression, and thus the prognosis in some

solid tumours (29). Additionally, sufficient studies have

suggested that SETD2, BAP1, mTOR, MUC16, HMCN1,

KDM5C, ARID1A, and PTEN are intimately tied to prognosis

and immune response in cancers (30–35).

The relationship between risk scores calculated using the

signature and TMB, which is a potential biomarker that predicts

the treatment effect of ICIs in many cancers, including ccRCC,

was determined (36). Here, the risk scores showed a strong

correlation with TMB, which indicated that our signature could

be used to predict immunotherapy prognosis to some extent.

The landscape of the TME revealed that the two subgroups were

composed of different immune cells, which could help to identify

or improve therapeutic approaches for the enhancement of

immune responses. Activated memory CD4 T cells, Tfhs,

Tregs and M0 cells were mainly enriched in the high-risk

group, while M1 cells, M2 cells and DCs were more enriched

in the low-risk group. Tregs maintain tumour immune exclusion

through various mechanisms, including affecting immune and

nonimmune cells inside or outside of the tumours. The

immunosuppressive activity of Tregs is considered a main

barrier to effective antitumour immunity in ccRCC (37). M1

macrophages play an important role in producing inflammatory

cytokines and evoking the immune response (38). Our immune

landscape might provide a theoretical basis for further study of

ccRCC treatments.

Six stable tumour immune subtypes, which were identified

by prognostic and genetic and immune modulatory

alterations, were identified in 2018 and have been

reproduced more than one thousand times to date. This

typing method has been widely accepted and helps us to

understand the tumour immune environment (39).

According to the immune subtype, more patients with low
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risk scores were in the C3 subtype, whereas the other immune

subgroups were correlated with high risk scores. C3 is

characterized by elevated Th17 and Th1 gene expression,

low to moderate tumour cell proliferation and lower levels

of aneuploidy and somatic copy number alterations. Of note,

C3 is enriched in PBRM1 mutations, which is consistent with

our study, and PBRM1 mutations generally respond well to

immunotherapy. Additionally, C3 always disrupts the TGF-b
pathway, which is related to more abundant M1 macrophages

and lower proportions of helper T cells and M0 macrophages.

C1 and C2 conferred poor prognosis despite a large number of

infiltrating immune cells. Enhancement of T cell activity,

nevertheless, could improve the prognosis of these patients.

The C4 and C6 subtypes exhibit lower lymphocyte infiltration

and higher M2 macrophage infiltration, which is consistent

with the immunosuppressive TME and therefore correlates

with poor prognosis (39). Our study indicated that patients in

the low-risk group probably exhibit active immunity with

better outcomes. In addition, the validation of the signature

with clinical relevance implied that higher risk scores were

correlated with higher tumour stage, which was in accordance

with our results.

Moreover, we also found that our signature could reflect the

diverse immune benefits of ICI therapy as determined with

TIDE, which has been widely used to predict the outcome of

patients with cancer treated with ICIs more accurately than

other biomarkers, such as TMB and PD-L1 (40). The results

suggested that patients with higher risk scores had more

cytotoxic T lymphocyte infiltration and higher TIDE and T

cell dysfunction scores than those with lower risk scores, which

indicates poor outcomes of ICI treatment in patients with high

risk scores due to immune evasion. Another biomarker that

predicts response to immunotherapy is TIS, which is an 18-gene

signature measuring a pre-existing but suppressed immune

response in tumours. The expression pattern of these genes

has been proven to be conserved across tumour types (41). The

expression pattern of these genes has been proven to be

conserved across tumour types. Both TIDE and TIS, however,

only consider to T cells, and it is difficult to reflect the overall

status of the TME and survival time. In this study, the predictive

value of our signature was reliable and much better than that of

TIDE and TIS.
Conclusion

We constructed a very promising and comprehensive

immune-related gene signature to predict the prognosis

of ccRCC. This signature may help to distinguish

immune characteristics and predict diseases outcomes.

Meanwhile, it might play an important role in prediction of

immunotherapeutic response.
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