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Abstract: Since the widespread of severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2)
disease, the utilization of face masks has become omnipresent all over the world. Face masks
are believed to contribute to an adequate protection against respiratory infections spread through
micro-droplets among the infected person to non-infected others. However, due to the very high
demands of face masks, especially the N95-type mask typically worn by medical workers, the public
faces a shortage of face masks. Many papers have been published recently that focus on developing
new and facile techniques to reuse and reinforce commercially available face masks. For instance,
the N95 mask uses a polymer-based (membrane) filter inside, and the filter membrane can be
replaced if needed. Another polymer sputtering technique by using a simple cotton candy machine
could provide a cheap and robust solution for face mask fabrication. This review discuss the novel
approaches of face mask reuse and reinforcement specifically by using membrane-based technology.
Tuning the polymeric properties of face masks to enhance filterability and virus inactivity is crucial
for future investigation.
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1. Introduction

The demand for face masks during the coronavirus disease 2019 (Covid-19) pandemic keeps
increasing. In some countries, medical workers have to deal with a shortage of face masks. Currently,
there are many types of masks fabricated from household or cloth material to substitute for a regular
disposable surgical mask. So far, only limited studies discuss the filtration efficacy of the custom
and the homemade face masks as compared to the regular face masks. The use of face masks made
from household material is not recommended for people, especially medical workers [1]. Yet, several
research studies have proven that the face masks can be reused after several steps of washing and
sterilization [2,3].

Several studies provided data about the filtration efficiency of cloth mask, disposable face masks
and N95 respirators for viruses [4,5]. The data show that not even disposable face masks are efficient
enough to protect the wearer from getting infected by an influenza-like illness. The utilization of
a membrane-based material allows the full retention of viruses through the size exclusion method.
However, it requires high-pressure drop, which restricts the wearer’s ability to breath. Nonetheless,
this material is seen as a promising alternative. Moreover, some materials have shown great antiviral
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properties. Hence, this paper reviews recent advancements in polymeric materials and membrane
science for the application of face masks with adequate filtration efficiency. The future direction of
studies is also briefly proposed to enhance the ability to protect against virus transmission through
micro-aerosol droplets carriers.

2. Efficacy of Face Masks Against Micro-Droplets and Viruses

2.1. Physical Distancing, Face Masks, and Eye Protection

As the pandemic of Covid-19 emerges and the virus spreads easily, several prevention actions
have been implemented and regulated to minimize the spread of the virus. The actions include
physical distancing as well as wearing a face mask and eye protection, which are believed to effectively
prevent the transmission of coronavirus. Physical distancing by self-quarantine is an effective way to
stop the spreading of the virus, and yet, as the pandemic lasts for months, the economic deceleration
becomes a big concern. People inevitably have to return to work to rebuild and sustain the economic
situation. This means that a complete physical distancing would be untenable. Therefore, it is necessary
to implement other actions to reduce the spread of the virus such as wearing a mask.

So far, there is no evidence from clinical trials about the effectiveness of wearing a mask or eye
protection in preventing the spread of the virus. Nevertheless, washing hands and physical distancing
are the prime recommended actions to limit the spreading [6]. The transmission of coronavirus among
people spreads from the respiratory droplets through coughing or sneezing. Coronavirus causes
the infected people to experience fatigue, dry cough, and fever [7]. Some may not experience any
symptoms and only act as a carrier. The asymptomatic carrier is very difficult to be spotted for isolation.
This explains why it is very important for everyone to implement every precaution with no exclusion.

The World Health Organization (WHO) has conveyed that wearing a mask is only necessary
for people who become ill and those who have taken care of a person with a suspected severe acute
respiratory syndrome of coronavirus 2 (SARS-CoV-2) infection. Nonetheless, the recommendations of
wearing a face mask in different countries are varied. As awareness increased, people start to take
the initiative themselves to wear a mask. For most Asian countries, the governments have made
it compulsory to wear a face mask in public areas [8], leading to high demands for the medical face
masks and causing the poor supply of masks for the medical workers. The production of the medical
face mask and N95 has become greater since then.

Moreover, cloth or fabric-based masks also have also been produced. Hence, several clusters of
randomized trials of face masks were done to assess the efficiency of wearing a face mask to minimize
the virus spreading [1,9]. The trials concluded that it is not suggested for the medical workers to use
a cloth mask when working with people suspected of SARS-CoV-2 infection because it may increase
the risk of infection [10]. There are some limitations possess by those masks, in which the cloth mask is
claimed to be the most ineffective. The limitations include inadequate filtration efficiency, its poor
breathability, washability, and reusability [1,8]. To enhance the applicability of those masks, their
limitations can be further studied and overcome.

2.2. The Structure of Face Masks

Disposable surgical masks are widely used by medical workers, scientists, and societies. Since
the emergence of the COVID-19 pandemic, the demand for the masks is increasing as people believed
they could protect themselves from the virus infection. SMS (spunbond–meltbond–spunbond)
structures are applied for a disposable surgical mask to protect the users from 98% bacteria and to
impose hydrophobicity. SMS has the highest level of protection and is the most popular combination
structure consisting of 1–5 g m−2 melt-blown (MB) microfibers, which have microporous and breathable
structures. Surgical masks consist of a very fine middle layer with extra fine glass fibers or synthetic
microfibers, which are covered on both sides by an acrylic bonded parallel-laid or wet-laid nonwoven
material. The weights of the middle layers are between 10 and 100 g m−2, whereas the thicknesses of
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the fibers are between <1 and ±10 µm. Each layer has a different specific function: the middle layer
works as the filter, the outermost layer imposes hydrophobicity, and the innermost layer works as
an absorbent to trap droplets coming from the users. The three layers of a surgical mask are expected
to work by restricting the transmission of small particles and pathogens from both directions [11].
An illustration of the three layers of the surgical mask is shown in Figure 1.
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Figure 1. Illustration of the three layers of a surgical face mask to prevent micro-aerosol droplets
containing contagious viruses.

The medical workers also use N95 to protect themselves, which has a better efficiency compared
to other types of masks, including the regular surgical mask. Based on the National Institute of
Occupational Safety and Health (NIOSH) 42 CFR Part 84, N95 is actually defined as a respirator, not
a mask. The “N” means it is not resistant to oil, and the number “95” indicates that it has 95% filtration
efficiencies (FE) to NaCl particles with a particle diameter range from 0.1 to 0.3 µm. The structural
components of N95 are composed of the outer layer, the filter layer, and the inner layer. The filter layer
is a filter fabric generated from nylon, cotton, polyester, and polypropylene. The fiber diameters of
the outer layer and filter layer of N95 are 27.07 µm ± 3.64 µm and 2.79 µm ± 0.95 µm, respectively.
The diameter of fibers affects its mechanical filtration characteristics, since smaller fibers form a smaller
pore size than bigger fibers of the same thickness. The smaller it is, the higher its mechanical filtration,
too. A structural difference is also found between a disposable surgical mask and a N95 respirator.
A disposable surgical mask consists of folded piles of fabrics that are loose-fitting on the user’s face,
whereas the N95 respirator consists of filtering layers and tight-edge fitting [12].

A global shortage of N95 respirators and regular surgical masks has shifted the demand to
household material-based masks that are easier to produce and are now available abundantly.
It prompts the study on the efficiency of household material-based masks. The structure materials of
this type of mask are usually made of 100% cotton, scarf, cotton mix, or pillowcase. The most efficient
household material-based masks based on its filtration efficiency and its pressure drop are 100% cotton
masks and pillowcase-based masks. The pressure drop indicates the ability of users to breathe when
wearing the mask. A higher pressure drop means that it is harder for the users to breathe. Yet, doubling
the cotton layer of the mask does not affect the filtration efficiency significantly but doubles the pressure
drop. The study stated that the overall data show that it is possible to partly block viruses or bacteria
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using this type of mask. However, the performance of these masks is not comparable to the N95 nor
to the disposable surgical masks. The advancement of a cloth mask has been reported by combining
fabric materials, e.g., cotton–silk, cotton–chiffon, and cotton–flannel [8]. Such combinations increased
the filtration efficiency to 80% (<300 nm particles) and 90% (>300 nm particles) [8].

2.3. Materials for Face Masks Manufacturing

A surgical mask can be produced by using woven, non-woven, and knitted methods. However,
non-woven is the most common method, and it costs less. Surgical face masks were manufactured by
using 20 g m−2 polypropylene with spunbond technology, whereas it needs 25 g m−2 non-woven sheet
polypropylene using melt-blown technology. Polystyrene, polyethylene, polyester, and polycarbonate
could also be used to manufacture the surgical face masks. The filtration efficiency of the surgical
mask is influenced by several factors such as its fiber selection, fabrication method, the structure of
the web, and the cross-sectional shape of the fiber. Surgical face masks can be classified into three
categories, which are a low barrier, moderate barrier, and high barrier. A moderate barrier type of
mask has a Bacterial Filtration Efficiency (BFE) of ≥98%, whereas a low barrier has a BFE ≥ 95% [13].

Generally, a disposable surgical mask consists of three different layers made of non-woven
fabric. They are cheap and easy to fabricate. The fabrication of non-woven fabric takes place by
using a polymer as the material treated with heat, chemical, and mechanical means. Generally,
the fabrication occurs based on the spunbond method or melt-blown method. The spunbond method
begins with the extrusion process where the polymer is melted by the heat and mechanical action.
It is necessary to maintain the required temperature to melt the polymer. The molten polymer is
shaped into thin filaments by a spin pack. Subsequently, the thin filaments were quenched by cool air
and bonded together by heat, chemical, or mechanical means to form the non-woven fabric. Although
the spunbond and melt-blown methods are similar, there is one significant process that differentiates
them. The die process in the melt-blown method is very important and responsible for the formation
of the microfibers pore size. The die process consists of feed distribution to ensure the molten polymer
spreads evenly, the die nosepiece to ensure filament diameter and quality, and the air manifold where
the polymer filaments become much thinner microfibers. Moreover, the meltdown method generates
much finer microfibers and creates a smaller pore size. Hence, it is usually used to produce the filter
layer in the disposable surgical mask [8]. The N95 respirator also comprises of three polypropylene
fiber layers: outer (two layers), filter (one layer), and inner (seven to eight layers). The outer and
the inner layers are fabricated with the spunbond method, whereas the filter layer is fabricated with
the melt-blown method. The typical thickness of the outer, filter, and inner layers are 300–400, 800–1200
and 100–150 µm, respectively [14].

2.4. Disposable Surgical Mask Versus N95 Health Worker Mask

It is recommended that the medical workers use the N95 instead of the disposable surgical masks.
Recent studies assessed the efficiency of both the N95 and the disposable surgical mask using actual
data. A research study was conducted to assess the efficiency of a N95 respirator and a disposable
surgical mask by comparing the values of their Particle Filtration Efficiency, BFE, Viral Filtration
Efficiency, and the NIOSH NaCl Efficiency [4]. Significant differences in the results between the surgical
face mask and the N95 are shown by the assessment with NIOSH NaCl Efficiency, in which the value
for the surgical face is lower than the N95 (as shown in Table 1). The NIOSH NaCl Efficiency method
can identify a poor filtration performance of the masks and is commonly used for the certification
process of a filtration device by assessing particulate-filtering and air-purifying respirators’ efficiency.
The filtration tests were done using an Automated Filter Tester with aerosolized NaCl solution sizes
that ranged from 0.022 to 0.259 µm. NIOSH certification tests usually use 90–100 min of penetration to
load 200 mg of aerosolized NaCl [4].
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Table 1. Face masks filtration efficiency.

Face Masks Penetration of Particles (%) NIOSH NaCl Efficiency (%) Reference(s)

Surgical Face Masks 44 54.72–88.4 [4,15]

N95 Respirator 0.01 (3M Vflex 9105 N95)
<0.1 (3M 9320 N95) 98.15–99.68 [4,15]

Cloth Mask 95 [15]

In addition, efficiency test results were also obtained with randomized control trials to assess
the performance of the N95 and the disposable surgical masks. A randomized control trial involves
participants that were using disposable surgical masks and N95 respirators in the hospital (handling
patients with a respiratory infection). The research was done by utilizing meta-analysis from 29
previous studies and six clinical studies and showed that the medical workers that were using N95
respirators and the ones with surgical face masks have an insignificantly different risk of getting
a respiratory infection. Although randomized control trials give an actual clinical situation of results
assessment, this type of research comes with several risks of bias; for instance, the research did not
measure the hand hygiene of the medical workers [1,9].

2.5. The Limitation of Commercially Available Face Masks

Randomized control trials and laboratory tests show that the current cloth-based face masks still
pose some limitations [1,15]. Such a claim was based on laboratory testing of filtration performance with
a TSI 8110 filter tester by a known concentration of sodium chloride particles of a specified size range
and at a defined flow rate. The penetration of particles on a cloth mask shows a very high percentage
compared to other types of medical face masks, as shown in Table 1 [15]. Furthermore, the risk of
getting infected might originate from self-contamination because of repeated uses of the cloth mask.
According to another study, after the 4th washing and drying of the cloth masks, the pore size enlarges,
which drops the filtration efficiency by 20%. The deflation of its efficiency is also affected by the lack
of microfibers within the pore region. However, despite the limitations, there is still the potential to
develop cloth masks by choosing the proper material and layers of the cloth. It is possible to develop
a cloth mask by exploiting the number of layers, layer density, and facial fitness, and yet at the same
time still considering the breathability, washability, and reusability [16].

A disposable surgical mask requires a minimum of 80% filtration efficiency to protect the users
from bacteria. It is not designed to be used more than once. It protects the users by reducing the risk of
getting any body fluid such as blood, but it is not adequate protection to prevent the users from getting
infected by a respiratory infection such as Covid-19. On the other hand, a respirator such as N95 is
a device that reduced the exposure of the user’s respiratory to airborne contaminants or particles that
are small enough to be inhaled by humans. Although the N95 respirator appears to be better protection
compared to other types of masks, the efficiency in blocking 300 nm particles is just around 85%, due
to its wider pores (pore sizes of N95 ≈ 300 nm), and the Covid-19 viruses have particle sizes around
65–125 nm [4]. Hence, it is still necessary to further develop this type of mask to increase its efficiency
in protecting the users from getting infected by the Covid-19 virus.

3. Membrane Technology for Virus Filtration

3.1. The Basic Principles of Membrane for Air Virus Filtration

Generally, the process of air filtration can be done either with membrane or depth filters. Depth
filters work by retaining the particles on the filters, whereas the membrane retains the particles on
its surface. A membrane typically composes of a thin porous polymeric film with specific pore
sizes. The purification of air from viral particles happens as the viruses are retained on the surface of
the membrane due to its smaller pores.
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The membrane-based materials have been used for the application of virus filtration. Membrane
material has a great potential to filter viruses, as the pore size of the polymeric membrane filter can be
adjusted according to its application. In fact, this technology has become a standard for the separation
of viruses on biopharmacy thanks to its high filtration efficiency. Typically, virus filters are composite
membranes that provide both mechanical properties and virus retention [17,18]. The virus filtration
has been successfully done to filtrate retroviruses (>50 nm) and parvoviruses (18–24 nm). It shows
excellent virus retention, which led to very high market demands. Unlike for virus filtration in aqueous
media, the airborne virus filtration technologies have been used for personal respiratory protection or
in air-purifiers. A poly (lactic-acid)/chitosan fibrous membrane, as shown in Figure 2, was used to
filter an artificial polluted environment with a removal efficiency of 100% in 33 min [19]. However, this
filtration technology also comes with a drawback where a cake formation on the surface of a membrane
occurs after several time of prolonged usages [17].
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The efficiency of filtration with membrane technology is largely dependent on its pore sizes and
distribution. The airflow rate will not affect the separation efficiency through a membrane. However,
it is also considered as an important factor due to its relation with the breathability of a mask. According
to the NIOSHs, a mask’s airflow rate needs to be more than 85 L/min. As presented in previous
research, a higher airflow rate will decrease the filtration efficiency of a mask. Yet, the airflow rate can
still be increased by increasing the overall material porosity without decreasing the filtration efficiency.
The main challenge of using a membrane for virus filtration is how to reduce and clean the foulant
materials [20].

3.2. Materials of Membrane for Virus Filtration

Almost all bacteria and viruses can be removed by ultrafiltration membranes, which usually
requires a low transmembrane pressure and is lower in cost [21]. Successful virus filtration is also
affected by the material of the membrane. Positively charged polymers have been proved to possess
a resistance toward the virus [22]. It can damage the lipid membrane of the enveloped viruses and
capsids of non-enveloped waterborne viruses. A polyethyleneimine (PEI) is a polymer material
that gives antimicrobial and antiviral properties and is known as an efficient transfection agent
with low cytotoxicity [16,22]. Based on previous research, a modified membrane with PEI-coated
polyethersulfone (PES) materials have induced a tremendous ability to reduce viral presence by 99.9%,
which was never reached before in other research studies [22].

Cationic polymer materials interact with the virus’s cell membrane and destroy it after successfully
permeating the cell walls. The destruction of the cell wall occurs due to interaction between the amino
groups of PEI and cell membranes. It is reported to have optimal properties at molecular weights of 9,
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10, and 24 kDa. The cationic polymer was used in previous research as an anti-HIV-1 material in which
the filtration efficiency was increased as the molecular weight of the PEI increases [23]. Moreover,
zwitterionic hydrogen was also found to be effective for virus removal in water reuse, as it creates
a repulsive interaction between the virus and the membrane. The interaction overcomes the fouling
problem on the PES membrane surface because it prevents the virus from approaching the membrane
surface, thanks to the modification with a grafter layer of poly [3(methacryloylamino) propyl] dimethyl
(3-sulfopropyl) ammonium hydroxide hydrogel. Hence, it weakened the accumulation of the virus
on the membrane’s surface and eventually increased its filtration efficiency [24]. Moreover, surface
patterning of the membrane has also been proven to be an effective technique to overcome the fouling
problem. It prevents the deposition of particles on membrane’s surface, which can be induced by
a template micromolding method or direct printing method [25].

The application of polyphenols onto masks was also proved to be effective for antiviral properties.
Polyphenols are secondary metabolites that can be extracted from many kinds of plants. The antiviral
properties of polyphenol are due to the existence of catechin and theaflavin molecules that bond with
the virus’s nucleic acid. Catechin with 98% purities was used via grafting it on commercial non-woven
cellulose layers. The modified cellulose layers successfully enhanced the antiviral properties of
commercial masks. However, the use of three modified layers decreased airflow, which makes it less
breathable [26].

3.3. Reinforcing Face Masks by Using Membrane Filters

The development of face masks has been studied to increase the filtration efficiency of face masks
and to add other functionalities. A lot of aspects can still be improved. The efficiency of prime
protection such as N95 respirators is still only at 85% efficiency because of the pore size of 300 nm,
which is much larger than the size of the Covid-19 viruses of around 65–125 nm [20]. Therefore, several
studies were conducted by applying membrane technology to reinforce the currently established face
masks. This finding suggests that it is still possible to enhance the filtration efficiency of face masks
using a membrane filter with a specific pore size to almost completely prevent the virus from passing
through the mask’s filters [27].

Three established parameters to assess the overall filtration performance of masks are the filtration
efficiency, breathability, and durability. The implementation of membrane technology is intended to
not only increase filtration efficiency but also to increase filtration efficiency and provide a comfortable
face mask. Recently, membrane filters with enhanced characteristics such as smaller pore size, lighter
weight, low air resistance, and a more active surface membrane by electrostatic forces or chemical bond
interaction have been discovered. Particulate matters removal efficiency can be increased by using
membrane filters with nanosized diameter fibers, which are also called a nano fiber membrane [27].

The fabrication of a nanofiber membrane can be conducted using the electrospinning method,
and polymer as the main material yields to a great filtration efficiency (>95%) with an average fiber
diameter of ≈200 nm, sufficient pressure drop (132 Pa), and lightweight. Another newly developed
interconnected membrane shows an even higher filtration efficiency of 300 nm aerosol particles: up
to 99.99%. Moreover, it yields a tremendous quality factor (0.1163 Pa−1) under a high flow rate
(90 L min−1), which is significantly better than regular masks [8]. Electrospinning technology can
generate a uniform diameter nanofiber with a given diameter where the filtration efficiency will
decrease as the nanofiber diameter increases. The nanofiber’s utilization is a significant part of
reinforcing regular face masks, as it shows excellent characteristics such as high permeability, low
basis weight, and small pores. Nanofiber filter media could retain particles with nanosized pores
≈ 100 nm with very high virus retention efficiency and simultaneously offer adequate breathability
due to the ability to reduce airflow resistance on masks. It has been proven in previous research
that the incorporation of nanofibers onto disposable surgical face masks has shown greater filter
efficiency [27]. Typical commercial surgical masks have an efficiency between 80.57% and 84.78% [27].
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Many recent developed electrospun air filters show better properties. For example, the composite
air filter membranes generated by electrospinning a mixture of polyvinyl chloride and polyurethane
polymer (PVC/PU) demonstrates good mechanical properties with a tensile strength up to 9.9 MPa
with an excellent air permeability (706.84 mm s−1), a high filtration efficiency (99.5%), and a low
pressure drop (144 Pa). A composite membrane fabricated with Nylon 6 and PAN was found to
be showing an even higher filtration efficiency (99.99%). Moreover, the superhydrophobicity and
superoleophobicity of the electrospun nanofiber composite membranes can be adjusted. Another
developed air filter of a multilayer structured air filter membrane has been studied. Wan et al.
conducted a superhydrophobic eletrospun air filtration medium after they spun the PSU with TiO2

nanoparticles and deposited it onto a conventional non-woven substrate. This fabrication of layers
also achieved very high filtration efficiency (99.9997%) with a pressure drop of 45.4 Pa. A multilayer
structured air filter membrane with a high filtration efficiency of 99.989% (for 300–500 nm NaCl
aerosols) was also conducted by using PAN nanofibers with incorporated silica nanoparticles [28]

Despite of the all advantages of the general electrospinning method, it comes with a great
environmental impact. Hence, it should be highlighted that it is important to imply the green
electrospinning for the fabrication of a nanofiber membrane. For example, the materials used
in the electrospinning process can be substituted with natural polymers such as polysaccharides,
proteinaceous materials, and natural waste, biosynthetic polymer materials, and the chemical synthesis
of polymers. In addition, the use of harmful solvent can be altered with water as the electrospinning
solution where a water-soluble polymer is used such as polyvinyl alcohol (PVA), polyethylene oxide
(PEO), polyamic acid (PAA), and hydroxypropyl cellulosecan (HPC) [29].

Polyamide nanofiber was successfully obtained by electrospinning the ammonium salts of PAA
via aqueous solution. An eco-friendly electrospun membrane was also conducted by Lv et al.,
where the membrane was fabricated by using polyvinyl alcohol (PVA), konjac glucomannan (KGM),
and ZnO nanoparticles via green electrospinning and eco-friendly thermal cross-linking. The ZnO
nanoparticles enhanced the filtration efficiency up to 99.99% and increased the pressure drop to
130 Pa (300 nm particles). Moreover, the solvent-free electrospinning methods have also been studied
(i.e., melt electrospinning, anion-curing electrospinning, UV-curing electrospinning, thermo-curing
electrospinning, supercritical CO2-assisted electrospinning) as efficient and environmentally friendly
manufacturing processes [29,30].

3.4. Face Mask Reuse

Due to a shortage of face masks during the corona pandemic, different types of face masks were
fabricated with option for reuse. This led to some studies on the reusability of face masks. A disposable
surgical face mask can be reused after a proper sterilization. A proper sterilization can be done using
a dry sterilization process or regular steam process for 15 min at 121 ◦C where the face masks were
placed in sealed bags [3]. These processes are considered as an efficient way to sterilize face masks
by inactivating the coronavirus. Previous research assessed the effectiveness of this method through
blind comparison of a used mask with an unused mask of permeability properties, pressure drop,
and filtration capacity. The results show that no differences were found between the used and unused
mask, even after multiple sterilizations. Hence, dry sterilization and a regular steam process can be
a great option to deal with the shortage of masks in hospitals [3].

As mentioned before, fibrous filters have shown many great advantages as materials for air filters.
They have been developed by adhering antimicrobial components onto filter fibers such as silver,
cobalt, and titanium oxide nanoparticles. However, the incorporation of nanoparticles on filters will
decrease its durability for reuse. This problem was solved by fabricating a fibrous filter with non-woven
polyethylene terephthalate (PET), which was treated with titanium isopropoxide and dip-coated into
AlH3{(OC4H9)2}. Although PET/Al filters were fabricated using a chemical process, they did not show
any significant change in the filtration performance. The coating of the PET filter with Al improved
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its durability, which was shown from its stable performance even after washing the filters multiple
times [2].

4. Integration of Membrane Technology and Other Technology for Virus Filtration

4.1. Electrocharge Polymer Fabric

Filters with electrocharge can retain the particulates by an electrostatic interaction rather than
size exclusion. Positively charged filters are needed to filter viruses, which usually have a negative
charge. Recent studies have employed electropositive filters for virus filtration in water. In contrast,
electronegative filters have been used and mixed with cellulose ester membrane with nanosized pores
between 450 and 100 nm and effectively retained enteroviruses. Although viral particles have smaller
sizes than the pore sizes of a membrane, the retention of viruses still happens due to the presence of
salts (cation valence), which yielded to virus adsorption. Moreover, the increase of pH value (acidity)
will also affect its efficiency to adsorb viruses. The results of previous research show that at pH 7,
the presence of salts increased virus adsorption. On acidic conditions (pH 3.5), more than 95% of
viruses were adsorbed [31].

Filtering face piece respirators comprise composite structures with multiple layers where a central
filter layer consists of electret properties. The central layer can be made by synthetic polymer fibers,
e.g., polypropylene, polybutylene terephthalate, and polytetrafluoroethylene. Electrostatic charging
was delivered into the central layer by corona discharge, triboelectrification, or electrostatic spinning.
Furthermore, particles were retained effectively because of mechanical action and electrostatic forces.
In contrast, the filter layer fabricated through the melt-blown method will not possess the electret
properties. Hence, the filtration process will only happen mechanically, which decreased its virus
retention efficiency [31].

4.2. Si-Based Nanoporous Template

Since 2007, an Si-based nanoporous template has been developed with its ability to form pores
spontaneously during the crystallization of silicon film. It is capable to form pores of ≈5 nm with a very
narrow pore size distribution [32]. Silicon nanowire templates can be produced by the chemical vapor
deposition (CVD) method. CVD involves the deposition of gold nanoparticles on a silicon substrate.
A silicon precursor (SiCl4) was added into the CVD reactor containing a silicon substrate at 850 ◦C
temperature where the silicon nanowires were subsequently formed vertically. Then, the polyimide
membrane was fabricated after adding the polyimide solution onto silicon substrate nanowires, which
were etched with O2 plasma, and KI/I2 solution. This process involves XeF2 as an etchant to remove
the silicon component of nanowires. The results show that the membrane’s pore sizes were influenced
by the template diameter and duration of XeF2 etching, whereas the thickness of membranes depends
on the amount of poured polyimide solution. This research was successfully conducted on membranes
with pore sizes dependent on diameter templates ranging from 800 to 170 nm [33]. The smallest pore
was found by applying 50 cycles of etching using a diameter template of 90 nm (as shown in Figure 3).

The Si-based nanoporous template has been widely used thanks to its versatility to fabricate
a membrane. It generates a membrane with an array of pores in a size range between 500 nm and 5
µm, which are commonly used in electroosmotic pumps. According to El-Atab et al., [20], a higher
KOH etch rate on silicon releases a microneedle array, which has been studied for use in DNA
separation. Membranes are formed by the potassium hydroxide etching process of the macroporous
silicon wafers backside. The etching process takes place by utilizing the formation of a coupled
chemical–electrochemical system by KOH and Si [34]. The etching process determines the pore size
and shape of a membrane where an exposed part will be transformed into a hollow channel [35].
Conventionally, the etching process involves 25% KOH at 80 ◦C with a rate 1.3 µm min−1 or at 90 ◦C
with 2.8 µm min−1 rate. Potassium hydroxide did not enter into the pores or dissolve in the membrane,
because it was already oxidized thermally with silicon dioxide, which was forming a thin etch stop layer.
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The thin etch layers will subsequently be removed using hydrofluoric acid to complete the fabrication
of the membrane [34].
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The fabrication of a silicon-based template involves two main processes: patterning and KOH
etching to produce a material with a nanosize range of pores. Silicon-based patterns were generated
by exposing the SOI wafer coated by a SiO2 hard mask to e-beam lithography, where an array of 90
nm by 90 nm was obtained with a spacing adjusted to be 200 nm. The process was continued with
the Reactive Ion Etching (RIE) system to remove the exposed area of a SiO2 hard mask. Subsequently,
the etching process with KOH was done to achieve V-grooves. The etching time with KOH 44%
affected the nano-aperture sizes, which was increased as a function of time. The created template
can be used to fabricate a membrane with polyamide as a hydrophobic material. A SiO2 hard mask
was used to utilize the lower energy of Si than PI, which facilitated the membrane being peeled off

easily after being etched. Polyamide film would be etched with the RIE system to create cavities with
a nanosize range on the film [20].

4.3. Hydrophobic Flexible Membrane

There are two types of surface membrane properties, either hydrophobic or hydrophilic.
The hydrophobic membrane is known as “water repellent” as it is a prohibiting surface to get wet.
Water droplets will be formed on the surface of the hydrophobic membrane due to its low surface energy.
Hence, a membrane’s hydrophobic properties are a great advantage in its application to develop face
masks [36]. Nowadays, electrospinning has been a widely used technology to fabricate a flexible and
permeable membrane [37]. A polymer membrane with a very high contact angle (>150◦) was conducted
from previous research by using PVDF/ZnO nonofiber fabricated with electrospinning technology.
A very high contact angle (>90◦) indicates the great hydrophobicity properties of a membrane. Its high
hydrophobicity gives a self-cleaning surface where the particles that were retained on the surface
will be washed away with water droplets, leaving a dry and clean membrane [38]. The feasibility of
polytetrafluoroethylene/poly (vinyl alcohol) PTFE/PVA nanofibers electrospun on a PTFE microfiber
membrane was investigated. The composite membrane was a hydrophobic membrane (as shown by
optical contact angle measurements in Figure 4), which demonstrated an increase of filtration efficiency
to 98.905% and 100% for PM2.5 and PM7.25, respectively [39].
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There are several factors affecting membrane surface wettability such as the surface energy, surface
roughness, and surface tension of a liquid. Surface energy is induced due to the relationship between
the cohesion force and the adhesion force. In addition, liquid surface tension also influences membrane
wettability where stronger intermolecular forces raise surface tension. When a liquid droplet is placed
on the membrane surface, it will form a droplet contact angle of more than 90◦, which is indicating
its hydrophobicity. Furthermore, a super hydrophobicity material has already been developed with
a contact angle of more than 150◦. The materials used to fabricate hydrophobic membranes are
usually polymers with low surface energy such as polyethylene (PE), polypropylene (PP), PET,
and polyvinylidene chloride (PVDC). A development of hydrophobic membranes with hydrophilic
monomers such as AA, HEM, As, Ct, and Ma with OH functional groups has been discovered.
The hydrophilic monomer’s addition yields a formed nanopore size top layer of membrane-enhanced
surface roughness and hydrophilicity [36].

According to previous research, a silicon-based nanoporous template generates a hydrophobic
membrane film that is effective in reducing the membrane fouling. A filter with a hydrophobic surface
is favored because it repels droplets to slide over the face mask instead of being retained on the surface,
forming a cake. This method shows good results, as demonstrated by the SEM images. It can generate
a polyamide membrane with a narrow distribution of pore sizes, which vary between 5 nm and 55 nm
depending on the etching time with KOH. Moreover, the pressure drop of the membrane was also
calculated to make sure it still has an adequate breathability, as it will be attached to an N95 respirator.
The calculation results show that wider pores give a higher airflow velocity (higher breathability) but
reduce filtration efficiency. The spacing also affects airflow velocity. It is necessary to have ≈300 nm
spacing to achieve a standard airflow velocity (of >85 L min−1), which increases at higher pore sizes.
Yet, it is possible to overcome this problem by applying several patterning steps to increase the porosity
and breathability of the membrane [20].

Since membrane filtration works as it strains particles on the surface, cake formation will also be
an issue. A formed cake on the membrane’s surface will block pores and further reduce the airflow
velocity. However, due to the hydrophobic characteristic of polyamide and a large inclination angle of
the membrane when it is attached to a mask, it is supposed to have a self-cleaning system. The droplets
will be rolled over the polyamide film. Therefore, it will not reach the wearers, as it might carry
coronavirus [20].
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4.4. Electret Polyethersulfone/Barium Titanate Nanofibrous Membrane

Airborne pollution and pathogens have been an issue for human health and have become a great
concern, leading to a highly desired face mask with adequate performance to protect the wearer from
getting exposed to contaminated air. A study about an electret polyethersulfone/barium titanate
nanofibrous membrane was conducted by integrating it on a non-woven polypropylene. A disposable
surgical mask and respirator composed of polypropylene non-woven fabric were produced by using
the melt-blowing method. The melt-blown layer’s polypropylene has a diameter between 1 and 10 µm
with a thickness around 100–1000 µm, which is not an adequate characteristic to have a great
performance to filter fine particles such as viruses that have nanosized particles [38]. Other fibrous
materials such as glass fibers and spunbonded fibers are also inadequate to perform the filtering process
due to its high pore size. Hence, to increase filtration efficiency, some methods have been applied
such as corona charging, thermal poling, and triboelectrification. Those methods are considered as
promising in obtaining an efficient filtration process. A long-range electrostatic force and the creation
of countless electrodes on the periphery fibers have improved the filtration efficiency. However,
a major concern was found, in which they cause a serious limitation of airflow due to its high basis
weight and low porosity, which is associated with the breathability of wearers, moisture, and thermal
radiation [40].

The electrospinning process is considered as an advanced technology to fabricate an ultralight
nanofiber membrane because it results in pore morphology with high tortuousity, a tunable pore
size and shape, and good packing density. Hence, it is a promising technology to fabricate a filter
material with a high filtration efficiency with its ability to capture particles. Moreover, barium titanate
(BaTiO3) can be used as the main material for the ferroelectric inorganic electret in the electrospinning
process and to fabricate the desired properties of a nanofiber membrane. In addition, polyethersulfone
(PES) was selected as a precursor polymer as it has excellent properties, indicating it as an excellent
material for an air filters. It resulted in a composite breathable nano-membrane, which also provides
the radiative cooling properties suitable for a mask [40].

The fabrication of the nanofibrous membrane used barium titanate (BaTiO3, particle size 20–60 nm),
polyethersulfone (PES), N,N-dimethyformamide (DMF), and N-methyl-2-pyrrolidone (NMP). The dope
solutions were prepared using DMF/NMP solvent with a varied weight ratio and the mixture solution
of PES and various amounts of BaTiO3. The results show that as the ratio of DMF/NMP decreased,
the fiber diameter was also decreased down to 115 nm. The deflation of the formed fiber’s diameter
might be influenced by a high boiling point of NMP. The data also show that a parameter of air filtration
is significantly affected by solvent properties. Based on the characterization with NCl aerosol particles,
a higher solvent concentration decreased both the filtration efficiency and pressure drop of the resulting
nanofiber membrane. Moreover, the addition of an inorganic electret greatly enhanced the filtration
efficiency, as its presence decreased the fiber diameter of the membrane with a more homogeneous
size as a result of the prompt evaporation of solvents during the separation phase. A higher value of
softness of the membrane was also achieved by injecting more BaTiO3. An injection of 2% BaTiO3 led
to the formation of the smallest pore size of 1.47 µm with a maximum pore size of 2.56 µm. It also
resulted in a better moisture transferability related to the comfort for the mask’s wearers. Moreover,
a composite membrane consisted of PES and 1.5% BaTiO3 showed a great filtration efficiency (99.99%),
low pressure drop (67 Pa), and low basis weight (4.32 g m−2) [40].

4.5. Colloidal Silver Nanoparticle-Reinforced Membrane

A protective layer with great hydrophobicity and dryness is a very important attribute of face
masks. A moist environment will lead to the growth of bacteria, which will cause a health risk for
the wearers. Nowadays, the utilization of nanoparticles (e.g., titanium oxide, zinc oxide, copper, gold,
magnesium, chitosan, silver, and alginate) has been widely explored to impose antimicrobial properties
on masks. Commonly, due to their unique optical, physicochemical, and biological properties, silver
(Ag) nanoparticles have been used in various fields [41]. It has been proven that the incorporation of
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nanoparticles (gold) was successfully conducted to form a membrane with a very narrow pore size
distribution, which is an important factor in generating a filter layer for viruses [17].

Silver nanoparticles possess great antimicrobial and antifungal properties. Basically,
the nanoparticles are incorporated into the material of a mask, which can be done by using several
different methods such as sol–gel, photochemical, electrochemical, sonoelectrochemical, light-assisted,
the silver salt method, etc. The silver salt method is considered an easy synthesis procedure, as it requires
less time for the synthesis and the formation of high-purity silver nanoparticles. Moreover, the addition
of reducing agents such as dimethylformamide, polyvinylpyrrolidone, etc, result in silver nanoparticles
in a range size between 1 and 10 nm. However, the use of reducing agents has been replaced with more
eco-friendly agents, such as starch to replace the toxic chemical reducing agents [41]. The mechanism
of antimicrobial properties is illustrated in Figure 5.
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In a previous study, silver nanoparticles were formed in the surface of a face mask to improve
its resistance to bacteria growth. The incorporation of nanoparticles was done by soaking the face
mask in a silver colloidal solution prepared using starch, AgNO3, and N2H4. Silver nanoparticles were
successfully incorporated onto the face mask as proven from characterization of the treated mask with
the UV-visible spectroscopy and the EDAX analysis. The mask with silver nanoparticles shows that
it effectively inhibits bacterial growth (E. coli and S. aureus) by destroying the bacteria’s cells via DNA.
The findings demonstrate the efficacy of silver nanoparticles for biomedical application [41].

Silver nanoparticles have also been used in membrane technology as they show great advantages.
The silver nanoparticles are typically incorporated onto the membrane. The general fouling
in the membrane can be overcome by adding silver nanoparticles, which will lead to better permeability,
selectivity, structure robustness, anti-fouling, antimicrobial, and photodegradation properties [42].
A previous study compared triangular silver nanoparticles and spherical shape silver nanoparticles
regarding antifouling polymer-membrane performance. A polyethersulfone microfiltration membrane
with a pore size of 0.1 µm was modified with silver nanoparticles ≈30 nm. The results show that
the modified membrane with triangular-shaped silver nanoparticles has improved antibacterial
killing efficiency (100%), which is better than that of the spherical-shaped silver nanoparticles (91%).
Higher efficiency was achieved because of the high atom density active facets of triangle silver
nanoparticles, where its sharp tip increased the negative charge on the membrane, resulting in an
improved anti-adhesion and reduced biofouling on the membrane. The modified membrane also
poses an enhanced flux of 36% and high flux recovery of up to 96%. Moreover, the modification with
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silver nanoparticles with a triangle shape gives long-term membrane stability for up to 4 months of
usage [43].

According to another research study, silver nanoparticles have been proven to have great resistance
not only to bacteria but also viruses. Similar to bacteria, these nanoparticles exert an antiviral activity
by penetrating the cell membrane of viruses and interacting with the viral genome. The interaction
between virus cells and nanoparticles prevents the cell from replicating. The utilization of nanoparticles
has been studied to analyze the effectiveness of its capability to give inhibitory effects toward viruses
such as influenza virus, monkey-pox virus, HIV, hepatitis B virus, etc. [44].

4.6. Future Perspectives

Apart from those discussed earlier, the interaction between viruses and the filter surfaces is
important. Virus adsorption onto surfaces was affected by electrostatic interaction, hydrophobic
effect, van der Wals interaction, hydrogen bonding, and steric hindrance. The interaction depends
on the capsid size, shape, geometry of the virus, and the surface charge, polarity, and topography of
the surface [45]. In liquid filtration, the interaction might be affected by pH and salts, which influenced
the hydrophobic interaction of viruses and the surfaces [46]. Yet, in airborne viruses, the aerosol droplet
carrier size affects the infectivity and survivability of viruses [47,48]. In order to enhance the filtration
efficiency and virus ineffectuality of face masks, tuning the polymer-specific properties which are
capable of capturing micro-aerosol droplets and adsorbing the coronavirus become critical (schematic
overview shown in Figure 6).
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Furthermore, a newly developed method has been discovered for the fabrication of fibers, namely,
force spinning technology. Through this technology, fibers with a size range between 100 and 600 nm
can be obtained. The working principle of the force spinning technology is similar to that of a cotton
candy machine, where the polymer is melted from the center and ejected to orifices. Subsequently,
fine webs of fibers are obtained after the continuous stretching of the melted polymer and finally
collected on the collector system. Several factors affect the formation and morphology of the fibers.
They include the solution concentration, viscosity of the melted polymer, rotational speed, the distance
between collection system and spinneret, and the gauge size of the spinneret. This technology comes
with several drawbacks: it needs a large-scale production, continuous fiber collection on roll goods,
and extension to spin a variety of polymers in addition to polypropylene and nylon [49]. However, this
technology is simple, by slightly modifying a common cotton candy machine (as shown in Figure 7),
and it demonstrated the ability to produce electrocharged polymer materials such as polypropylene.
During the very difficult global situation at present, the use of polystyrene or polyethylene from plastic
bottles, for instance, is possible [50].
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5. Concluding Remarks

This study reviewed many potential approaches to advance the production of face masks via
membrane technology. Membrane-based technology demonstrates an excellent filtration efficiency for
the separation of micro-aerosol droplets and viruses. Facile approaches are available to further enhance
the filtration efficiency of the current face mask materials. They can be done by maintaining the surface
charge, hydrophobicity, antiviral-embedded nanoparticles, and pore-tuning methods. Furthermore,
the virus adsorption onto the polymeric materials of the face mask is worth investigating to increase
the filtration efficiency and virus ineffectuality. The approaches might become an option to overcome
the shortage issue of face masks, although the cost efficiency must be calculated. Furthermore,
the method should be practically feasible to be conducted by the community with a minimum
requirement of technical knowledge.
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