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A B S T R A C T   

Research on the impact of the environment on COVID-19 diffusion lacks a full-comprehensive perspective, and 
neglecting the multiplicity of the human-environment system can lead to misleading conclusions. We attempted 
to reveal all pre-existing environmental-to-human and human-to-human determinants that influence the trans-
mission of COVID-19. As such, We estimated the daily case incidence ratios (CIR) of COVID-19 for prefectures 
across mainland China, and used a mixed-effects mixed-distribution model to study the association between the 
CIR and 114 factors related to climate, atmospheric environmental quality, terrain, population, economic, 
human mobility as well as non-pharmaceutical interventions (NPIs). Not only the changes in determinants over 
time as the pandemic progresses but also their lag and interaction effects were examined. CO, O3, PM10 and PM2.5 
were found positively linked with CIR, but the effect of NO2 was negative. The temperature had no significant 
association with CIR, and the daily minimum humidity was a significant negatively predictor. NPIs' level was 
negatively associated with CIR until with a lag of 15 days. Higher accumulated destination migration scale flow 
from the epicenter and lower distance to the epicenter (DisWH) were associated with a higher CIR, however, the 
interaction between DisWH and the time was positive. The more economically developed and more densely 
populated cities have a higher probability of CIR occurrence, but they may not have a higher CIR intensity.The 
COVID-19 diffusion are caused by a multiplicity of environmental, economic, social factors as well as NPIs. First, 
multiple pollutants carried simultaneously on particulate matter affect COVID-19 transmission. Second, the 
temperature has a limited impact on the spread of the epidemic. Third, NPIs must last for at least 15 days or 
longer before the effect has been apparent. Fourth, the impact of population movement from the epicenter on 
COVID-19 gradually diminished over time and intraregional migration deserves more attention.   

1. Introduction 

The COVID-19 pandemic is still ongoing, as of August 2021. A better 
understanding of the effects of comprehensive natural (environmental- 
to-human and pollution-to-human) and human (human-to-human) 
environmental factors on COVID-19 transmission could contribute to 
finding solutions for its monitoring and treatment. In addition, envi-
ronmental changes, such as climate change, land use changes, urbani-
zation, biodiversity loss, and invasive species, may increase the risk of 
emerging infectious diseases (EIDs) [1–3], and the environmentally 
related experience gained from COVID-19 will also provide lessons for 

future prevention and control of EIDs. 
Regarding this ongoing major health crisis, the natural environment 

refers to the factors accounting for pollution-to-human and 
environmental-to-human transmission mechanisms [4,5], including air 
pollutants such as PM2.5, PM10, SO2, NO2, O3 and CO, and meteorolog-
ical variables such as temperature and relative humidity [6–10]. In 
addition, the human environment refers to the factors accounting for 
human-to-human diffusion mechanisms [4,5]. What researchers focus 
on is socioeconomic, such as GDP, demographic variables, such as 
population density, and human activity patterns, such as human 
mobility and control measures [11–17]. Non-pharmaceutical 
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interventions (NPIs) such as closing schools, closing entertainment 
venues and suspending intracity public transport (bus and subway), 
banning public gatherings and intercity travel restrictions have been 
proven to have a positive effect on the control of COVID-19 
[11–13,16–18]. The pandemic is actually a very complex phenome-
non, and its diffusion patterns are typically caused by a multiplicity of 
environmental, economic and social factors, hence, full-comprehensive 
variables and systematic analytical procedures should be considered in 
the analysis to describe any possible correlation in a rigorous way 
[10,19–22]. However, current studies did not consider that complex 
outcomes may be due to disciplinary specialties increasing attitudes of 
scholars concentrating on specific factors, neglecting this multiplicity 
during a pandemic crisis that can present substantial risks of bias and 
lead to misleading conclusions [20,22]. 

This novel coronavirus was identified in December 2019 in Wuhan 
City of China, and since 23 January, thirty provinces, municipalities and 
autonomous regions in China sequentially activated the Level-I alert of 
public health incidents, the highest level of emergency public health 
alerts and responses in the nation's public health management system 
[23]. After reaching a peak on February 13, 2020, the number of newly 
confirmed cases gradually decreased, and after April 3, the number of 
new local cases remained in single digits or 0, followed by small-scale 
outbreaks (the number of new cases per day is less than 300) in 
several cities since June 11 [24,25] that appear to be related to imported 
cases or seafood [26]. Therefore, the period from the first confirmed case 
in Wuhan to June 11, 2020, in China was a perfect real-world example of 
the epidemic evolution that can reflect the impact of the integrated 
human-environment system on the development of the epidemic. 

Therefore, this study conducted an evaluation in China on devel-
oping a comprehensive vision of COVID-19 contagion that considered 
the multiplicity of environmental-to-human and human-to-human 
channels. At the same time, the lag effects of NPIs, population 

movement and atmospheric environment were also discussed. 

2. Methods 

2.1. Data collection and preparation 

In the study, city-level data were collected among 366 cities of 31 
provinces in mainland China (Fig. 1) between Jan 10 and Jun 11, 2020. 
Daily data on the number of newly confirmed COVID-19 cases were 
obtained from the Outbreak Notification of the National Health Com-
mission of the People's Republic of China (http://www.nhc.gov.cn/ 
xcs/yqtb/list_gzbd.shtml) and provincial or municipal health commis-
sions. The accumulated confirmed COVID-19 cases per 100,000 persons 
at the city level until June 11, 2020 are shown in Fig. 1. For the outlier 
processing, see Additional A and Fig. S1. 

The association between an independent factor and disease inci-
dence counts may fail to infer the association with disease transmission 
[19,22], so we transformed the incidence data to case incidence ratios 
(CIR, cases per 10 million persons) reflected by both the number of 
COVID-19 cases and population base. 

The time variable (Day) from January 10, 2020 to June 11, 2020 was 
coded from 0 to 154. Considering that the change in CIR with time is a 
curve process of first increasing and then decreasing, the quadratic 
growth model is used to add a square term of the time variable, namely, 
Day2 = Day * Day. 

Table 1 lists all the variables and their data sources. 
The daily climate data, including daily minimum temperature 

(MinT), maximum temperature (MaxT), mean temperature (MeanT), 
relative humidity (Rh) and minimum relative humidity (MinRh), were 
downloaded from the China Meteorological Data Service Center 
(http://data.cma.cn). 

Atmospheric environmental quality data, including daily CO, NO2, 

Fig. 1. The accumulated confirmed COVID-19 cases per 100,000 persons at the city level in mainland China from Jan 10 to Jun 11, 2020.  
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Table 1 
Data type, variables and data source.  

Data type Variable Abbreviation Units Scale Data source 

Disease COVID-19 data Case incidence ratios (cases per 10 million persons) CIR 0.00001% Daily National Health Commission of the People's Republic of China (http:// 
www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml) and provincial or 
municipal health commissions 

Natural 
environment 

Climate data Minimum temperature MinT 0.1 ◦C Daily http://data.cma.cn 
Maximum temperature MaxT 0.1 ◦C Daily 
Mean temperature MeanT 0.1 ◦C Daily 
Relative humidity Rh % Daily 
Minimum relative humidity MinRh % Daily 

Atmospheric 
environmental quality 
data 

Carbon monoxide, CO CO, CO_1, …, CO_9 mg/m3 Daily https://datacenter.mee.gov.cn/ 
Nitrogen dioxide, NO2 NO2, NO2_1, …, NO2_9 μg/m3 Daily 
Ozone, O3 O3, O3_1, …, O3_9 μg/m3 Daily 
Fine particles, PM2.5 PM25, PM25_1, …, 

PM25_9 
μg/m3 Daily 

Inhalable coarse particles, PM10 PM10, PM10_1, …, 
PM10_9 

μg/m3 Daily 

Sulfur dioxide, SO2 SO2, SO2_1, …, SO2_9 μg/m3 Daily 
Air Quality Index AQI, AQI_1, …, AQI_9  Daily 

Terrain data Mean DEM MeanDEM m Daily http://www.gscloud.cn 
Human 

environment 
Population data Household population Pop 10,000 

Person 
2019, 
Fixed 
value 

http://tjj.shandong.gov.cn/tjnj/nj2020/zk/indexch.htm, etc. 

Population density PD Person/km2 2019, 
Fixed 
value 

http://www.mohurd.gov.cn/xytj/index.html 

Economic data Gross domestic product per capita GDP 100 million 
RMB 

2019, 
Fixed 
value 

http://tjj.shandong.gov.cn/tjnj/nj2020/zk/indexch.htm, etc. 

Human mobility Destination migration scale flow from Wuhan =
destination proportion in population flow from Wuhan 
* migration scale 

Popmob，Popmob1, …, 
Popmob9, Popmobsum  

Daily http://qianxi.baidu.com/ 

The distance of each city from Wuhan DisWH km Fixed 
value 

Distance measurement based on GIS 

Public health control 
measures 

National emergency response Reslevel, Reslevel1, …, 
Reslevel20  

Daily National Health Commission of the People's Republic of China (http:// 
www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml) and provincial or 
municipal health commissions  
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O3, PM2.5, PM10, SO2 and AQI (air quality index), were downloaded 
from the Data Center of the Ministry of Ecology and Environment of the 
People's Republic of China (https://datacenter.mee.gov.cn/). Linear 
interpolation was used to replace the 103 missing values of air pollutants 
and AQI. Besides, the delay effect of atmospheric environmental in-
dicators was also identified. For example, CO_1 is defined as CO delayed 
by one day, etc., CO_9 is defined as CO delayed by 9 days. Other at-
mospheric environmental indicators are similar. 

The terrain data ASTER GDEM 30 M were downloaded from the 
Geospatial Data Cloud, Computer Network Information Center, Chinese 
Academy of Sciences (http://www.gscloud.cn). The mean DEM 
(MeanDEM) of each city was calculated. 

Among the human factors, the household population (Pop) and gross 
domestic product (GDP) in 2019 were collected from statistical year-
books of each province of China. At the same time, to test whether the 
effect of GDP on CIR changes over time as the pandemic progresses, the 
interaction effect of GDP and time was considered, it was named 
Day_GDP = Day * GDP. The population density (PD) in 2019 was 
downloaded from the Ministry of Housing and Urban-Rural Develop-
ment of China (http://www.mohurd.gov.cn/xytj/index.html) and refers 
to the density of the population in an urban area. 

The destination proportion in population flow from Wuhan (WH) 
and migration scale (MS) from January 1 to January 23 (Wuhan lock-
down), 2020, were downloaded from Baidu (http://qianxi.baidu.com/), 
and the destination migration scale flow from Wuhan (Popmob) was 
calculated by multiplying WH by MS. Meanwhile, considering the delay 
effect of Pobmob, Popmob1 is defined as a delay of one day, etc., Pop-
mob9 is defined as a delay of 9 days. The cumulative Popmob (Pop-
mobsum) from January 1st to the current date was also calculated. 

The distance of each city from Wuhan (DisWH) was calculated. At 
the same time, considering the interaction effect of DisWH and time, it is 
named Day_DisWH = Day * DisWH. 

According to the national emergency plan for public health emer-
gencies (http://www.gov.cn/yjgl/2006-02/26/content_211654.htm), 
China's public health alert system is categorized into four levels in terms 
of the nature of the incidents, extent of harm and scope: Level-I 
(extremely significant), Level-II (significant), Level-III (major) and 
Level-IV (normal). The description of each emergency response level 
and the corresponding specific measures in response to this epidemic are 
shown in the Additional file,Table S1. The level of the adopted control 
measures (Reslevel) at different times in 366 cities were collected from 
National Health Commission of the People's Republic of China (http:// 
www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml) and provincial or munic-
ipal health commissions. We recoded no response, Level-IV, Level-III, 
Level-II and Level-I as ordinal categorical variables, specifically, 0, 1, 2, 
3 and 4, where the larger the value of Reslevel, the stricter the measures. 
Meanwhile, considering the delay effect of Reslevel, Reslevel1 is defined 
as a delay of one day, etc., Reslevel20 is defined as a delay of 20 days. 

2.2. Statistical analysis 

The CIRs were extremely nonnormally distributed, exhibiting a large 
clump of values at zero (51776/56364, 91.8%) and skewed nonzero 
values (Additional Table S2, Figs. S2 and S3). To address these semi-
continuous outcome measures, we used a mixed-effects mixed-distri-
bution model (also called a multilevel mixed distribution model) with 
correlated random effects for repeated measures data with clumping at 
zero and highly skewed [27,28]. The model contains components to 
model the occurrence probability of a nonzero value (the ‘occurrence 
model’, based on logistic regression using all city-day CIR data) and the 
probability distribution of nonzero values (the ‘CIR intensity’ model, 
based on lognormal regression using city-day records where CIR > 0), 
allowing for repeated measurements using random effects and allowing 
for correlation between the two components. 

An SAS Macro, MIXCORR [28] was used for this analysis. The 
approach is based on maximum likelihood estimation for estimating the 

effect of explanatory variables on the probability of nonzero values, the 
mean of nonzero values, and the overall mean amount. The model forms 
were: 

Occurrence model (a logistic regression model): 

logit
(
pij
)
= β10 + β11Dayij + β111Day2

ij +
∑K

k=1
β1jX1kj + μ1j  

Rij

{
0, if CIRij = 0
1, if CIRij > 0  

where pij is the probability of having nonzero CIR values (Rij = 1, Rij 
represents the occurrence variable), CIRij is city i’s CIR on Day j, and X1kj 
is a vector of covariates that explain Pr (Rij = 1). Since the change in CIR 
with time is nonlinear, the polynomial curve development model needs 
to be considered. In this study, a quadratic term of Day, namely, Day2 
(Dayij

2 = Dayij * Dayij), is constructed in the model. Regression co-
efficients β10, β11, β111, and β1j are the intercept, fixed time (Day) effect, 
fixed time (Day2) effect and fixed effects of covariates on the log-odds of 
Rij = 1, respectively, and μ1j is the random effect of individuals on the 
log-odds. In these multilevel modeling terms, (β10 + μ1j) is the random 
intercept that allows the probabilities of having a nonzero CIR to vary 
across cities. 

CIR intensity model (a linear regression model): 

log
(
Sij
)
= β20 + β21Dayij + β211Day2

ij +
∑K

k=1
β2jX2kj + μ2j + eij  

where Sij is the intensity variable defined Sij = (CIRij|Rij = 1), X2kj is a 
vector of covariates for intensity that explain nonzero CIRij, eij is the 
level-1 residuals, and μ2j is the random effect on the initial level of in-
tensity. The random intercept (β20+ μ2j) in the CIR intensity model ac-
counts for the heterogeneity of the mean nonzero CIR among cities. The 
two random effects μ1j and μ2j are assumed to be jointly normally 
distributed. 

Initially, there were 112 variables (predictors) and 56,364 observa-
tions in this study. Faced with such high-dimensional independent 
variables, the variables were selected using the Lasso [29], which has 
been proven to be useful and feasible when the number of observations 
is much larger than the number of predictors [30,31]. Then, the selected 
variables were incorporated into the mixed-effects mixed-distribution 
model. The data preprocessing and descriptive statistical analysis were 
performed with SPSS software version 25 (IBM), variables were selected 
in Stata 16 (StataCorp), and the modeling analysis was conducted using 
SAS 9.4 (SAS). Spatial analysis and map creation were performed in 
ArcGIS 10.7 (ESRI). 

3. Results 

3.1. Variable selection 

By the Lasso method, 57 (Table 2) of the original 112 variables 
(Table 1) were selected. Among these 57 variables, except Pop, PD, GDP, 
DisWH, MeanDEM, MinT and MinRh, all other variables considered the 
delay effect. In Lasso or OLS parameter estimation, the slopes of vari-
ables Popmob0, Popmob1, Popmob2, Popmob3, Popmob4 and Pop-
mob5 were negative, and the slopes of variables Popmob5, Popmob5 
and Popmobsum were positive. Considering that the incubation period 
of COVID-19 ranges from 2 to 14 days or even longer [32,33], the 
number of new cases on a certain day is likely to be affected by the 
cumulative number of inflows from Wuhan before that day, rather than 
the number of inflows on that day or a day before. Therefore, Pop-
mobsum was selected for the next modeling. For national public health 
emergency responses, the slopes of variables Reslevel2, Reslevel3, 
Reslevel5, Reslevel6, Reslevel8 and Reslevel9 were positive, and the 
slopes of variables Reslevel15, Reslevel17 and Reslevel20 were 
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negative. The positive effects of the control measures on the epidemic 
seem to be reflected after 15 days, so Reslevel15 was selected for the 
next modeling. The 23 selected variables that reflected the atmospheric 
environmental quality were almost time-continuous delay indicators, 
such as NO2, ranging from no delay (NO2) to nine-day delay (NO2_9). 
The variables with the longest delay time were selected to enter the next 
modeling, such as CO_9, SO2_9, NO2_9, O3_9, PM10_9 and PM25_8. In 

summary, there were a total of 15 variables mentioned above plus 2 
interaction effect variables Day_GDP and Day_DisWH for the mixed- 
effects mixed-distribution modeling. 

3.2. Modeling analysis 

The SAS macro outputted fitting statistics AIC and -2LL in the case of 
uncorrelated and correlated random effects, respectively (Table 3). The 
difference of -2LL between the two models was 54.33, and the corre-
sponding chi-square test P value was less than 0.0001, indicating that 
the model with correlated random effects fit better. Therefore, the 
parameter estimation of the model with correlated random effects is 
listed in Table 3, which examines the multiple comprehensive effects of 
natural and human environments, including 17 variables that reflect 
climate, terrain, atmospheric environmental quality, population, eco-
nomic, human mobility and NPIs on the COVID-19 CIR at the city level. 

The linear and quadratic effects of the time variables (Day and Day2) 
were statistically significant both on the probability of CIR occurrence 
(β̂11 = 0.1765, p < 0.0001; β̂111 = − 0.0030, p < 0.0001) and on the 
proportion of CIR (β̂21 = − 0.0115, p = 0.0018; β̂211 = − 0.0003, p <
0.0001), indicating that the probability of CIR occurrence first increased 
and then decreased, and the inflection point was on February 8, 2020 
(Day = 29.4). However, the CIR intensity has continued to decrease 
since confirmed cases have been reported in a certain area (Day >0). 

Fifteen variables and interaction effects related to climate, atmo-
spheric environmental quality, terrain, population, economic, human 
mobility and NPIs had a statistically significant effect on the probability 
of CIR occurrence, except MinT (p = 0.1106) and S02_9 (p = 0.7423) at 
the 95% confidence level (Table 3). Specifically, the CIR occurrence was 
positively associated with Pop, PD, GDP, Popmobsum, and MinRh, as 
well as the atmospheric environmental quality index CO_9, O3_9, 
PM10_9 and PM25_8 and negatively associated with MeanDEM, DisWH, 
Reslevel15 and NO2_9. Furthermore, the interaction of GDP, DisWH and 
Day (Day_GDP and Day_DisWH, respectively) was positively correlated 
with CIR occurrence. However, eleven variables and interaction effects 
had a statistically significant effect on CIR intensity, except PD, Mean-
DEM, MinRh and PM25_8, which were statistically significant for CIR 

Table 2 
Lasso variable selection results. Estimate lasso with lambda = 1427.596 (lopt). 
Lasso is the variable coefficient estimated by Lasso, and Post-est is the variable 
coefficient of OLS regression on the selected variables.  

Selected Lasso Post-est Selected Lasso Post-est 

Pop − 0.7565 − 0.9184 SO2_7 − 0.0283 − 0.0421 
PD 0.4994 0.5822 SO2_8 − 0.0276 − 0.0385 
DisWH − 0.4102 − 0.4808 SO2_9 − 0.0551 − 0.0557 
GDP 0.9788 1.0951 NO2 − 0.0762 − 0.1032 
MeanDEM − 0.0050 − 0.0084 NO2_1 − 0.0086 − 0.0083 
MinT − 0.0123 − 0.0145 NO2_2 − 0.0143 − 0.0299 
MinRh − 0.0120 − 0.0330 NO2_3 − 0.0046 − 0.0082 
Popmob0 − 0.4786 − 0.5358 NO2_4 − 0.0027 − 0.0061 
Popmob1 − 0.3684 − 0.3436 NO2_5 − 0.0087 − 0.0125 
Popmob2 − 0.0497 − 0.1001 NO2_6 − 0.0231 − 0.0287 
Popmob3 − 0.1051 − 0.1209 NO2_8 − 0.0149 − 0.0223 
Popmob4 − 0.2876 − 0.2543 NO2_9 − 0.0059 0.0152 
Popmob5 − 0.0412 − 0.2639 O3 − 0.0145 − 0.0204 
Popmob7 0.0166 0.2176 O3_1 − 0.0003 − 0.0003 
Popmob9 1.5534 1.5899 O3_2 − 0.0043 − 0.0042 
Popmobsum 0.0152 0.0153 O3_6 − 0.0049 − 0.0057 
Reslevel2 0.1354 0.0305 O3_7 − 0.0006 − 0.0006 
Reslevel3 0.5769 0.4942 O3_9 − 0.0028 − 0.0044 
Reslevel5 0.0473 − 0.1455 PM10 0.0014 0.0022 
Reslevel6 0.2925 0.3833 PM10_1 0.0006 0.0011 
Reslevel8 0.5027 0.5793 PM10_2 0.0012 0.0014 
Reslevel9 0.9803 1.5329 PM10_3 0.0007 0.0012 
Reslevel15 − 0.2266 − 0.7235 PM10_4 0.0016 0.0020 
Reslevel17 − 0.1993 − 0.2165 PM10_5 0.0006 0.0010 
Reslevel20 − 2.5200 − 2.4571 PM10_6 0.0003 0.0007 
CO 1.7358 2.9689 PM10_7 0.0011 0.0015 
CO_2 0.0384 0.9589 PM10_9 0.0020 0.0038 
CO_9 − 0.1670 − 2.0334 PM25_7 0.0009 0.0005 

PM25_8 0.0115 0.0149  

Table 3 
Parameter estimates, standard errors and fit statistics for mixed-effects mixed-distribution model to CIR occurrence and intensity.  

Parameter Occurrence Intensity 

Estimate SE p Estimate SE p 

Intercept − 2.9447 0.2349 <0.0001 3.1101 0.1528 <0.0001 
Day (β11, β21) 0.1765 0.0068 <0.0001 − 0.0115 0.0037 0.0018 
Day2 (β111, β211) − 0.0030 0.0001 <0.0001 − 0.0003 0.0000 <0.0001 
Pop 0.0618 0.0237 0.0096 − 0.1784 0.0158 <0.0001 
PD 0.0813 0.0244 0.0010 − 0.0266 0.0167 0.1116 
GDP 0.0460 0.0181 0.0114 0.0688 0.0113 <0.0001 
Day_GDP 0.0023 0.0002 <0.0001 − 0.0002 0.0001 0.0099 
MeanDEM − 0.0052 0.0009 <0.0001 − 0.0011 0.0007 0.0862 
DisWH − 0.1865 0.0136 <0.0001 − 0.0852 0.0096 <0.0001 
Day_DisWH 0.0028 0.0002 <0.0001 0.0027 0.0002 <0.0001 
Popmobsum 0.0019 0.0003 <0.0001 0.0026 0.0002 <0.0001 
Reslevel15 − 0.5810 0.0192 <0.0001 − 0.1162 0.0095 <0.0001 
MinT − 0.0008 0.0005 0.1106 − 0.0004 0.0003 0.1979 
MinRh 0.0026 0.0012 0.0350 − 0.0031 0.0007 <0.0001 
CO_9 0.3844 0.0820 <0.0001 0.0171 0.0516 0.7411 
NO2_9 − 0.0258 0.0029 <0.0001 − 0.0101 0.0015 <0.0001 
O3_9 0.0075 0.0010 <0.0001 0.0035 0.0006 <0.0001 
PM10_9 0.0016 0.0004 0.0002 0.0015 0.0005 0.0021 
PM25_8 0.0038 0.0007 <0.0001 0.0005 0.0004 0.1564 
SO2_9 0.0013 0.0039 0.7423 − 0.0002 0.0026 0.9424 
Residual(σe

2)    0.5681 0.0123 <0.0001 
Random effect(σ1

2, σ2
2) 0.9592 0.1021 <0.0001 0.4287 0.0416 <0.0001 

Covariance (ρσ1σ2) 0.2819 0.0529 <0.0001    
Fit statistics Uncorrelated Correlated Difference in − 2 log likelihood p 
AIC 44,686.5 44,634.17     
− 2 Log Likelihood 44,600.5 44,546.17 54.33 <0.0001  
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occurrence at the 95% confidence level. Higher GDP, Popmobsum, 
O3_9, PM10_9 and Day_DisWH were associated with a higher CIR in-
tensity, but lower Pop, DisWH, Reslevel15, MinRh, NO2_9 and Day_GDP 
were associated with a higher CIR intensity. Mean fixed (background) 
determinant distributions and determinants that changed over time on 
CIR incidence or intensity detected by the mixed-effects mixed-distri-
bution model are shown in Fig. 2 and Fig. 3. In general, PM2.5 and CO 
showed a downward trend, PM10 fluctuated, NO2 first decreased and 
then increased slightly after the national emergency response intensity 

gradually decreased, O3 showed an upward trend, and daily minimum 
temperature (MinT) first decreased in a fluctuating way and then 
increased slightly after May (Fig. 3). The popmobsum continued to in-
crease before the Wuhan lockdown and remained unchanged after the 
Wuhan lockdown. The reslevel rapidly rose to the highest level on 
January 23 and gradually decreased after February 21 (Fig. 3). 

The significant random effects variance for both the CIR occurrence 
and CIR intensity (σ̂2

1 = 0.9592, p < 0.0001; σ̂2
2 = 0.4287, p < 0.0001) 

Fig. 2. Mean fixed (background) determinant distribution.  
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showed that there were great individual differences between cities in 
both the probability of CIR occurrence and the CIR intensity. The sig-
nificant positive correlation between CIR occurrence and intensity 
random effects (ρ̂σ1σ2 = 0.2819, p < 0.0001) indicated that, on average, 
cities with a higher likelihood of CIR occurrence tended to report a 
higher mean amount of CIR. 

4. Discussion 

In this study, a mixed-effects, mixed-distribution model for longitu-
dinal data identified a subset of environmental-to-human and human-to- 
human determinants of COVID-19 occurrence and intensity and their 
changes over time as the pandemic progressed. To the best of our 
knowledge, our study is the first to more comprehensively examine 
multiple longitudinal data sets to understand COVID-19 occurrence and 
intensity risk factors among cities across China. 

Our results demonstrated that higher population size and density 
were associated with an increased risk of COVID-19 occurrence but with 
a lower CIR intensity, and the effect of population density on CIR in-
tensity was not statistically significant. Other studies for COVID-19 have 
proven that population density affects the number of COVID-19 daily 
cases [34] but is not associated with accumulated COVID-19 cases [35]. 
The difference in those results was due mainly to the different choice of 
dependent variables reflecting the COVID-19 epidemic index [22]. In 
addition, our population density refers to the density of the population 
in an urban area rather than the whole city administrative area, and the 
former can better reflect the degree of natural contact between people. 

Cities with higher GDP had larger CIR occurrence and intensity 
(Table 3). Prior research found that the number of COVID-19 cases is 
higher in high-income countries [14]. We further considered whether 
and how the impact of GDP on the epidemic changes over time. The 
interaction effect among the time variable and GDP indicated that over 
time, cities with high GDP had a greater increase in the probability of 
COVID-19 occurrence but a decreased growth rate of CIR intensity. Our 
results seem to suggest that cities with a higher population size and 
density have greater intercity population mobility and therefore a 
higher risk of initial case introduction. 

To conclude, in China, the more economically developed and more 
densely populated cities may have a higher probability of occurrence 
due to the greater intensity of human and logistics flow, but they may 
not have a higher occurrence intensity due to stronger prevention and 
control awareness [36] and more effective prevention and control 
strategies accumulated over time. 

We generally found that a lower mean DEM increased the probability 
of COVID-19 occurrence and CIR intensity, but the result in CIR intensity 
was not statistically significant. The terrain of China, low in the east and 
high in the west (Fig. 2), affects population distribution and trans-
portation accessibility, specifically a higher population (Fig. 2) and 

more convenient transportation in the east [37–39]. 
Unsurprisingly, the cumulative destination migration scale flow from 

Wuhan was positively connected with both COVID-19 occurrence and 
CIR intensity. The relatively high cumulative destination migration scale 
flow from Wuhan from January 1 to January 23 (Wuhan lockdown), 
2020, is distributed mainly in the surrounding cities of Wuhan, espe-
cially in the cities of Hubei Province (Fig. 2), which aligns with the high 
value of accumulated confirmed COVID-19 cases per 100,000 persons 
distributed mainly in Hubei Province (Fig. 1). Being farther away from 
Wuhan was a protective factor of COVID-19 transmission. However, the 
positive interaction effect among the time variable and the distance of 
each city from Wuhan indicated that over time, this effect gradually 
diminished. 

The positive correlation between CIR and the level of NPIs with a 
delay of 2 to 9 days indicated that more stringent prevention and control 
measures were being taken in the more severe epidemic cities in the 
early stages of the epidemic, while the negative correlation with CIR 
after a delay of 15 days indicated that the control effect (both the 
probability of CIR occurrence and CIR intensity declined) did not appear 
until 15 days after the measures were taken. Other studies have reached 
similar conclusions; for example, non-pharmaceutical interventions put 
in place by governments may not have had a significant impact on the 
initial growth of COVID-19 [40], the impact of non-pharmaceutical in-
terventions on cumulative confirmed cases per million population 
became visible with a time lag of approximately 5 weeks in Sweden 
[41], and the effect of introducing on reproduction number was delayed 
by 1–3 weeks at the country level [42]. 

Surprisingly, temperature, including the daily minimum tempera-
ture, is not significantly related to COVID-19. Most studies suggest that a 
negative correlation exists between temperature and the number of 
COVID-19 incidence and severity [43], while there have been studies 
that support the absence of any correlation, low sensitivity [44] or even 
a positive one [45]. Our findings used data from China to show that the 
effect of temperature on COVID-19 may not be negligible, yet it was not 
detected due to the stronger effect of covariates related to the human 
environment, such as economic, population and NPIs. 

In contrast, the daily minimum humidity is more likely to affect the 
epidemic. Specifically, a higher daily minimum relative humidity was 
associated with an increased risk of CIR occurrence but with a lower CIR 
intensity. In previous studies, relative humidity was inversely associated 
with increased cases [46] and mortality rate [47], and a positive cor-
relation or negative correlation was found between relative humidity 
and confirmed cases in different study areas in Italy [48], while the 
association between absolute humidity and epidemic growth was no 
longer significant [49]. The differences in these results may be due to 
different independent variables reflecting humidity, dependent vari-
ables reflecting the COVID-19 epidemic, research period, or research 
area and scale. Although the effect of humidity on COVID-19 

Fig. 3. Determinants that change over time.  
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transmission remains obscure, our detected determinant, the daily 
minimum relative humidity rather than relative humidity, may provide 
a new perspective for further research. 

All available research thus far shows a positive correlation between 
air pollution (PM2.5) and COVID-19 [50]; however, whether multiple 
pollutants carried simultaneously on particulate matter act in an addi-
tive, synergistic way to increase the severity of COVID-19-like diseases is 
unknown [7]. Our research seems to provide an answer to this question 
from a statistical point of view: CO, NO2, O3 combined with PM10 and 
PM2.5 from the day to a lag of 8 or 9 days have a significant correlation 
with COVID-19 occurrence; in contrast, only CO and NO2 combined with 
PM10 from the day to a lag of 9 days have a significant correlation with 
COVID-19 intensity, and except NO2, other determinants that reflect air 
quality have exerted a positive impact. Although the relationship be-
tween NO2 and COVID-19 epidemiological indicators is inconsistent, it 
is generally believed that NO2 and other air pollutants increase the risk 
of COVID-19, especially in terms of fatality [7,8]. Our results on the 
relationship between air pollutants and CIR may be due to the different 
trends of each determinant during the study period (Fig. 3), and the 
determined relationship and the mechanism cause need more research. 
The unavailability of the atmospheric environmental quality data before 
January 1, 2020, which has led to the delay effect of air pollution after 9 
days not being considered, but it may still work. 

There are still some limitations in terms of data sources. First, we did 
not consider social acceptance of restriction measures since it is gener-
ally high in China. Second, in our study period, the epidemic was mainly 
affected by the domestic spreading while imported cases were excluded, 
and thus GDP was remained to be an influencing factor but the inter-
national trade and commercial exchange were ignored. 

5. Conclusions 

The COVID-19 pandemic's diffusion patterns are definitively caused 
by a multiplicity of environmental, economic, social factors and NPIs. 
First, multiple pollutants carried simultaneously on particulate matter 
act in a synergistic way to affect COVID-19 transmission. Second, the 
effect of temperature on COVID-19 was confounded by other de-
terminants. Third, the impact of population movement from the 
epicenter on COVID-19 gradually diminished over time and intrare-
gional migration deserves more attention. Fourth, NPIs must last for at 
least 15 days before the effect has been apparent. These findings could 
provide lessons for countries that are still experiencing a health emer-
gency and help to prevent future pandemics similar to COVID-19. 
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