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Chronic kidney disease (CKD) is an increasing concern in the United States due to its rapidly rising prevalence, particularly among
African Americans. Epigenetic DNA methylation markers are becoming important biomarkers of chronic diseases such as CKD.
To better understand how these methylation markers play a role in kidney function, we measured 26,428 DNAmethylation sites in
972 African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. We then evaluated (1) whether
epigenetic markers are associated with estimated glomerular filtration rate (eGFR), (2) whether the significantly associatedmarkers
are also associated with traditional risk factors and/or novel biomarkers for eGFR, and (3) how much additional variation in eGFR
is explained by epigenetic markers beyond established risk factors and biomarkers. The majority of methylation markers most
significantly associated with eGFR (24 out of the top 30) appeared to function, at least in part, through pathways related to aging,
inflammation, or cholesterol. However, six epigeneticmarkers were still able to significantly predict eGFR after adjustment for other
risk factors. This work shows that epigenetic markers may offer valuable new insight into the complex pathophysiology of CKD in
African Americans.

1. Introduction

Chronic kidney disease (CKD) is an increasing public health
concern in theUnited States due to its rapidly rising incidence
and prevalence, particularly among older individuals. While
about 20 million United States adults over the age of 20 (10%)
currently have CKD, the prevalence of CKD among those 60
and older is approximately 25% [1]. Further, the incidence
of CKD among those aged 65 and older more than doubled
between 2000 and 2008 [1]. As a result, health care costs
related to the most severe form of CKD, End-Stage Renal
Disease (ESRD), have also nearly doubled in the past decade
to over $40 billion per year [1]. Individuals over 60 are almost
6 times more likely to develop CKD than those aged 20–39,
and females are 1.4 times more likely than males to develop it

[2]. Further, African Americans are at higher risk for ESRD
than other races. While African Americans accounted for
only 12% of the US population in 2009, they accounted for
nearly one-third of kidney failure cases [3].

Level of kidney function is assessed by the glomeru-
lar filtration rate (GFR), the rate at which blood passes
through the kidney’s filtering mechanisms. GFR levels below
60mL/min/1.732m2 are used, in conjunction with markers
of kidney damage such as proteinuria, to diagnose CKD
and determine its severity [4]. GFR is difficult to measure
directly, but it can be estimated using blood markers such
as creatinine in combination with demographic factors (age,
sex, and ethnicity). Since the early stages of CKD generally
have few or no symptoms, disease detection is difficult before
progressive kidney damage has already occurred [5].
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Several risk factors have been implicated in CKD etiol-
ogy. The most common are diabetes mellitus, hypertension,
obesity, elevated cholesterol, smoking, and cardiovascular
disease (CVD) [3, 5]. Approximately 20% and 35% of US
adults with diabetes and hypertension, respectively, have
CKD [3]. Further, a recent study showed that hypertension,
smoking, obesity, and low HDL cholesterol were associated
with reduced kidney function [6]. While risk prediction
of CKD is in its infancy, studies have found moderate
prediction capability for CKD development and progression
using models that include hypertension, diabetes, history of
CVD, body mass index, and other variables [7].

The identification of new biomarkers for early detection
of CKD is crucial to developing novel prevention strategies.
It is particularly important to identify markers within high-
risk populations in order to reduce social disparities in CKD
and ESRD incidence. Researchers have been exploring the
use of inflammatory markers as potential biomarkers of
kidney function in recent years. Several such markers have
been shown to be strongly associated with renal function.
Specifically, C-reactive protein, fibrinogen, homocysteine,
and several other markers of inflammation are elevated in
individuals with decreased kidney function [8–11].

Epigenetic markers are now also being considered as
potentially viable predictors of kidney function [12]. Epige-
netics refers to mitotically heritable genomic modifications
that do not alter the underlying DNA sequence. DNA
methylation is one type of epigenetic modification that alters
gene transcription [13], potentially influencing initiation and
progression of chronic diseases such as CKD. Alterations
in DNA methylation have already been shown to be asso-
ciated with a variety of chronic diseases including CKD,
cardiovascular disease, cancer, diabetes, and systemic lupus
erythematosus [10, 12–21]. For example, a recent study found
that patients with Stage 5 CKD with inflammation and
hyperhomocysteinemia exhibited global DNA hypermethy-
lation in blood leukocytes compared to patients with no
inflammation and typical homocysteine levels [10]. In spite
of the progress in this research area, little is still known
about the relationship between epigenetics and kidney
disease.

In order to better understand how epigenetics, inflam-
mation, and traditional risk factors can explain the variation
in kidney function, we conducted a study that evaluated
three key questions: (1) is DNA methylation in peripheral
blood cells associated with eGFR? (2) are the significantly
associated epigenetic markers also associated with tradi-
tional risk factors and/or novel biomarkers for eGFR? and
(3) how much additional variation in eGFR is explained
by the epigenetic markers beyond these risk factors and
biomarkers? Although peripheral blood cells may not be
fully representative of kidney epigenetic patterns, leukocytes
(a key component of peripheral blood cells) orchestrate the
inflammatory responses within the kidney and are therefore
likely to play a role in the pathophysiology of CKD. Juxta-
posing the epigenetic biomarkers in peripheral blood cells
against more traditional risk factors will allow us to identify
new interconnections between genome biology and CKD
precursors.

2. Methods

2.1. Sample. The Genetic Epidemiology Network of Arteri-
opathy (GENOA) study is a community-based study inves-
tigating the genetics of hypertension and its arteriosclerotic
complications in non-Hispanic whites from Rochester, Min-
nesota, and African Americans from Jackson, Mississippi
[22]. In this study, we investigated the relationship between
DNAmethylation and eGFR in GENOA African Americans.
African American sibships in which at least two siblings had
been diagnosed with primary hypertension before the age of
60 (𝑁 = 1, 854) were recruited for an initial examination
(Phase I: 1996–1999) that included standardized interviews
concerning demographic and medical history, as well as
a physical examination and blood sample collection. The
second examination (Phase II: 2000–2004) comprised 1,482
participants returning from Phase I. This exam included re-
assessment of the original interview, a physical examination,
and a blood draw, as well as additional measurements of
arteriosclerotic target-organ damage of the kidney, heart,
brain, and peripheral arteries.

2.2. Measurement of Traditional Risk Factors. Height was
measured by stadiometer and weight by electronic balance,
and body mass index (BMI) was calculated as weight in
kilograms divided by the square of height in meters. Resting
systolic blood pressure and diastolic blood pressure were
measured by a random zero sphygmomanometer. The diag-
nosis of hypertension was established based on BP levels
measured at the study visit (>140mmHg average systolic BP
or >90mmHg average diastolic BP) or a prior diagnosis of
hypertension and current treatment with antihypertensive
medications.

Blood was drawn by venipuncture after an overnight
fast. Serum triglycerides (TG), creatinine, total cholesterol,
glucose, and high-density lipoprotein (HDL) cholesterol were
measured by standard enzymatic methods on a Hitachi 911
Chemistry Analyzer (Roche Diagnostics, Indianapolis, IN).
Estimated GFR (eGFR) was calculated for each participant
from serum creatinine values and relevant demographic
factors (age, sex, and race) using the CKD-EPI creatinine
equation [23]. Diagnosis of diabetes was established based on
fasting glucose levels >126mg/dL measured at the study visit
or current treatment with diabetes medications. C-reactive
protein was measured by a highly sensitive immunoturbidi-
metric assay [24], fibrinogen was measured by the Clauss
(clotting time based) method [25], and plasma homocysteine
was measured by high-pressure liquid chromatography.

2.3. Measurement of DNA Methylation. DNA methylation
was quantified on 1,008 Phase II participants using stored
blood samples collected during the second examination.
Samples were prepared and DNA methylation was mea-
sured according to previously published methods [26–28].
Briefly, the Illumina Infinium HumanMethylation27 Bead-
Chip microarray was used to measure DNA methylation
at 27,578 CpG sites. To reduce batch and chip effects, the
correlation structure among 56 control probes was evaluated
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within channel to identify the most parsimonious subset of
probes that explained the maximum amount of batch and
chip variation across samples (5 probes in the red channel and
8 probes in the green channel). Normalizationwas conducted
by linearly regressing the 13 selected probes onto the intensity
signals from the methylated (M) and unmethylated (U) bead
types separately across each CpG site.

The 𝑀-value is a commonly used measurement in
microarray analysis that was recently adapted for use with
DNAmethylation array data.We chose to assessDNAmethy-
lation using the𝑀-value because the statistical distributions
of 𝑀-values for individual CpG sites conform to modeling
assumptions more often than do those of other standard
metrics, such as the Beta value [29, 30]. The 𝑀-value for
each individual 𝑖 at a single site, 𝑘, is calculated as follows:
𝑀-value

𝑖𝑘
= log
2
[(max(M

𝑖𝑘
, 0) + 1)/(max(U

𝑖𝑘
, 0) + 1)] [30].

𝑀-values that are <−2.0 are considered to be unmethylated,
𝑀-values that are >2.0 are considered methylated, and
𝑀-values that are between −2.0 and 2.0 are considered
semimethylated.

Prior to statistical analysis, we removed samples that
had poor bisulfite conversion (𝑁 = 7), as determined by
bisulfite-conversion control fluorescence intensity of <4,000.
An additional 29 sampleswere removed from the analysis due
to extreme control probe values, assessed as having at least
one control probe with a value of greater than 4 standard
deviations from its mean value.This resulted in a total sample
size of 972 individuals.

In this study, we analyzed only autosomal CpG sites. A
total of 58 CpG sites were removed from the analysis because
they were found to be multimodal based on the Dip Test
proposed by J. A. Hartigan and P. M. Hartigan [31] using a
cut-off of𝑃 < 0.001 on the signal intensities of themethylated
and/or unmethylated bead types. This resulted in a total
number of 26,428 CpG sites included in our analysis.

2.4. Statistical Analyses

2.4.1. Linear Mixed Modeling. We used linear mixed mod-
eling to identify the top 30 CpG sites that were most
significantly associated with eGFR, prior to adjustment for
any risk factors. Rather than adjusting for age and sex prior
to any statistical analysis, each of the 26,428 CpG sites were
modeled individually as covariates against eGFR so that we
were not failing to detect sites that act as mediators of age
and sex on eGFR a priori. The linear mixed model eGFR

𝑖𝑗
=

𝛽
0
+ 𝛽
1
⋅ CpG

𝑖𝑗
+ 𝑊
𝑗
+ 𝜀
𝑖𝑗
(Model 1) was estimated using the

nlme package in the statistical R software version 2.14.0 [32].
CpG
𝑖𝑗
is the𝑀-value of the epigenetic marker for participant

𝑖 in sibship 𝑗, and𝑊
𝑗
is the random effect for sibship 𝑗.

2.4.2. Linear Modeling. In order to determine the risk factors
most highly associated with eGFR, we performed forward
selection using traditional linear modeling. We then checked
the robustness of the modeling using linear mixed mod-
eling to ensure that accounting for family structure did
not influence the inferences of the linear modeling. We
used traditional linear modeling instead of linear mixed

modeling to facilitate the comparison of 𝑅2 values among
nested models. Univariable linear regression models of the
generic form eGFR

𝑖
= 𝛽
0
+ 𝛽
1
⋅ Risk Factor

𝑖
+ 𝜀
𝑖
(Model

2) were used to evaluate the relationships between eGFR and
traditional risk factors aswell as novel risk factors. Traditional
risk factors including diabetes, hypertension, cholesterol,
blood pressure, age, sex, and anthropometric measures were
considered in addition to novel inflammatory biomarkers
such as homocysteine, fibrinogen, and C-reactive protein. All
significantly associated risk factors were then processed in
forward selection methods with an entry significance level
of 𝑃 < 0.05 in SASv9.3 (SAS Institute Inc., Cary, NC) to
determine the amount of variation in eGFR explained by all
of the risk factors in the model.

Univariable linear models of the generic form Risk
Factor

𝑖
= 𝛽
0
+ 𝛽
1
⋅ CpG

𝑖
+ 𝜀
𝑖
(Model 3) were used to

determine whether there were any associations between the
risk factors identified in Model 2 and each of the top 30
significant CpG sites for eGFR identified in Model 1. Once
all of the CpG sites significantly associated with each risk
factor were determined, bivariable linear models of the form
eGFR

𝑖
= 𝛽
0
+ 𝛽
1
⋅ Risk Factor

𝑖
+ 𝛽
2
⋅ CpG

𝑖
+ 𝜀
𝑖
(Model

4) were used to estimate the contribution of each CpG site
that remained significantly associated with eGFR after the
adjustment for each risk factor.

The multivariable model eGFR
𝑖
= 𝛽
0
+ ∑
𝑝

𝑚=1
𝛽
𝑚
⋅ Risk

Factor
𝑚𝑖
+ 𝜀
𝑖
(Model 5) estimated by forward selection

procedures (previously described) allowed us to estimate
how much of the eGFR variation could be explained by risk
factors. The multivariable model eGFR

𝑖
= 𝛽
0
+∑𝑝
𝑚=1
𝛽
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+𝛽
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(Model 6) was then used to

investigate whether each individual epigenetic marker added
additional predictive information about eGFR. The final
model combining risk factors and epigenetic markers was
eGFR

𝑖
= 𝛽
0
+∑𝑝
𝑚=1
𝛽
𝑚
⋅ Risk Factor

𝑚𝑖
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𝑞𝑖
+

𝜀
𝑖
(Model 7). This model was estimated using forward

regression techniques (keeping the risk factors constant from
previous models).

3. Results

3.1. Descriptive Statistics. A majority of the study population
was female (71%), with a mean age of 66.3 years. Many of the
participants had hypertension (83%) and/or diabetes (31%).
Less than half of the participants had ever smoked (42%)
and the mean BMI was 31.2 kg/m2 (Table 1). Women had a
higher average BMI and higher levels of cholesterol, HDL
cholesterol, C-reactive protein, and fibrinogen thanmen, and
they had lower diastolic blood pressure and homocysteine
levels. A majority of the 26,428 CpG sites evaluated in this
study had mean values that were considered unmethylated:
58% of CpG sites (15,217 sites) had average𝑀-Values < −2.0
(see Figure 1 in Supplementary material available online at
http://dx.doi.org/10.1155/2013/687519).

3.2. Top 30 CpG Sites Associated with eGFR. Nineteen
methylationmarkers were significantly associated with eGFR
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Table 1: Descriptive statistics of traits studied in GENOA African Americans.

Total𝑁 = 972 Males𝑁 = 285 Females𝑁 = 687
𝑃 value

Mean (SD) Mean (SD) Mean (SD)

Estimated glomerular filtration rate (mL/min
per 1.732m2)

85 (21) 83 (21) 86 (21) 0.0646a

Age (years) 66 (8) 67 (8) 66 (8) 0.2179a

Height (cm) 167 (9) 178 (6) 164 (6) 3.1𝐸 − 153
a

Weight (kg) 88 (18) 92 (17) 86 (18) 3.3𝐸 − 05
a

Waist circumference (cm) 104 (14) 104 (13) 103 (15) 0.7565a

Hip circumference (cm) 116 (14) 110 (11) 118 (15) 1.3𝐸 − 17
a

Body mass index (kg/m2) 31 (6) 29 (5) 32 (7) 1.7𝐸 − 15
a

C-reactive protein (mg/L) 0.7 (1) 0.6 (1) 0.7 (1) 0.00003b

Fibrinogen (mg/dL) 369 (82) 354 (87) 376 (80) 0.0002a

Homocysteine (𝜇mol/L) 11 (5) 12 (5) 10 (4) 4.7𝐸 − 09
b

Serum cholesterol (mg/dL) 204 (42) 192 (40) 209 (42) 1.8𝐸 − 08
a

Serum glucose (mg/dL) 113 (44) 116 (51) 112 (40) 0.3147b

Serum triglycerides (mg/dL) 120 (64) 120 (74) 120 (60) 0.3292b

Systolic blood pressure (mmHg) 140 (21) 138 (21) 141 (22) 0.0396a

Diastolic blood pressure (mmHg) 78 (11) 80 (11) 78 (11) 0.0005a

Combined high-density lipoprotein (mg/dL) 58 (18) 50 (15) 62 (18) 5.6𝐸 − 24
b

𝑁 (%) 𝑁 (%) 𝑁 (%) 𝑃 valuec

Hypertension 802 (83) 228 (80) 574 (84) 0.1845

Diabetes 298 (31) 86 (30) 212 (31) 0.8334
a
𝑃 value from an independent 𝑡-test of means between males and females for normally distributed continuous variables.

b
𝑃 value from a two-sided 𝑍-test of a nonparametric Wilcoxon test for nonnormally distributed continuous variables.

c
𝑃 value from a chi-square test for categorical variables.

at the Bonferroni-corrected 𝑃 value for an alpha level of
0.05 (1.89 × 10−6) (see Supplementary Figure 2 for a Q-Q
plot of the results from the association between genome-wide
CpG sites and eGFR). However, the highly intercorrelated
nature of the epigenomic markers renders Bonferroni cor-
rection too conservative. Most of the top 30 CpG sites were
positively associated with eGFR (Table 2) and the majority
of these sites have at least moderate correlation >0.40 with
at least one of the other 29 CpG sites (Supplementary Table
1). Thus, we chose to evaluate the top 30 most strongly
associated sites, all of which had 𝑃 values less than 6 ×
10−6. The top 30 CpG sites explain 13% (𝑅2 = 0.13) of
the variation in eGFR collectively based on simple linears
regression.

3.3. Risk Factors for eGFR. In order to compare the effects
of epigenetic markers relative to traditional biomarkers/risk
factors, we first performed univariable and then multivari-
able modeling of eGFR (Table 3). Fibrinogen, homocysteine,
serum cholesterol, and age were the four risk factors that were
found using forward selection to be significantly associated
with eGFR at the significance threshold 𝛼 = 0.05 (Table 3).
Homocysteine and age explained the largest amount of
variability in eGFR (𝑅2 = 0.197 and 0.145, resp.) (Figure 1).

All four risk factors together explained a total of 28.3% of the
variation in eGFR.

3.4. Association of Risk Factors of eGFR with Top 30 Methy-
lation Markers. To better understand whether the epigenetic
sites are operating independently or through risk factors, the
top 30 CpGswere then incorporated individually intomodels
with the four significant risk factors as outcomes (Model 3) to
examine the associations between each methylation marker
and the four risk factors individually (Supplementary Table
2). Seventeen of the thirty CpG sites were significantly asso-
ciated with fibrinogen, one was significantly associated with
serum cholesterol, and all thirty were significantly associated
with homocysteine and age, all at 𝛼 = 0.05. Since all of the
top sites were found to be associated with at least one of the
four risk factors for eGFR when placed in univariate models
against each risk factor (Figure 1, Supplementary Table 3),
the next step was to investigate whether the epigenetic sites
remained significant predictors of eGFR after adjustment for
the aforementioned risk factors.

3.5. Explanation of Variation in eGFR byMethylationMarkers
after Adjustment. Fourteen of the thirty CpG sites associated
with age remained significantly associated (𝑃 < 0.05)
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Table 2: Top 30 CpG sites most strongly associated with eGFR (Model 1).

Genetic description 𝑀-value information
CpG Site Chr Gene Gene product 𝑀-value mean (SD) 𝛽

1
𝑃-value

cg00226923 6 FGD2 FYVE; RhoGEF and PH domain containing 2 2.9 (0.4) −8.8 6.1𝐸 − 09

cg17471102 19 FUT3 Galactoside 3(4)-L-fucosyltransferase 0.7 (0.3) 12.4 1.3𝐸 − 08

cg12261786 10 ADIRF Adipogenesis regulatory factor 1.2 (0.3) 12.6 2.7𝐸 − 08

cg10917602 16 HSD3B7 3 Beta-hydroxy-delta 5-C27-steroid
oxidoreductase 0.4 (0.4) 8.3 6.7𝐸 − 08

cg04662594 8 EPB49 Erythrocyte membrane protein band 4.9
(dematin) −0.8 (0.4) 9.6 8.8𝐸 − 08

cg15121304 22 IGL2 Immunoglobulin lambda locus 1.9 (0.3) −10.7 1.8𝐸 − 07
cg24857721 1 RHD Rh blood group D antigen isoform 1 0.4 (0.4) 8.5 2.4𝐸 − 07

cg14688272 17 FN3KRP Fructosamine-3-kinase-related protein −0.2 (0.3) 11.3 2.9𝐸 − 07

cg19761273 17 HCKID Casein kinase 1; delta isoform 1 −2.0 (0.3) 10.9 4.6𝐸 − 07

cg24092253 20 YTHDF1 YTH domain family; member 1 −1.2 (0.3) 11.0 5.8𝐸 − 07

cg10126923 19 NKG7 Natural killer cell group 7 sequence −0.2 (0.5) 6.6 6.1𝐸 − 07

cg25538571 8 FLJ46365 Hypothetical protein LOC401459 −0.7 (0.3) 10.8 6.3𝐸 − 07

cg11120551 1 CHD1L Chromodomain helicase DNA binding protein
1-like −0.9 (0.4) 8.9 7.6𝐸 − 07

cg00563932 9 PTGDS Prostaglandin H2 D-isomerase 0.3 (0.3) 9.7 8.9𝐸 − 07

cg16280667 11 BLR1 Burkitt lymphoma receptor 1 isoform 1 2.1 (0.4) −9.4 1.1𝐸 − 06

cg12125117 16 GPR97 G protein-coupled receptor 97 −0.8 (0.5) 7.0 1.4𝐸 − 06

cg01820374 12 LAG3 Lymphocyte-activation protein 3 precursor −0.7 (0.3) 10.2 1.5𝐸 − 06

cg09809672 1 EDARADD EDAR-associated death domain isoform B −0.4 (0.4) 7.5 1.7𝐸 − 06

cg14859417 10 PTPRE Protein tyrosine phosphatase; receptor type; E
isoform 2 −1.7 (0.4) 9.1 1.9𝐸 − 06

cg18152830 17 TNFRSF13B Tumor necrosis factor receptor 13B 2.6 (0.3) −10.8 2.2𝐸 − 06
cg08743392 20 GSS Glutathione synthetase −2.5 (0.4) 8.3 2.3𝐸 − 06

cg26842024 19 KLF2 Kruppel-like factor 2 −2.9 (0.4) −8.2 2.4𝐸 − 06

cg07426848 1 S100A3 S100 calcium binding protein A3 2.1 (0.3) −9.5 2.6𝐸 − 06

cg15297650 2 DKFZP566N034 Hypothetical protein LOC81615 −0.04 (0.3) 10.8 2.9𝐸 − 06

cg17589341 18 SLC14A1 Rsolute carrier family 14 (urea transporter),
member 1 0.03 (0.3) 9.3 2.9𝐸 − 06

cg21126943 19 CEACAM6 Carcinoembryonic antigen-related cell adhesion
molecule 6 (nonspecific cross reacting antigen) −0.8 (0.4) 6.9 5.7𝐸 − 06

cg07408456 19 PGLYRP2 Peptidoglycan recognition protein L precursor −0.2 (0.4) 8.3 5.7𝐸 − 06

cg25268718 14 PSME1 Proteasome activator subunit 1 isoform 1 0.3 (0.2) 13.5 6.0𝐸 − 06

cg08700306 19 LRP3 Low-density lipoprotein receptor-related protein 3 −0.04 (0.3) 9.7 6.1𝐸 − 06

cg02863947 3 NR1I2 Pregnane X receptor isoform 2 −0.4 (0.5) 6.7 6.3𝐸 − 06

Model 1: eGFR𝑖𝑗 = 𝛽0 + 𝛽1 ⋅ CpG𝑖𝑗 + 𝑊𝑗 + 𝜀𝑖𝑗.

with eGFR in the bivariable model (Figure 1, Supplementary
Table 3). All of the CpG sites that were associated with the
other significant risk factors (fibrinogen, serum cholesterol,
and homocysteine) remained significantly associated with
eGFR in the bivariablemodel, indicating that these epigenetic
markers are independent predictors of kidney function.
Individual CpG sites were able to predict an additional 1–4%
of the variation in eGFR beyond individual risk factors.

3.6. Explanation of Variation in eGFR byMethylationMarkers
after Adjustment for Risk Factors. In order to determine
whether the CpG sites remained significant predictors of

eGFR after adjusting for all four risk factors, we constructed
multivariable models. A multivariable model with the four
risk factors and a single CpG site predicting eGFR (Model
6) was compared to the multivariable model with only the
four risk factors (Model 5). This was repeated for each of the
30 CpG sites. Six CpG sites remained significantly associated
with eGFR after adjustment for all four risk factors and
predicted approximately 0.3–0.8% of the variation in eGFR
beyond the risk factors (Figure 1, Supplementary Table 4).

We used forward selection to build amodel that consisted
of the four risk factors plus the CpG sites that remained
significant predictors of eGFR (Model 7). Three of the six
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Table 3: Univariable and multivariable linear regression for eGFR.

Risk factors (𝑁 = 972) Univariable model (Model 4)a Multivariable model (Model 5)b

𝛽
1
(𝑃 value) 𝑅

2
𝛽
𝑘
(𝑃 value) 𝑅

2

Homocysteine (𝜇mol/L) −2.0 (4.9𝐸 − 48) 0.1965 −1.7 (7.6𝐸 − 36)

0.2827Age (years) −1.0 (8.9𝐸 − 35) 0.1445 −0.8 (1.1𝐸 − 21)
Fibrinogen (mg/dL) −0.03 (0.0009) 0.0114 −0.02 (0.0160)
Serum cholesterol (mg/dL) −0.06 (0.0002) 0.0140 −0.03 (0.0263)
Sexc 2.8 (0.0560) 0.0038 — —
Height (cm) −0.1 (0.1137) 0.0026 — —
Weight (kg) −0.03 (0.4851) 0.0005 — —
Waist circumference (cm) −0.06 (0.1834) 0.0018 — —
Hip circumference (cm) −0.01 (0.9113) 0.0000 — —
Body mass index (kg/m2) 0.02 (0.8402) 0.0000 — —
C-reactive protein (mg/L) 0.5 (0.3814) 0.0008 — —
Serum glucose (mg/dL) 0.02 (0.1869) 0.0018 — —
Serum triglycerides (mg/dL) −0.03 (0.0150) 0.0061 — —
Systolic blood pressure (mmHg) −0.08 (0.0072) 0.0074 — —
Diastolic blood pressure (mmHg) 0.09 (0.1217) 0.0025 — —
Combined high density lipoprotein (mg/dL) 0.02 (0.5416) 0.0004 — —
Hypertensiond

−6.4 (0.0002) 0.0141 — —
Type 2 diabetese −1.2 (0.3992) 0.0007 — —
aModel 2: eGFR𝑖 = 𝛽0 + 𝛽1 ⋅ Risk Factor𝑖 + 𝜀𝑖.
bModel 5: eGFR𝑖 = 𝛽0 + ∑

𝑝

𝑚=1
𝛽𝑚 ⋅ Risk Factor𝑚𝑖 + 𝜀𝑖, where 𝑝 is the number of risk factors.

cFemale = 1, male = 0.
dHypertension = 1, no hypertension = 0.
eType 2 diabetes = 1, no type 2 diabetes = 0.

CpG sites (cg26842024, cg07426848, and cg17589341)
remained significant in the final model in addition to the
established risk factors (Supplementary Table 5). The final
model was able to predict 29.8% of the variation in eGFR
(Figure 1).

4. Discussion

The purpose of this study was to identify methylation sites in
peripheral blood cells that were significantly associated with
eGFR, to evaluate their association with CKD risk factors,
and to determine whether these epigenetic sites were still
predictors of eGFR after adjustment. By evaluating DNA
methylation within peripheral blood cells, we were able
to examine the relationship between kidney function and
epigenetic processes occurring within cells that are involved
in inflammatory responses in the kidney. Given the large
number of correlated epigenetic sites, we focused our study
on the top 30 CpG sites that were significant after adjusting
for multiple testing.

We used this approach to identify the epigenetic mark-
ers of eGFR because previous studies have indicated that
many epigenetic sites are associated with age and that these
sites could potentially provide fundamental insights into
the biology of the aging kidney. Indeed, the top 30 CpG
sites were all significantly associated with age in our study.

However, 14 of these 30 CpG sites remained significant
predictors of eGFR after adjustment for age. These same
30 CpG sites were also significantly associated with plasma
levels of homocysteine in our study, and all 30 CpG sites
remained significant predictors of eGFR after adjustment for
homocysteine (a significant predictor of eGFR). Only six of
the 30CpG sites remained significant predictors of eGFR after
adjustment for traditional risk factors (age, fibrinogen, serum
cholesterol, and homocysteine). Consequently, it appears that
the majority of the epigenetic markers that we identified may
affect eGFR, at least in part, through pathways related to
aging, inflammation, and cholesterol.

As a final step, we put all the top epigenetic sites and
risk factors into a forward selection algorithm and identified
three significant, independent CpG site predictors of eGFR.
The three significant CpG sites are cg26842024 in KLF2
gene, cg07426848 in the S100A3 gene, and cg17589341 in
the SLC14A1 gene. The KLF2 gene encodes a Krüppel-like
transcription factor. This zinc finger family of transcription
factors is important in regulating cellular processes in the vas-
culature, including the kidney’s glomerular capillary bed [33].
For example, in renal transplants with thrombotic microan-
giopathy, studies of gene expression in the glomerulus have
demonstrated a downregulation of KLF2 and subsequent
upregulation of genes that inhibit local fibrinolysis [34].
Recently, researchers have shown that the impact of blood
flow and its laminar shear stress on glomerular endothelial
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Figure 1: Flow chart of the contributions of all models used in this study and their relationships with eGFR.

cells alters expression of KLF2. Specifically, chronic laminar
shear stress increases KLF2 which then increases expression
of endothelial nitric oxide synthase (eNOS), thrombomod-
ulin, and nitric oxide [35]. This study also demonstrated that
these changes in the glomerular endothelium associated with
KLF2 had an effect on kidney podocytes. Podocytes are cells
in the glomerulus responsible for the kidney’s ability to filter
waste products from the blood and are intimately involved in
the pathogenesis of CKD [36].

The other two significant CpG sites are within genes
that are related to bladder biology and, hence, may reflect
downstream consequences of variability in eGFR in our
study. That is, differences in methylation within these genes
may be a response to higher or lower levels of eGFR rather
than influencing eGFR itself. In particular, the S100 proteins
are signaling factors that are involved in regulation of cellular
processes in a wide range of cell types. The differential
expression of S100A3 has been implicated in the bladder
cancers [37]. The solute carrier family 14 (urea transporter),
member 1 (SLC14A1) gene has been studied for decades as the
Kidd blood group.This urea transporter is expressed in awide
range of cell types. Recently, genetic studies have identified
it as an important gene involved in the concentration of the
urine in the kidney [38] as well as an important susceptibility
gene for bladder cancer [39, 40].

These three genes that were significant independent
predictors of eGFR point to future studies that may help

to understand the mechanism underlying interindividual
variation in kidney function in African Americans. We are
unaware of other studies that have investigated the epigenetic
predictors of eGFR on a genome-wide scale. However, a few
other studies of kidney-related diseases point to the breadth
of epigenetic studies of kidney phenotypes that could be
conducted. For example, a study on the epigenetic markers
of diabetic nephropathy among African Americans and His-
panics identified 187 genes that were differentiallymethylated
among diabetes patients with and without nephropathy [16].
Another study found that epigenetic “metabolic memory”
from prior exposure to hyperglycemia, even after glucose
normalization, was implicated in End-Stage Renal Disease
among African American diabetic patients [12].

Our study has several notable strengths including a
large sample size, investigation of a key indicator of kidney
function in a minority population, and epigenome-wide
assessment of DNAmethylation. However, it also has several
limitations. First, the GENOA sample does have an increased
prevalence of hypertension compared to an unselected popu-
lation of the same age range. Hypertension is associated with
measures of eGFR, and thus the distribution of eGFR in this
sample differs from that of an unselected population. Also,
the current study was cross-sectional rather than longitudi-
nal, so we cannot discern the temporal relationship between
changes in DNA methylation and changes in inflammatory
processes that influence kidney function.
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This study and other epigenetic studies support the idea
that differential DNA methylation in peripheral blood cells
may be an indicator of kidney function and may potentially
help us understand etiological aspects of kidney disease
because it provides an important link to inflammatory pro-
cesses that underlie chronic diseases such as CKD. Better
understanding of the role of epigenetics in kidney function,
particularly among African Americans, may lead to the
development of novel detection, treatment, or prevention
strategies for CKD that will help to decrease the current
health disparities in kidney disease.
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