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ABSTRACT
Transfer RNA-derived fragments (tRFs) are a new class of small non-coding RNAs whose biological roles
in cancers are not well understood. Emerging evidence suggests that tRFs are involved in gene
regulation at multiple levels. In this study, we constructed an integrative database, OncotRF (http://
bioinformatics.zju.edu.cn/OncotRF), for in silico exploration of tRF functions, and identification of diag-
nostic and prognostic biomarkers in cancers. The database contains an analysis pipeline for tRF
identification and characterization, analysis results of 11,211 small RNA sequencing samples and 8,776
RNA sequencing samples, and clinicopathologic annotation data from The Cancer Genome Atlas (TCGA).
The results include: tRF identification and quantification across 33 cancers, abnormally expressed tRFs
and genes, tRF-gene correlations, tRF-gene networks, survival analyses, and tRF-related functional
enrichment analyses. Users are also able to identify differentially expressed tRFs, predict their functions,
and assess the relevance of the tRF expression levels to the clinical outcome according to user-defined
groups. Additionally, an online Kaplan-Meier plotter is available in OncotRF for plotting survival curves
according to user-defined groups. OncotRF will be a valuable online database and functional annotation
tool for researchers studying the roles, functions, and mechanisms of tRFs in human cancers.
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Introduction

High-throughput deep sequencing technologies have led to
the discovery of a wide spectrum of small non-coding RNA
species. Although some of these have been well-characterized,
such as microRNAs (miRNAs) and Piwi-interacting RNAs,
most are not fully understood [1]. Initially, transfer RNA-
derived fragments (tRFs) were considered to be tRNA degra-
dation products. Upon further analysis, these sequence reads
were recognized as being abundant, with recurring sequences,
suggesting the existence of a novel class of small RNAs.
Generally, at least six types of tRFs have been defined based
on their cleavage sites in tRNAs: 5ʹ-and 3ʹ-halves (>30 nt), 5ʹ-
and 3ʹ-tRFs (15–30 nt), i-tRFs and 3ʹU-tRFs (also named as
tsRNAs) [2–4]. Several recent studies have shown that tRFs
regulate gene expression at multiple levels [2,3]. Emerging
evidence has demonstrated that tRFs have biological functions
through the regulation of various cellular processes at both
post-transcriptional and translational levels [5]. They can
regulate RNA silencing [6], long terminal repeat

retrotransposons [7], ribosome biogenesis [8], viral infections
[9,10], and translation [11,12]. Additionally, some parental
sperm tRFs contribute to an offspring’s metabolism [13,14].

tRFs are abundant and conserved across species [15]. They
are derived from mature or precursor tRNAs by specific
cleavage. Recently, tRFs were found to play important roles
in cancer development and progression through the regula-
tion of cell proliferation, invasion, metastasis, and gene
expression [16]. Aberrantly expressed tRFs have the potential
to serve as diagnostic biomarkers and therapeutic targets in
cancer treatments [15,16]. For example, tRF-1001 was the first
reported tRF to modulate cell proliferation in prostate cancer
[3]. CU1276 was shown to function similar to a miRNA and
suppress proliferation in B cell lymphoma [17]. SHOT-
RNAAsp-GUC, SHOT-RNAHis-GUG, and SHOT-
RNALys-CUU are sex hormone-dependent tRNA halves that
promote cell proliferation in breast and prostate cancers
[18]. 5ʹ-halves from tRNAGlu, tRNAAsp, tRNAGly, and
tRNATyr can bind to oncogenic protein YBX1 competitively
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with pro-oncogenic transcripts, resulting in inhibition of
tumour metastasis in breast cancer cells [19]. However, the
mechanism of action of tRFs and their role in cancer devel-
opment and progression remains largely unexplored.

Currently, only two databases have been constructed for
tRFs in humans [20]. tRFdb is a database that contains the
sequences and read counts of tRFs from eight species [21].
MINTbase is a repository with tRF information that arises
from nuclear and mitochondrial tRNAs [22]. There is another
web server named tRF2 Cancer, which can be used for iden-
tifying tRFs from small RNA sequencing datasets and it con-
tains tRF expression information from various cancer types
[23]. However, these databases only contain tRF expression
across cancer types or focus on the identification of tRFs from
small RNA-sequencing data. There is currently no database
which includes information regarding dysregulated tRFs, the
potential functions of these tRFs in cancers, the gene network
they may participate in, their clinical and functional relevance
to cancers, and whether they are validated by other low
throughput methods.

To fill this gap, we constructed a comprehensive tRF data-
base named OncotRF (Fig. 1). With this database, we aim to
provide the most comprehensive tRF resource in human
cancers and include large-scale integration of small RNA
sequencing, RNA sequencing, clinicopathologic datasets
from The Cancer Genome Atlas (TCGA), chemical modifica-
tion sites on their parental tRNAs, and validated literature
manually curated from PubMed. OncotRF is a valuable online
resource for identifying diagnostic and prognostic biomar-
kers, developing cancer therapeutic targets, and studying can-
cer pathogenesis. It is of great interest to cancer and RNA
biology fields.

Results

OncotRF contains 11,211 small RNA sequencing samples,
8776 RNA sequencing samples, and clinicopathologic anno-
tation data from TCGA. It adopts a highly conserved

filtering strategy in which only the tRFs with 10th quantile
reads per million (RPM) >1 were retained in the reported
candidate list, which was widely used in miRNA studies and
other non-coding RNA studies [24,25]. As a result, 6966
abundant tRFs derived nuclear and mitochondrial tRNAs
were detected in OncotRF, including 992 5ʹ-tRFs, 799 3ʹ-
tRFs, 271 3ʹU-tRFs and 4933 i-tRFs (Table 1). Based on
these datasets, OncotRF provides five main functions to
retrieve various data records, including ‘Search’, ‘Cancer’,
‘Custom’, ‘KM-plotter’, and ‘JBrowse’. Various graphical
visualization pages are also provided to display the tRF
analysis results. From the website, users can retrieve the
following data records regarding tRFs: (i) detailed informa-
tion of each tRF and its expression among different cancer
types; (ii) validation information, if available; (iii) differen-
tial expression analysis of tRFs and mRNAs between tumour
and normal tissues; (iv) genes associated with tRFs; (v)
regulatory network; (vi) functional analysis; (vii) survival
analysis; (viii) tRF modifications; and (ix) Kaplan-Meier
survival curves. We also allow researchers to identify differ-
entially expressed tRFs and provide an online Kaplan-Meier
plotter according to two user-defined groups.

tRF data search

OncotRF provides an easily searchable interface and can be
queried through the tRF ID, tRF type, sequence, source
tRNA name, anti-codon, genomic locus, and aliases from
the literature. The results returned from the search are
organized in an HTML table, listing the detailed informa-
tion of tRFs including tRF ID, tRF type, source tRNAs,
genome loci (hg19), tRF length, sequence, and links to the
three additional pages (‘Expression’, ‘Alignment &
Modification’, and ‘Validation’ pages). To demonstrate the
search function, we took 3ʹ-M-tRNA-Gly-GCC-2-6_L22
(also known as CU1276 and tRF-3018) as an example in
Fig. 2 because it was a previously reported 3ʹ-tRF that
functions similar to a miRNA and suppresses proliferation

Figure 1. Schematic representation of data processing and flowchart of OncotRF construction.
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in B cell lymphoma [17]. When ‘3ʹ-M-tRNA-Gly-GCC
-2-6_L22’ is searched, a detailed page will be displayed as
Fig. 2A. If a tRF sequence can be also mapped to non-tRNA
regions, its associated chromosomes and regions will also be
provided. For example, ‘5ʹ-tRNA-Ala-AGC-6-1_L24’ can be
derived from tRNA ‘tRNA-Ala-AGC-6-1’ (tRF:
chr6:28779897-28779920(-)), but can also be mapped to
a non-tRNA region on chromosome 10 (chr10:125664644-
125664667(-)). Furthermore, these tRF IDs will be high-
lighted in bold red, and a note will be shown at the top of
the search table, warning the possibility of false positiveness.

The ‘Expression’ page includes a boxplot of the tRF expres-
sion for each cancer and an expression table of the searched
tRF in cancers. As shown in Fig. 2B, the expression table
displayed the median expression of 3ʹ-M-tRNA-Gly-GCC
-2-6_L22 in tumour samples (‘Median Expression of Tumor
(RPM)’) and normal samples (‘Median Expression of Normal
(RPM)’), the number of tumour samples (‘Tumor Samples
(RPM>1)’) and normal samples (‘Normal Samples
(RPM>1)’) with RPM>1, total number of tumour samples

(‘Total Tumor Samples’), total number of normal samples
(‘Total Normal Samples’) and total number of samples
(‘Total Samples’) (Fig. 2B).

The ‘Alignment & Modification’ page provides
a visualization of the tRF on the secondary structure of the
source tRNA, including possible modifications (Fig. 2C). As
shown in Fig. 2C, 3ʹ-M-tRNA-Gly-GCC-2-6_L22 can be
derived from the tRNA ‘tRNA-Gly-GCC-2-1’ on which ten
nucleotides are potentially modified based on the information
from MODOMICS database. Users can click the link of the
nucleotide in blue for the detailed information about its
modification. Such modifications may play a role in the tRF
function and biogenesis in cancers [26].

The ‘Validation’ page will also be provided if any reports
regarding the searched tRF are published in PubMed. For
example, a recent study showed that ‘3ʹ-M-tRNA-Gly-GCC
-2-6_L22’, alias ‘CU1276’ and ‘tRF-3018’, is down-regulated in
B cell lymphoma and possesses a miRNA-like function [17].
As shown in Fig. 2D, the information regarding this research
article will be displayed by clicking the ‘Validation’ link in Fig.

Table 1. Summary of TCGA samples used in the study and 5ʹ-tRFs, 3ʹ-tRFs,3ʹU-tRFs and i-tRFs identified in the study.

Cancer Types

Sample size Number of tRFs* tRF Average Expression (RPM)

miR-seq RNA-seq

5ʹ-tRFs 3ʹ-tRFs 3ʹU-tRFs i-tRFs

5ʹ-tRFs 3ʹ-tRFs 3ʹU-tRFs i-tRFs

Normal Tumour Normal Tumour Normal Tumour Normal Tumour Normal Tumour Normal Tumour

ACC 0 80 0 0 501 235 102 1591 NA 11688 NA 4603 NA 1332 NA 18880
BLCA 19 418 17 301 461 237 76 1030 522 6833 497 2121 104 345 955 6017
BRCA 104 1102 113 1064 577 316 91 1363 3414 11402 2092 2750 316 504 4305 9828
CESC 3 308 3 261 557 281 97 1442 917 11639 606 2607 113 423 1327 11076
CHOL 8 36 0 0 377 185 71 843 12519 4324 2572 1206 500 342 6092 4159
CNTL 112 0 0 0 551 280 63 694 6265 NA 2610 NA 292 NA 2774 NA
COAD 1 446 41 453 628 393 119 1736 5832 7763 3899 4130 976 715 2206 11420
DLBC 0 47 0 0 580 357 112 1651 NA 12541 NA 2929 NA 606 NA 9320
ESCA 13 187 0 0 464 191 76 1121 2208 9521 1261 1539 322 327 1814 7075
GBM 0 5 0 166 338 250 92 1144 3589 NA 2721 NA 553 NA 5930 NA
HNSC 44 525 42 482 626 403 104 1732 6674 13675 8379 4117 757 460 11119 12588
KICH 25 65 0 0 432 280 79 1153 4896 9312 1567 4476 412 1130 5560 7468
KIRC 71 544 72 526 519 319 84 1199 8251 8798 2851 2913 641 429 9783 6928
KIRP 34 292 32 222 418 257 76 882 6766 5099 2423 2913 624 875 9019 6454
LAML 0 191 0 173 755 577 220 3298 NA 14229 NA 12815 NA 2670 NA 27673
LGG 0 530 0 453 460 269 92 1124 NA 9055 NA 2002 NA 320 NA 5917
LIHC 50 375 48 297 482 289 86 1166 14143 8717 5934 3649 759 666 15178 8268
LUAD 46 521 55 488 469 330 69 1017 1916 5742 2466 2970 268 401 2338 4942
LUSC 45 478 45 428 614 362 94 1611 3391 10699 2019 3246 216 442 3453 10265
MESO 0 87 0 0 439 174 76 916 NA 12810 NA 907 NA 274 NA 4642
OV 0 499 0 265 375 402 99 1082 NA 10152 NA 8407 NA 493 NA 7507
PAAD 4 179 3 142 288 143 40 466 2822 2456 1087 687 271 173 1827 1732
PCPG 3 184 0 0 248 139 61 680 13334 3859 3484 955 553 284 18051 3699
PRAD 52 499 52 379 366 212 49 988 2041 6482 1675 1985 96 175 3081 6984
READ 0 160 9 154 664 395 116 1863 NA 8979 NA 3621 NA 732 NA 12740
SARC 0 263 0 0 308 151 55 654 NA 4043 NA 678 NA 158 NA 2649
SKCM 2 450 1 433 749 701 138 2547 5171 22597 4188 13301 534 1009 6392 20000
STAD 45 446 35 415 467 241 70 997 2545 4935 1115 1526 234 315 1877 5089
TGCT 0 156 0 0 539 247 114 1373 NA 18264 NA 2040 NA 599 NA 9003
THCA 79 540 58 508 547 338 96 1435 17057 10478 6791 4977 594 1032 11702 12670
THYM 2 123 0 0 389 192 78 912 5375 7991 1642 1262 288 392 3795 5316
UCEC 33 545 23 517 605 330 89 1632 4508 18719 2236 3115 336 576 5058 13612
UCS 0 55 0 0 559 172 81 1342 NA 24084 NA 1194 NA 355 NA 9374
UVM 0 80 0 0 511 478 109 1391 NA 8595 NA 7941 NA 1024 NA 11367
Total 795 10416 649 8127 992 799 271 4933 　 　 　 　 　 　 　 　

*number of tRFs identified in the study after the filtering. NA, not available.
ACC, Adrenocortical carcinoma; BLCA, Bladder Urothelial Carcinoma; BRCA, Breast Invasive Carcinoma; CESC, Cervical Squamous Cell Carcinoma; CHOL,
Cholangiocarcinoma; CNTL, Controls; COAD, Colon Adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; ESCA, Oesophageal carcinoma;
GBM, Glioblastoma multiforme; HNSC, Head and Neck Squamous Cell Carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney Renal Clear Cell Carcinoma; KIRP, Kidney
Renal Papillary Cell Carcinoma; LAML, Acute Myeloid Leukaemia; LGG, Lower Grade Glioma; LIHC, Liver Hepatocellular Carcinoma; LUAD, Lung Adenocarcinoma;
LUSC, Lung Squamous Cell Carcinoma; MESO, Mesothelioma; OV, Ovarian Serous Cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG,
Pheochromocytoma and Paraganglioma; READ, Rectum adenocarcinoma; SARC, Sarcoma; SKCM, Skin Cutaneous Melanoma; STAD, Stomach Adenocarcinoma;
TGCT, Testicular Germ Cell Tumours; THCA, Thyroid Carcinoma; THYM, Thymoma; UCEC, Uterine Corpus Endometrial Carcinoma; UCS, Uterine Carcinosarcoma; UVM,
Uveal Melanoma.
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2A. Five terms can be viewed in this page, including the tRF
name in the literature (alias), cancer, expression pattern,
PubMed ID, and description of the functions. Users can easily
access the literature through the link of the PubMed ID.

We also provide a keyword search in ‘Search’ page, such as
tissue ‘bladder’, cancer type ‘bladder cancer’ or gene symbol
‘CALD1’. For tissue or cancer type, OncotRF will return the
links to i) tRF expression in corresponding cancers, similar to
the table shown in Fig. 2B; ii) differential expressed tRFs,
mRNAs, and functional analysis; and iii) survival analysis
results (similar to Fig. 3). For example, if users search key-
words ‘bladder cancer’, a page shown in Fig. S1 will be dis-
played. For gene symbol ‘CALD1’, OncotRF will return a table
of tRFs which are significantly related to the searched gene in
each cancer (Fig. S2). Detailed usage can be found in the
‘Help’ web page of OncotRF (http://bioinformatics.zju.edu.
cn/OncotRF/Pages/Help.html).

Analysis of cancer-related tRFs

A key feature of OncotRF is the comprehensive display of
cancer-related tRFs. Users can browse this information by
clicking the tree navigation bar on the left (e.g. ‘Differential
Expression Analysis’ – ‘BLCA’ – ‘3ʹU-tRF’). The differentially
expressed tRFs and mRNAs between tumour and normal
tissues were calculated using Wilcoxon rank-sum test with

default parameters [27] and filtered by the absolute value of
Log2FoldChange > 1 and Pvalue < 0.05. The result tables
display the mean expression of the tRF or mRNA in tumour
and normal tissues, Log2FoldChange, Pvalue, and Qvalue
when comparing tumour and normal tissues (Fig. 3A, B).
The tables can be reordered by clicking the ‘up and down
arrows’ next to the column names. Users can also filter the
content by keyword search in the top, right corner of each
table. For example, users can enter a tRF ID such as the first
tRF in the result table ‘3ʹU-mito-tRNA-Val-TAC_L20’ in the
‘Search’ box of the ‘Differential Expressed tRFs in BLCA’ table
(Fig. 3A), and then only the information including ‘3ʹU-mito-
tRNA-Val-TAC_L20’ will be displayed in the table. It is useful
for users to quickly identify a particular tRF when there are
a very large number of records in the table.

To predict the potential function of tRFs, we calculated the
association between tRFs and mRNAs, and took 3ʹU-tRFs and
BLCA as an example (Fig. 3C). This prediction method is
commonly based on ‘guilt-by-association’ from co-expression
patterns [28], namely tRFs share similar functions with their
co-expressed mRNAs. In our database, tRF and mRNA are
treated as a strong relationship, if their absolute correlation
coefficients exceed 0.4; whereas, they are treated as a weak
relationship, if their absolute correlation coefficients are smal-
ler than 0.4. Users can change this default threshold according
to their research design and aim. Strong tRF-mRNA

Figure 2. Search functions of OncotRF. (A) Search result of 3ʹ-M-tRNA-Gly-GCC-2-6_L22. (B) 3ʹ-M-tRNA-Gly-GCC-2-6_L22 expression in cancers. (C) Validation result
of 3ʹ-M-tRNA-Gly-GCC-2-6_L22. (D) 3ʹ-M-tRNA-Gly-GCC-2-6_L22 alignment with tRNA-Gly-GCC-2-1, its position on the secondary structure of tRNA-Gly-GCC-2-1, and
possible modifications of tRNA-Gly-GCC-2-1 from MODIFICS database.
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relationships, whose absolute correlation coefficients exceed
0.4, are organized as a network using Cytoscape [29] (Fig.
3D). Hub genes or tRFs (e.g., 3ʹU-mito-tRNA-Val-TAC_L22)
that have a high degree of intra-module connectivity can be
identified in the network. If there are too many tRF-mRNA
pairs whose absolute correlation coefficients exceed 0.4, it will
be difficult for the user’s web browser to display the correla-
tion table (Fig. 3C) and network (Fig. 3D). Under this cir-
cumstance, OncotRF will automatically increase the
correlation threshold and display the correlation table (Fig.
3C) and network (Fig. 3D) with their absolute correlation
coefficients exceeding 0.5 or greater. Users can download
the large correlation table and network when there are too
many tRF-mRNA pairs with smaller correlation thresholds,
and view them using Cytoscape [29] or text editor locally. The
filtered mRNAs interacting with tRFs were further function-
ally analysed using KOBAS 3.0 to predict the cancer tRF-
mediated pathways (Fig. 3E), incorporating four pathway
databases (KEGG PATHWAY, BioCyc, Reactome and
PANTHER) and two human disease databases (OMIM and
KEGG DISEASE). Significantly enriched Gene Ontology (GO)
terms can also be identified and displayed (p-value < 0.05).
Each table displays the pathway/disease terms (Term),

databases names (Database), pathway ID (ID), the number
of genes that are co-expressed with tRFs in the pathway or
disease category (Input Number), total number of genes
involved in a particular pathway or disease category in
human genome (Background Number), Pvalue and Qvalue.
A p-value or q-value < 0.05 is statistically significant. Users
can view the detailed information by clicking the link of the
pathway term. For example, by clicking the first term
‘Vascular smooth muscle contraction’ in Fig. 3E, a pathway
graph will be shown in Fig. S3. The box with red background
indicates genes which are significantly associated with those
abnormally expressed tRFs.

The survival analyses of tRFs in a specific cancer type
are also displayed (Fig. 3F). Three types of survival out-
comes were included in the results including overall survi-
val (OS), disease-free survival (DFS), and relapse-free
survival (RFS). OS is the length of time that the patients
survive from either the date of diagnosis or the start of
treatment. DFS is the length of time following treatment
during which no disease is found. RFS is the length of time
between when a primary treatment for a cancer ends and
the patient survives without any signs or symptoms of that
cancer. As shown in Fig. 3F, each table displays six

Figure 3. Cancer functions. (A) Differentially expressed 3ʹU-tRFs in BLCA. (B) Differentially expressed mRNAs in BLCA. (C) Correlation analysis of tRFs and mRNAs in
BLCA. tRF-mRNA pairs with their absolute correlation coefficients > 0.4 (i.e., |r|>0.4) were presented. (D) Network analysis of differentially expressed tRFs and mRNAs
in BLCA. tRF-mRNA pairs with |r|>0.4 in Figure 3 C were subjected to network analysis. (E) Functional enrichment analysis of genes that are co-expressed with 3ʹ-
U-tRFs (|r|>0.4). (F) Survival analysis of differentially expressed 3ʹU-tRFs in BLCA.
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columns: tRF IDs (tRF_ID), the p-value (Logtest pvalue)
and q-value (Logtest qvalue) of log-rank test, hazard ratio
(HR), lower 95% confidence interval (Lower), and upper
95% confidence interval (Upper).

The survival analysis of a specific tRF in all cancers and
Kaplan-Meier plots for each cancer type can also be obtained
by clicking the lower left navigation bar ‘Survival Analysis’
(e.g. ‘Survival Analysis’ – ‘tRF’ – ‘3ʹU-tRF’ – ‘3ʹU-M-mito-
tRNA-Tyr-GTA_L20’). In default survival analysis, the
patients are divided into two groups with higher or lower
expression according to the median of tRF expression. For
each tRF, we took ‘3ʹU-M-mito-tRNA-Tyr-GTA_L20’ (the
first tRF of 3ʹU-tRF in the navigation bar) as an example. By
clicking ‘Survival Analysis’ – ‘tRF’ – ‘3ʹU-tRF’ – ‘3ʹU-M-mito-
tRNA-Tyr-GTA_L20’, three types of survival analysis results
of this tRF in each cancer, if available, will be displayed in
tables, and Kaplan-Meier curves will be also displayed (Fig.

S4). For each cancer type, we took ‘ACC’ as an example. By
clicking ‘Survival Analysis’ – ‘Cancer Type’ – ‘ACC’, four tRF
types will be displayed. Then clicking ‘3ʹU-tRF’, the survival
analysis results of all the 3ʹU-tRFs which can be detected in
ACC will be displayed in tables (Fig. S5). The only difference
of this table from Fig. 3F is that the table displays all the
3ʹU-tRFs detected in ACC rather than only the tRFs that
differentially expressed between tumour and normal tissues
(Fig. S5).

tRFs custom analysis

Another key function of the database is its ability to analyse
differentially expressed tRFs between two user-defined
groups. Users can filter the datasets by clinical criteria such
as cancer subtype, tissue type, gender, age at diagnosis, vital
status, days to death, race, or ethnicity (Fig. 4A). For example,

Figure 4. Custom functions. (A) Clinical criteria and other parameters for custom functions. (B) tRF differences between two customized groups as defined in (A).
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if we want to compare the difference in tRF expression in
tumours between men and women, we can choose the para-
meters as shown in Fig. 4A. By clicking ‘GO’ in Fig. 4A, the
results of differentially expressed tRFs between the two user-
defined groups will be displayed in Fig. 4B when the analysis
is completed.

KM-plotter

The discovery of prognostic biomarkers is an important task
in cancer research. This section can estimate the prognostic
value of any selected tRFs in a large cohort of clinical patients.
In order to analyse the association between a queried tRF and
survival, the samples are separated into two groups according
to the mean, median, or other quartile expressions of the
selected tRF. Then, the two groups are compared using
a Kaplan-Meier plot. Before running the analysis, the patients
can be filtered using age, AJCC stage, gender, race, or ethni-
city (Fig. 5A). Additionally, three types of survival (i.e., OS,
DFS, and RFS) can be chosen. The patients are divided into
two groups with higher or lower expression according to the
split cut-off (such as mean, median, etc). The log-rank test is
performed to evaluate statistical differences in survival
between the two groups. Taking ‘3ʹ-M-tRNA-Gly-GCC
-2-6_L22’ as an example, a web page as shown in Fig. 5B
will be displayed, including the parameters users chose and
a survival curve in ‘png’ format. A ‘pdf’ format of high

resolution survival curve can be downloaded by click ‘PDF’
link.

JBrowse

The JBrowse genome browser [30], a javascript-based genome
browser, is a useful tool for inspecting sequences and loca-
tions in a visual way. We configured JBrowse in OncotRF to
display tRF, tRNA, and mRNA sequences in the genome
(hg19) (Fig. S6). Users can view the position of these tRFs,
tRNA or genes on the genome as well as the upstream and
downstream of tRFs, tRNA or genes. A pop-up will show
details of the tRF, tRNA or gene name in the genome when
users click on the tRF, tRNA or gene name. For example, by
clicking the tRF ‘i-tRNA-Thr-CGT-chr1-118_L21_pos112’ in
red box, a pop-up of the tRF will be shown in the middle of
the screen (Fig. S6).

Case analysis

Bladder urothelial carcinoma (BLCA) is a major cause of
morbidity and mortality worldwide, causing an estimated
150,000 deaths per year [31]. To identify 3ʹU-tRFs which are
potentially involved in BLCA, we first examined OncotRF
using the ‘Cancer’ function. After clicking ‘Differential
Expression Analysis’, ‘BLCA’, and ‘3ʹU-tRF’ on the menu,
a detailed webpage was shown on the right screen.
Abnormally expressed tRFs and genes were organized into

Figure 5. Kaplan-Meier plotter. (A) Choosing plot parameters for the overall survival analysis of 3ʹ-M-tRNA-Gly-GCC-2-6_L22 in ACC. (B) Survival curves of 3ʹ-
M-tRNA-Gly-GCC-2-6_L22 in ACC.
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tables (Fig. 3A, B). Based on these differential expression
tables, the correlations between 3ʹU-tRFs and mRNAs were
estimated in Fig. 3C and subsequently visualized in Fig. 3D.
Next, OncotRF performed a functional enrichment analysis of
genes that are co-expressed with 3ʹU-tRFs in the correlation
table. As the functional results showed in Fig. 3E, the related
tRFs and genes were involved in multiple KEGG pathways
such as ‘Vascular smooth muscle contraction’, ‘Dilated cardi-
omyopathy’, ‘Hypertrophic cardiomyopathy (HCM)’, and
‘Focal adhesion’. We took ‘Vascular smooth muscle contrac-
tion’ as an example, which was the most significant KEGG
pathway enriched in 3ʹU-tRF-related genes. Then, we focused
on dysregulated genes that potentially participate in this path-
way. By clicking the link of the term ‘Vascular smooth muscle
contraction’, a pathway graph will be shown as in Fig. S3. The
box with red background indicates genes which are signifi-
cantly correlated with these aberrantly expressed 3ʹU-tRFs.
Based on prior knowledge, CALD1 encodes a calmodulin-
and actin-binding protein that plays an essential role in the
regulation of smooth muscle and nonmuscle contraction [32].
By clicking the red box ‘CaD’, a web page including the gene
name of ‘CaD’ will be shown in Fig. 7SA. In order to filter the
related 3ʹU-tRFs and the information of ‘CALD1’, copy the
gene name ‘CALD1’ and enter it to the ‘Search box’ on the top
right corner of ‘Correlation Analysis in BLCA’ table and
‘Differential Expressed mRNAs in BLCA’. As shown in Fig.
S7B-C, six 3ʹU-tRFs were highly correlated with ‘CALD1’, and
the expression of CALD1 was significantly differentially
expressed between BLCA tumour tissues and normal tissues
(Log2FoldChange = −1.629, P = 3.009 × 10−5). Among them,
‘3ʹU-mito-tRNA-Val-TAC_L22’ was the most negatively cor-
related with ‘CALD1’. It was also significantly upregulated in
BLCA tumours (Log2FoldChange = 2.396, P = 1.995 × 10−9)
(Fig. S7D). Taken together, these results generated a testing
hypothesis for users: ‘3ʹU-mito-tRNA-Val-TAC_L22’ is
a potential oncogenic regulator in BLCA through its negative
regulation of ‘CALD1’ in the ‘Vascular smooth muscle con-
traction’ pathway.

Discussion

OncotRF is a comprehensive catalogue for dysregulated tRFs
across human cancers. It provides several prominent features
that were previously either naïvely obtained or unattainable
using existing databases [21,22].

First, OncotRF provides an integrated view of dysregulated
tRFs among cancers. Users can retrieve the median expression
levels in tumour and normal tissue groups, fold changes,
p-values, and false discovery rates for differential expression
analysis of dysregulated tRFs in each cancer type. Our custom
analysis can also detect differential expression of tRFs between
two customized groups. Users can specify different clinical
parameters such as sex through the ‘Custom’ page, allowing to
identify sex-dependent tRFs in cancer. These dysregulated
tRFs are relatively stable due to their own chemical modifica-
tion, and thereby can serve as promising biomarkers for
cancer diagnosis and potential new targets for cancer treat-
ment. This resource also serves as a starting point for users to
study tRF gene regulation and functional roles in cancers.

Second, OncotRF provides comprehensive functional
annotations of dysregulated tRFs among cancers. Studies of
tRF functions have been problematic due to a lack of ‘a priori’
knowledge. Therefore, we integrated TCGA RNA-seq datasets
with these dysregulated tRFs to allow functional correlation
analyses between tRFs and mRNAs. Enrichment analyses of
mRNAs co-expressed with dysregulated tRFs can then be
performed using multiple annotation categories including
GO terms, bio-pathways, and disease associations.
Additionally, the regulatory network of tRFs and genes can
be visualized online. Based on the functional enrichment
results, the potential functions of tRFs can be predicted
from their co-expression patterns, namely tRFs share similar
functions with their co-expressed mRNAs. This resource pro-
vides new insights into dysregulated tRFs and helps users to
design their experiments and generate testable hypotheses to
study the molecular mechanisms of tRFs in cancers.

Third, OncotRF provides the clinical relevance of these
dysregulated tRFs to cancers. Comprehensive clinicopatholo-
gic annotation data from TCGA were integrated into the
database, along with the dysregulated tRFs for performing
survival analysis. An online Kaplan-Meier plotter was also
provided as an individual module. The user-friendly interface
and additional parameters, such as adjusting for clinical vari-
ables like tumour stage and size, were included in the design
for plotting survival curves with hazard ratios and log-rank
p-values. This function can evaluate the prognostic value of
any selected tRFs in a large cohort of clinical patients. This
resource helps users to identify promising prognostic biomar-
kers and new relevant targets for cancer therapy in their
clinical investigations.

It is also worth noting that the number of tRFs detected in
our OncotRF database is smaller than previously reported in
the TCGA datasets [21–23]. This is largely attributed to the
different filtering approaches utilized to address low-
expression tRFs. For instance, those tRFs that exceeded
a normalized abundance of 1 RPM in one sample of each
cancer type were retained in MINTbase [22]. However, we
adopted a highly conserved strategy in which only the tRFs
with the 10th quantile RPM > 1 were included in our reported
candidate list, which has been used widely in miRNA and
other non-coding RNA studies [24,25]. The robust tRF list
obtained led to unbiased findings in our downstream analysis.

Several study caveats should be acknowledged. First, since
most small RNA sequencing datasets contain transcripts that
are smaller than 30 nts, tRNA halves were not examined. RNA
sequencing from total RNA with rRNA depletion or polyA (-)
samples may complement this resource. Second, chemical
modifications may prematurely terminate cDNA synthesis
during library preparation for sequencing. This may affect
the detection and quantification of tRFs. Some newly devel-
oped methods may overcome this obstacle such as AlkB-
facilitated RNA methylation sequencing (ARM-seq) [33].
Therefore, we will collect more ARM-seq-like datasets and
improve our pipeline for a full characterization of cancer-
related tRFs. Third, tRNA annotation in the human genome
is incomplete. It is unclear whether currently unannotated
genomic regions similar to the tRNA sequences are true
tRNAs, truncated tRNAs, or unrelated to tRNAs entirely.
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Mapping to the whole genome would result in ambiguity
about the origin of many reads [34,35]. In our study, approxi-
mately 63% (4410/6966) of the detected tRFs were mapped to
the tRNA space as well as to other non-tRNA locations of the
genome with unknown transcript statuses. If these sequences
were discarded, we would exclude a large number of tRFs that
are potentially involved in cancers, thereby running into the
risk of greatly inflating the false negative rates. On the con-
trary, if these reads are retained, a number of multi-mapped
reads would be treated as tRFs, thereby running the risk of
inflating the false positive rates. The resulting false positive
rate is relatively low because the current tRNA annotation of
the human genome is incomplete and only the transcribed
genome (e.g., small RNAs) is made for sequencing libraries.
However, further investigations are required to develop prob-
abilistic models to assign these tRF multireads to their most
likely locations using prior information hidden in the genome
(e.g., transcript status inferred from the NIH Roadmap
Epigenomics Program[36]). We look forward to further
updating our database once such new tools are available.

Conclusions

In summary, OncotRF is a valuable online resource for iden-
tifying diagnostic and prognostic biomarkers, developing can-
cer therapeutic targets, and studying cancer pathogenesis. It is
of great interest to cancer and gene regulation fields. It pro-
vides several prominent features over currently existing data-
bases including information about dysregulated tRFs and their
clinical and functional relevance to cancers. We will continue
to expand the number of small RNA-seq datasets in our
database allowing for more comprehensive functional analyses
of cancer-related tRFs. Furthermore, we will continue to
increase the database functionality and optimize the organiza-
tion and layout of our site to improve the user experience and
usability.

Methods

Data collection

The data processing and flow chart for constructing the
database are shown in Fig. 1. The BAM files of 11,211
small RNA sequencing samples were downloaded from the
Genomic Data Commons (https://portal.gdc.cancer.gov/).
The mRNA expression profiles of 8776 RNA sequencing
samples, and the corresponding patient clinical information,
including survival time, age, tumour stage, and tumour
grade were downloaded from the International Cancer
Genome Consortium (ICGC) Data Portal (http://dcc.icgc.
org) (Table 1). Human genome (hg19) gene annotations
and corresponding sequences of 610 nuclear tRNA genes in
humans were downloaded from GtRNAdb (http://gtrnadb.
ucsc.edu) [37]. The sequences and positions of 22 mitochon-
drial tRNA genes were downloaded from NCBI (https://
www.ncbi.nlm.nih.gov/nuccore/251831106) and named as
‘mito-tRNA-amino acid abbreviations-anticodon’. For exam-
ple, ‘mito-tRNA-Val-TAC’ indicates mitochondrially
encoded tRNA valine (Val) with anticodon ‘TAC’. tRNA

modification information was retrieved from MODOMICS
database (http://modomics.genesilico.pl/) [38]. MODOMICS
manually curated tRNAs with experimentally validated mod-
ified nucleosides.

tRF identification and characterization

A bank of non-redundant tRFs of 15 to 30 nts in length was
created. ‘CCA’ was added to the 3ʹ end of mature tRNA
sequences, resulting in the CCA-tRNA annotation. All
sequences with 15 to 30 nts were enumerated from the 5ʹ
or 3ʹ end of these CCA-tRNA sequences. Identical sequences
were further merged, and 4,894 and 5,260 unique sequences
from the 5ʹ and 3ʹ end (5ʹ-tRFs and 3ʹ-tRFs respectively) of
CCA-tRNAs were retained. 271,287 unique i-tRFs sequences
were extracted from the body of CCA-tRNAs. Additionally,
a 50-nt downstream sequence at the 3ʹ end of each non-CCA
tRNA was obtained using bedtools, resulting in the pre-
tRNA annotation (https://bedtools.readthedocs.io/en/latest/
). In the same way as above, all 15 to 30-nt sequences from
the 3ʹ end (3ʹ U tRFs) of pre-tRNAs were selected and then
identical sequences were collapsed, yielding 9,103 unique
sequences. In total, we built a tRF annotation database with
290,457 candidate tRF sequences with unique identifiers.

As shown in Fig. S8, each class of tRFs in our tRF annota-
tion database starts with a unique class identifier (i.e., 3ʹ
U-tRFs start with 3ʹU-, 5ʹ-tRFs start with 5ʹ-, 3ʹ-tRFs start
with 3ʹ- and i-tRFs start with i-). The tRFs that are derived
from more than one tRNA gene are assigned an identifier ‘-M’
next to the class identifier. The tRNA gene identifier is
retrieved from GtRNAdb tRNA id (e.g. tRNA-Ala-AGC-3-1)
or mitochondrial tRNA id (e.g. mito-tRNA-Val-TAC). The
next identifier is the length of tRF sequence, such as ‘L16ʹ
means the tRF is 16 nucleotides in length. For i-tRFs, there is
one more identifier which indicates position of the first
nucleotide on the source tRNA. For example, ‘3ʹ-M-tRNA-
Ala-AGC-3-1_L20’ indicates this tRF is 3ʹ-tRF and can be
derived from at least two tRNA genes (one of these source
tRNAs is ‘tRNA-Ala-AGC-3-1’). If a sequence belongs to two
or more types of tRFs, the following priorities for naming this
tRF sequence are applied: 5ʹ-tRF > 3ʹ-tRF > 3ʹ U tRFs > i-tRF.
For example, ‘GAGAAAGCTCACAAGAACTGC’ is not only
derived from 5ʹ end of mature mitochondrial tRNA mito-
tRNA-Ser-GCT, but also derived from pre-mature mitochon-
drial mito-tRNA-His-GTG. According to the above naming
priorities, this sequence is termed as ‘5ʹ-M-mito-tRNA-Ser-
GCT_L21’. Detailed nomenclature of tRFs can be found in the
‘Help’ web page.

The small RNA sequencing reads were remapped to the
human genome (hg19), and sequences of our tRF annota-
tion database using Burrows-Wheeler Transform (BWA)
[39], allowing for no mismatch per read. Next, the
remapped reads were used to count the number of reads
belonging to each of the candidate tRFs (Table 1). Other
non-tRNA genome locations to which the tRF candidates
were potentially mapped were fetched by samtools [40].
These non-tRNA loci are likely a part of tRNA-lookalikes
that harbour sequences resembling known tRNAs [41,42].
Finally, the expression of the tRFs was calculated as reads
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per million (RPM) of total mapped reads, which has been
commonly used in miRNA analyses [24,25]. To obtain
robust tRFs, we filtered out the tRFs with 90th quantile
RPM < 1, and those remaining were considered detectable
tRFs for each cancer type. Prior to the downstream analysis,
the tRFs expression was transformed using log2, and was
normalized by the upper quantile across samples, and then
was adjusted for potential batch effects with sequencing
plates as covariates using ComBat [43].

tRFs on tRNA secondary structures

tRNA secondary structures were predicted using the tRNA
covariance model of tRNAscan-SE 2.0 [44] and visualized
using forna [45].

Differential expression analysis

To compare the expression profile patterns of tRFs and
mRNAs between tumour and normal samples in TCGA, we
utilized cancer types with at least 15 normal samples.
Differentially expressed tRFs were defined as those with pva-
lues < 0.05 (i.e., p-values < 0.05, obtained using the Wilcoxon
rank-sum test) and fold change of expression between tumour
and normal samples > 2 or < 0.5 (i.e., the absolute value of
Log2FoldChange > 1). Qvalue are corrected p-values with
Benjamini-Hochberg (BH) method.

Correlation analysis and network display

Pearson correlation was estimated for each pair of signifi-
cantly differentially expressed tRFs and mRNAs. Two-sided
t-test was used for hypothesis test. The correlation coefficients
exceeding a threshold (default as |r| > 0.4) were organized as
a network using Cytoscape (v3.7.2) [29].

Enrichment analysis

KOBAS 3.0 [46] was used for identification of enriched path-
ways and diseases, including four pathway databases (KEGG
PATHWAY, BioCyc, Reactome, and PANTHER) and two
human disease databases (OMIM and KEGG DISEASE).
Enriched pathways in KOBAS were detected using
a hypergeometric test. Enriched Gene Ontology (GO) terms
and KEGG DISEASE categories were evaluated using Fisher’s
exact test.

Survival analysis

Kaplan-Meier curves were plotted using the R survival pack-
age [47] and the log-rank test was used to evaluate statistical
differences in survival between groups. All statistical analyses
were performed using R Statistical Software (version 3.6.2)
(https://www.r-project.org/).

Validated tRFs

Experimentally validated tRFs with roles in cancer were
manually curated from PubMed using keyword searches

such as ‘transfer RNA-derived RNA fragments cancer’,
‘tRNA-derived RNA fragments cancer’, ‘transfer RNA-
derived RNA fragments tumor’, ‘tRNA-derived RNA frag-
ments tumor’, ‘tRF cancer’, and ‘tRF tumor’.
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