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Aerosol classification 
by dielectrophoresis: a theoretical 
study on spherical particles
Malte Lorenz1, Alfred P. Weber2, Michael Baune1, Jorg Thöming1,3 & Georg R. Pesch1,3*

The possibilities and limitations using dielectrophoresis (DEP) for the dry classification of spherical 
aerosol particles was evaluated at low concentrations in a theoretical study. For an instrument with 
the geometry of concentric cylinders (similar to cylindrical DMA), the dependencies of target particle 
diameter d∗

P
 , resolution, and yield of the DEP classification on residence time, applied electric field 

strength, and pressure of the carrier gas were investigated. Further, the diffusion influence on the 
classification was considered. It was found that d∗

P
 scales with the mean gas flow velocity ugas , classifier 

length L, and electric field strength E as d∗
P
∝ (ugas/L)

0.5
E
−1 . The resolution of the classification 

depends on the particle diameter and scales proportionally to d∗
P

1.3 . It is constrained by the flow 
ratio β (i.e., sheath gas to aerosol flow), electrode diameters, and applied electric field strength. The 
classification yield increases with the ratio of the width of the extended outlet slit se to the diffusion 
induced broadening σ

z
 . As expected, resolution and yield exhibit opposite dependencies on se/σz . Our 

simulations show that DEP classification can principally cover a highly interesting particle size range 
from 100 nm to 10µm while being directly particle size-selective and particle charge independent.

The dry classification of particles with diameters below 10µm is key to obtain high-value powders with narrow 
size distributions. These fine particles find application in a variety of high-value products such as coatings1, print-
ing products2, porous functional structures 3, particle-reinforced polymers4 and electrodes in electro-chemical 
energy storage5. Many established classification technologies suffer from insufficient selectivity or throughput 
in this size range. For instance sieving, which is a common tool in industrial separation, comes only close to 
this size range when performed as wet technique 6. When starting from a dry powder, wet sieving could lead to 
agglomeration and material property changes and would additionally require an uneconomical drying step fol-
lowing the classification. Deflection wheel classifiers exhibit a significant loss in sharpness of cut and throughput 
in this particle size range 7. Electrophoretic mobility classification relies on the defined charging of the particles, 
and thus particle-size-dependent charge probability distributions. Hence, particle size is not directly measured 
but merely the electrophoretic mobility distribution of the particles. A standard inversion procedure exists to 
back-calculate size distribution from electrophoretic mobility measurements. Nevertheless, exact particle size 
classification is not possible with this technique because particles of different size may have the same electropho-
retic mobility due to their charge. A comprehensive survey concerning charging of airborne particles is given 
for example by Friedlander8, chapter 2.

In this manuscript we outline the behaviour of a particle-charge-independent and directly size-dependent 
classification method which attracted very little attention so far, i.e., the aerosol classification by dielectrophoresis 
(DEP). Dielectrophoresis is the movement of charged or uncharged particles in inhomogeneous electric fields. It is 
caused by the interaction of an induced dipole (or quadrupole, octupole, ...) with an electric field gradient9. DEP 
has mostly been used in liquid media10, for example for the manipulation, separation, and characterization of 
macromolecules11 or bio particles12,13. In industrial scale processes it is investigated as a measure against colloidal 
membrane fouling14 or as a separating force in particle sorting15 and filtration processes16–19.

Contrary to electrophoresis, which requires particle charging and is thus dependent on a particle charge 
distribution, DEP uses the inherent dielectric properties of the particles determined by the particle volume and 
the particle polarizability. However, depending on the goal of the separation, the influence of the material (i.e., 
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dielectric constant and conductivity), reflected by the Clausius–Mossotti function, can be influenced thus render-
ing the separation material independent, for instance by controlling the humidity of the carrier gas. For example, 
Wang et al.20 showed that a relative carrier gas humidity of 15% changes the conductivity of glass fibers making 
them sufficiently polarizable for classification. In low-frequency electric fields ( < 200 kHz ) nearly every particle 
that is slightly conductive is much more polarizable than air so that the particle migration velocity does only 
depend on particle volume and projection area, similar to the classification in centrifugal fields. However, DEP 
does not require moving parts such as rotating cylinders (aerosol particle mass analyzer). DEP could therefore 
be used to separate particles independent of their material according to their volume and projection area or to 
separate particles according to their polarizability (as expressed by the Clausius–Mossotti function, e.g., separate 
conductive and non-conductive particles). The present study simulatively investigates the material-independent 
classification of spherical particles by diameter under the assumption that they are perfectly polarizable (e.g., by 
tuning the humidity of the carrier gas).

In a few available studies, DEP was used to separate airborne fibers according to their length 20–24. The so-
called Baron separator is the only reported application of DEP for the separation or classification of airborne 
particles. It consists of two conductive cylinders, a solid one of small diameter and a hollow one of larger diameter 
placed concentrically around the first so that an annular gap is formed. An alternating field is applied across this 
gap. The classifier uses the fact that fibers (mostly independent of their cross-sectional diameter) have different 
dielectrophoretic mobilities according to their length. It was investigated for the classification of airborne asbestos 
fibers for further assessment of their health impact.

The available literature concerning the Baron separator is limited to the four journal articles and the dis-
sertation listed above which serve as a starting point of our own investigation. In this first step we employ a 
less complex model of an apparatus, which follows a similar concept as the Baron separator. Inlet and outlet 
configurations, however, show distinct differences. We use computer-assisted calculation (particle tracking algo-
rithms) to investigate the theoretical possibility to separate and classify airborne spherical micron, sub-micron 
and nano particles using dielectrophoresis in a concentric separator. An alternating electric field is applied for 
the process to be independent of particle charge because, within certain limits, there is no net electrophoretic 
particle migration at sufficiently high frequencies.

In this study, we show the possibilities and limitations (applicable particle size range, resolution, and achiev-
able yield) of DEP classification of airborne particles which could also be used for the detection of airborne 
viruses. To the best of our knowledge, this is the first study addressing the classification of spherical particles 
in air using DEP. Previous studies only addressed length classification of fibers and were thus limited in their 
applicability. We investigate the influence of classifier length, volume flow, and electric field strength on the 
target particle diameter and assess the influence of particle diffusion and process parameters on the transfer 
function (resolution and yield). We suggest a very simple approach for calculating particle diffusion that does 
not require calculation of a vast number of random walk trajectories. This method is based on particles’ mean 
square displacement. A second more common method to calculate diffusion is the Langevin approach that 
uses a stochastic description of a random walk. We use this to validate the mean-square-displacement method.

Model and theory
DEP particle classifier concept.  A schematic overview of a DEP particle classifier is given in Fig. 1. For 
better understanding, the DEP classifier concept will be introduced without accounting for additional in- and 
outlet flows as they may occur 

(1)	 when the aerosol is entering the classifier in a separated flow and
(2)	 when the classified aerosol sample is separated into an additional outlet flow.

The model that we use for calculation includes the influence of gas flows at in- and outlet. It will be presented at 
the end of the section (cf. “Calculation model to account for in- and outlet flow” section).

The main part of the classifier is a cylindrical annulus with a central metal rod of outer radius R1 and a con-
centric cylindrical metal shell of inner radius R2 . Both are connected to an ac voltage generator so that each part 
(rod and shell) forms one electrode (inner and outer electrode). The aerosol flows through the gap along the 
separation length L. In this idealized geometry we do not consider the flow distortion due to particle inlet and 
outlet, and we assume a one-way coupling, i.e., the gas flow Q is independent of the particles. We can therefore 
assume an undisturbed laminar annular flow profile (with velocity distribution uz(r) ). Here, it is assumed that 
particles are entering the classifier at z = 0 and r = R2 and are carried along the axial direction against gravity 
g towards the outlet (particle collection section) at z = L.

Due to the concentric design the resultant electric field E is inhomogeneous with the maximum electric field 
strength at the surface of the inner electrode (see left inset in Fig. 1a containing (E · ∇)E ). This will motivate a 
(solely) radial DEP particle motion towards the inner electrode. A classification can be achieved because particles 
of different size, shape, and material will experience a different dielectrophoretic and drag force and will therefore 
move slower or faster towards the inner electrode.

In this paper we assume only spherical particles which will be classified by diameter. Due to Brownian motion 
the particles will not strictly follow the deterministic particle trajectory (depicted by the red line in Fig. 1a, 
c) but exhibit a diffusive broadening of their trajectories. Therefore, they will arrive at x = L with a Gaussian 
distribution in z-direction and standard deviation σz (see right inset in Fig. 1a). Figure 1c contains a schematic 
representation of the random walk which causes the Gaussian distribution around the ideal (red) trajectory of 
three exemplary particles. Figure 1b shows the proposed classifier from top view for completion. The system is 
axisymmetric and therefore given in two-dimensional cylindrical coordinates (r, z).
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Particle trajectory.  The full differential equation describing the position x = (xr , xz)
T of a diffusive particle 

with mass mP in the stationary electric and fluid field reads

The left side of Eq. (1) represents the inertia force, FD is the drag force, FB is the buoyancy force, FDEP is the DEP 
force, FBM is a random force accounting for Brownian motion, and FEK accounts for electrokinetic forces (such 
as electrophoresis or electroosmosis). The buoyancy force is FB = VP(ρP − ρF)g , with the particle volume VP , 
the densities of the particle and the ambient fluid ρP and ρF and the gravity constant g = 9.81ms−2 . The elec-
trokinetic forces FEK always depend on the direction of the field. The electric field frequency is chosen to be so 
high that spatial fluctuations due to electrokinetic (EK) movement are negligible compared to the spatial field 
change; hence, we can safely assume the time-averaged FEK to be 0.

As stated above, two methods have been used in this study to account for particle diffusion. In the complex 
model, we use the Langevin approach25, where FBM is a random force which changes direction and magnitude 
in each integration time-step of Eq. (1). Then, a vast number of trajectories have to be calculated to obtain a 
meaningful distribution of particle end positions. In our second approach to calculate diffusion, FBM is set to zero 
and only the idealized trajectories are calculated for particle diameters of interest. We then account for Brownian 
motion by calculating Gaussian probability distributions of particles in z-direction along the idealized mean 
trajectories. Both methods have been compared against each other (see Results section, “Results and discussion” 
section) with very good agreement.

Drag force.  The drag force is calculated under the assumption of spherical particles according to Stokes law8,

(1)mP
∂2x

∂t2
= −FD − FB + FEK + FDEP + FBM.

Figure 1.   (a) Side view (sketch) of a dielectrophoretic aerosol classifier. It consists of two electrodes, an 
inner rod and an outer concentric shell with radii R1 and R2 forming an annular gap. Through the gap runs 
a gas volume flow Q. Particles are entrained from the inlet at z = 0 in axial direction against gravity due to 
hydrodynamic drag from the fluid which exhibits a velocity profile uz(r) towards the outlet at z = L . Movement 
in radial direction is achieved by dielectrophoresis due to the inhomogenenous electric field E(r) (the spatial 
field inhomogeneity is (E · ∇)E ) and classification is achieved due to the different dielectrophoretic mobility 
µDEP of particles of different size, shape, or material. The two Gaussian distributions drawn on top of the particle 
trajectory (red line) show the evolution of the probability distribution with time due to Brownian motion. (b) 
Top view of the classifier. (c) Exemplary random-walk particle trajectories including diffusion (black dashed) 
around the deterministic trajectory (red solid).
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with the fluid velocity uF = (0, uz)
T and the friction coefficient f = 3πµFdP/C . Here, µF is the fluid (gas) 

viscosity, dP the particle diameter, and C the well-known Cunningham slip correction factor8, which has been 
calculated with the experimental constants Ai from Davies26.

DEP force.  The DEP force on a spherical particle with diameter dP in an inhomogeneous electric field E can 
be calculated using the point-dipole approximation27:

Here, ε0 = 8.854× 10−12 Fm−1 is the permittivity of free space, εF the permittivity of the fluid (gas), which is 
approximately 1 for dry gases, Re

[

f̃CM(ω)

]

 the real part of the Clausius–Mossotti function, and ω the angular 
frequency of the applied field. The Clausius–Mossotti function follows from the solution of the Laplace equation 
at the surface of a perfectly spherical particle and is given by:

The complex permittivity ε̃ of a medium (subscripts P or F for particle or fluid, resp.) is dependent on its permit-
tivity ε and conductivity σ and the angular frequency of the applied electric field ω . The imaginary number is 
denoted by j. Re

[

f̃CM(ω)

]

 describes the relative polarizability of the particle in the surrounding medium and, 
since all other variables in Eq. (3) are positive, decides whether a particle moves along ( Re

[

f̃CM(ω)

]

> 0 , positive 
DEP) or against the gradient ( Re

[

f̃CM(ω)

]

< 0 , negative DEP). In gases, this function is virtually independent 
of ω and is either 0 for non-conductive particles or 1 for conductive particles or materials with a very high per-
mittivity ( εP ≥ 1000)21. If the function is 0, then the particle exhibits no DEP force. In this study we assume that 
Re

[

f̃CM(ω)

]

= 1 . The method proposed here is also applicable for non-conductive particle if humid air is used 
as a carrier gas, because this effectively makes small particles conductive and gives them a positive CM factor20.

Brownian motion.  Two different approaches have been used to account for Brownian motion and have 
been verified against each other in order to make sure that the particle diffusion has been implemented correctly. 
The first, more complex approach is based on the Langevin equation 25. In this case, we model the particle tra-
jectory (Eq. (1)) massless and hence neglect inertia (the left side of Eq. (1) is 0). In a simple first-order forward 
time-stepping scheme we obtain as a particle position25 

Here, both ri and FDEP are given in (x, y, z)-coordinates and ri is a 3d random number vector with all 3 com-
ponents containing random numbers with zero mean and a variance of 1/12 and i is the current time step. To 
obtain a probability density of the particle’s position normal to the ideal trajectory it is necessary to calculate a 
vast number of trajectories using Eq. (5a) which, employing a first-order time-stepping scheme, may take up a 
lot of computational time.

In a second approach we therefore calculated the mean square displacement in z-direction due to Brownian 
motion using geometrical considerations (see Fig. 2). We define a new coordinate system (s, n) where s points in 
the direction of the particle’s trajectory and n is the normal component to the trajectory. The origin of the coor-
dinate system lies at the current position of the particle x . We neglect diffusion in s-direction as it does not alter 
the position where the particle exits the classifier. The only impact of diffusion in s-direction is a small change 
in time when the particle reaches the exit. The differential of the mean square displacement in n direction reads

Using the geometrical relations from Fig. 2 we can link the mean square displacement in z-direction to the 
displacement in n-direction and the velocity vP = (vr , vz)

T of the particle:

We assume that the particles always move at terminal velocity, thus vr , vz and dσz(r) are only dependent on the 
radial coordinate r and independent of z. Consequently, vr is defined by DEP and vz by the fluid flow. We can 
integrate Eq. (7) to find σz:

(2)FD = f

(

∂x

∂t
− uF

)

,

(3)FDEP =
1

2
πd3Pε0εFRe

[

f̃CM(ω)

]

(E · ∇)E.

(4)f̃CM(ω) =
ε̃P − ε̃F

ε̃P + 2ε̃F
, ε̃(ω) = ε +

σ

jω
.

(5a)xi+1 = xi + f −1

(

FDEP +
√

24kBTf

�t
ri

)

�t,

(5b)ti = i�t.

(6)dσ 2
n = 2Ddt.

(7)dσ 2
z =

1

sin2 α
dσ 2

n =
(

√

v2r + v2z
vr

)2

2Ddt.
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It is worth mentioning that this expression looses accuracy with increasing particle distribution because in this 
calculation particles of the same size are treated as if they had the same residence time. In reality particles that 
diffuse from the average trajectory towards the outer electrode have a longer residence time than particles that 
diffuse from the average trajectory towards the inner electrode. That results in a slightly asymmetric distribution. 
Nevertheless, the comparison with Langevin trajectories (“Particle probability distribution due to Brownian 
motion” section) shows that the error is negligible.

Flow field and electric field.  The flow through the gap between the inner and outer electrode from the 
ideal classifier (Fig. 1a) is one-dimensional in z-direction and only a function of r. The velocity profile of a lami-
nar flow through such an annulus with inner radius R1 , outer radius R2 at gas flow rate Qt can be calculated by 28,

with the radius ratio κ = R1/R2.

(8)σz(r = r(t)) =

√

√

√

√

√2D

t
∫

0

(

√

v2r + v2z
vr

)2

dt∗.

(9)uz(r) =
2Qt

[

1− (r/R2)
2 − 1−κ2

ln(1/κ) ln(R2/r)
]

π
(

R2
2 − R2

1

)

[

1−κ4

1−κ2
− 1−κ2

ln 1/κ

] ,

Figure 2.   (a) Derivation of mean square displacement in z-direction. The global coordinate system is (r, z), the 
coordinate system (s, n) is in direction of the particle trajectory s and normal to it n. The particle’s velocity is 
vP = (vr , vz)

T . The angle α is between the direction of s and z. (b) Development of the probability density of the 
particle’s position normal to the ideal trajectory (red arrow) during an infinite time step dt.
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The electric field can be calculated through the electrostatic potential � which is for such a concentric elec-
trode arrangement given by29

with the voltage applied across the gap U0 . Since � is only dependent on r (one variable), the resultant electric field 
E(r) = (E(r), 0)T only depends on r. It is pointing towards (or away from) the central axis of the inner electrode 
and is parallel to the (r, z)-plane. The electric field E(r) and (E · ∇)E are given by:

Calculation model to account for in‑ and outlet flow.  The DEP particle classifier concept presented 
above assumes a constant flow profile along the whole classifier and thereby neglects the gas flow distortion that 
is caused by the in- and outlet flow. To calculate classifier resolution and yield, we use a more complex model 
that includes in- and outlet flow.

When looking at DMA, modelling the influence of gas flow is often considered in a simplified manner 30–32: 
It is assumed that the flow velocity profile in the gap between the electrodes is fully developed from the in- to 
the outlet of the classifier. The inlet is considered to be at the axial position z = 0 between the radii Rin and R2 
and the outlet at z = L between R1 and Rout (all four radii are shown for a DEP classifier in Fig. 3a) whereas 
in- and outlet in the actual classifier are most of the time axial slits at the outer and the inner electrode. These 
radial widths of the (virtual) aerosol in- and sample outlet (set by Rin and Rout ) are determined by the gas flow 
ratio β = (Qa + Qs)/(Qsh + Qe) (with Qa = Qs and Qs = Qe ). The flow ratio defines therefore the throughput 
at constant gas velocity. The radial positions Rin and Rout correspond to the boundary gas stream lines at in- and 
outlet assuming a developed flow profile uz(r) (cf. Eq. (9)):

In our classifier model (Fig. 3) we used this method only for the inlet and assumed that the particles are homo-
geneously distributed in the aerosol flow Qa . Since the standard deviation of the spatial particle distribution due 
to Brownian motion can only be calculated in axial but not in radial direction (see “Brownian motion” section) 
a radially stretched outlet slit is unsuited for calculation of a transfer function. Therefore, in our simulations we 
deviate from the established DMA methodology and leave the outlet slit at the inner electrode r = R1.

The method that we use to calculate the standard deviation of the spatial particle distribution σz requires that 
the particle velocity in radial direction vr is independent of axial position z (see “Brownian motion” section). This 
is not given with a sample flow Qs because it leads to an additional acceleration of the particles at the outlet. To 
compensate for the influence of the flow field at the outlet while keeping the analytical expressions for the gas 
flow profile and the DEP force untouched we assumed a virtually extended outlet slit, which is longer than the 
actual slit. Extending the outlet slit means that particles have additional time so that the DEP force (instead of 
the gas flow towards the outlet slit) can pull particles into the sample outlet.

The idea may seem constructed but gives us an elegant way to keep the simple calculation algorithm for 
the mean particle trajectory and its standard deviation. The extended outlet slit width se can be determined by 
calculating the time that a particle needs to travel from Rout to the inner electrode R1 and the axial distance that 
the particle migrates due to the gas flow during this time,

with uz(r) from Eq. (9). The radial coordinate r(t) is derived from dr/dt = vDEP(r) with the final DEP migration 
velocity,

For simplification we introduce the r-independent part Cvr , which is dependent on the particle diameter. With 
the boundary condition r(t = 0 s) = R2 it follows,

(10)�(r) = U0 −
U0

ln(R2/R1)
ln

r

R1
,

(11)E(r) = −
∂�

∂r
= −

U0

r · ln(R2/R1)
,

(12)(E · ∇)E =
(

−
∂�

∂r
·
∂

∂r

)(

−
∂�

∂r

)

= −
U2
0

r3 ln2(R2/R1)
.

(13)
β

1− β
=

π
∫ R2
Rin

ruz(r)dr

π
∫ Rin
R1

ruz(r)dr
,

(14)
1− β

β
=

π
∫ R2
Rout

ruz(r)dr

π
∫ Rout
R1

ruz(r)dr
.

(15)se =
t(r=R1)
∫

t(r=Rout)

uz(r(t))dt,

(16)dr

dt
= vDEP(r) = −

dP
2ε0εFRe

[

f̃CM(ω)

]

C

6µF

(

U0

ln(R2/R1)

)2 1

r3
= Cvr

1

r3
.
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which can be rearranged to

We define an effective classifier length which ends in the middle of the extended outlet slit Leff = L+ se/2 . The 
particle with the average terminal position Leff  has the diameter that the classifier is calibrated for.

To justify our approach, we recomputed the transfer function from Hagwood et al.30, the results can be found 
in the supplementary information. Our results are in excellent agreement with theirs (which were calculated 
using a Monte Carlo approach and using the analytical solution of Stolzenburg33), which we cannot use in case 
of a DEP-driven classification.

Further, this model is only valid when particle inertia is negligible so that the particle is ideally following 
the gas flow. Relaxation times tr = (ρPdP)/(18µF) of particles with diameters of 10µm , 20µm , and 40µm and 
density of 2,000 kg m−3 are 0.006 s, 0.024 s, and 0.096 s. The time for a particle to pass the slit should be at least 
one order of magnitude higher. In our calculations this was the case for particles smaller 10µm.

Methodology
The results for particle size (“Particle size range” section) and particle probability distribution (“Particle probabil-
ity distribution due to Brownian motion” section) were calculated with β = 0 ( Qa = 0 and Qs = 0 ) using Eq. (1) 
and FBM = 0 while particle diffusion was calculated with Eq. (8) (the simple mean-square-displacement model). 

(17)t(r) =
1

4Cvr

(

r4 − R4
2

)

(18)r(t) =
(

4Cvrt + R4
2

)1/4
.

Figure 3.   (a) Schematic representation of the classifier model around the symmetry axis which takes the 
incoming aerosol Qa and sheath gas flow Qsh and the outgoing sample Qs and excess gas flow Qe into account. 
The critical stream line that separates Qs from Qe (black dashed line) and a critical particle trajectory that barely 
follows Qs (red dashed line) are shown. (b) The critical particle trajectories that enters the outlet slit when 
the outlet drag force due to the sample gas flow is considered (red dashed line). When the drag force is not 
considered the same particle hits the inner electrode later (red line). Instead of implementing the drag force into 
the (simplified) particle trajectory calculation the effect of Qs is here compensated by extending the outlet slit 
from s to se so that particles on the critical trajectory enter the outlet slit.
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We additionally made comparison to validate that Eq. (8) is correct using Eq. (5a) (the Langevin approach), which 
is indicated at the appropriate figure. Results for the resolution and yield were obtained considering aerosol inlet 
and sample gas flows, Qa and Qs . We chose four exemplary values for β between 0.01 and 0.1.

The general methodology is to calibrate the separator design for a specific target particle diameter d∗P . The 
target particle diameter is the diameter of non-diffusive particles that reach r = R1 at z = L ( β = 0 ) or z = Leff  
( β > 0 ). Due to diffusion and an outlet slit with finite dimensions a fraction of smaller and bigger particles than 
d∗P will exit the classifier with the sample gas flow. Also, if the probability distribution is broader than the outlet 
slit width, not all particles that should be classified (i.e. having a diameter d∗P ) will exit the classifier with the 
sample gas flow. These two effects are quantified by the resolution that we introduce as

with �FWHMdP the full width at half maximum (FWHM) of the particle size distribution and by the transfer 
function �(dP) which gives the fraction of particles with diameter dP that are transferred from the inlet aerosol 
gas flow Qa to the outlet sample gas flow Qs (cf. Fig. 4). In an ideal case, �(dP = d∗P) = 1 and �(dP  = d∗P) = 0 , 
which would yield an infinite resolution R = ∞ . Due to diffusion the transfer function shows a Gaussian distri-
bution and �(dP  = d∗P)  = 0 . Also, when the probability distribution of particle positions in z-direction at the 
outlet is wider than the in “Calculation model to account for in- and outlet flow” section introduced extended 
outlet slit, the value of �(dP = d∗P) is lower than one.

All calculations have been performed using an outer diameter of R2 = 10mm and an inner diam-
eter of R1 = 7mm . The length of the classifier has been varied between 6 and 600 cm. The applied poten-
tial was varied between 0.33 and 76.6 kV which result in maximum field strength at the inner electrode of 
E(r = R1) = 133 kV m−1 and E(R1) = 30.5MV m−1 . It is limited by the dielectric strength of air and is the 
maximum applied field strength that can be applied without risking breakdown. According to Flagan34 this 
is, for two concentric cylinder electrodes, one third of the field strength given by Paschen’s Law for concentric 
DMA. We did not apply Paschen’s Law but used one third of the experimental values from Cohen35 at pressures 
between p = 1 bar (lower end) and p = 60 bar (upper end) instead. Below the breakdown voltage the electric 
conductivity of air is so low that temperature rise due to Joule heating is negligible. The mean gas velocity of 
the annular flow ( ugas = uz  ) was varied between ugas = 0.1 cm s−1 and ugas = 514 cm s−1 . The upper value of 
the gas velocity is the highest attainable velocity that would still yield a laminar flow at p = 1 bar at the chosen 
values of R1 and R2 . The real outlet slit width for was set to s = 1mm

The relative permittivity of air has been approximated as εr,air = 1 , the dynamic viscosity as µ = 18.6µPas 
for a gas temperature of T = 293K . The mean free path of air has been calculated using8 � = RT/(

√
2πpNAd

2
m) 

with the universal gas constant R = 8.314 Jmol−1 K−1 , the Avogadro constant NA = 6.022× 1023 mol−1 and 
the mean collision diameter of air molecules dm = 3.7 Å. The density of air has been calculated using the ideal 
gas law, ρ = p/(RsT) with the specific gas constant of air, Rs = 287.06 J kg−1 K−1 . The particle’s density was 
assumed to be ρP = 2,000 kg m−3.

Equation (5a) has been solved using a for-loop realized in MATLAB to calculate the particle trajectory in 
time steps of �t = 1µs which is sufficiently small that particle trajectories and particle distributions remained 
unaffected by further time-step refinement. The differential equation (1) together with standard deviation (8) 
have been solved using MATLAB’s ODE45 suite using error tolerances of 10−8 (absolute) and 10−5 (relative).

(19)R =
d∗P

�FWHMdP

Figure 4.   Exemplary transfer function �(dP) . The transfer function is the fraction of particles with size dP that 
have been transferred from the aerosol inlet flow Qa to the sample gas flow Qs . In an ideal case it should be 1 for 
dP = d∗P and 0 for all other dP , but it is broadened due gas flow ratio at in- and outlet β and particle diffusion.
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Results and discussion
Particle size range.  The particle movement depends on the DEP force in radial direction and the sum of 
drag force exerted by the gas and the gravitational body-force in axial direction. Since the distance between the 
electrodes is fixed at 3 mm, only the electric field gradient and the particle diameter influence the residence time 
tend . As residence time we define the time that a particle needs to travel from the outer electrode at R2 (the parti-
cle starting point) towards the inner electrode at R1 (where the outlet slit is located), i.e., the time a particle needs 
to traverse across the annular gap due to DEP. During that time the particle moves in axial direction depending 
on the gas velocity and its sedimentation velocity. For a given electric field strength E the target particle diameter 
d∗P (diameter of the particle that hits the inner electrode at length L ( β = 0 )) is therefore determined by the clas-
sifier length L and the mean gas velocity ugas . Because the flow direction of the classifier was chosen upwards, 
bigger particles travel slower in axial direction but faster in radial direction due to the cubic dependence of the 
DEP force on the particle diameter. As a consequence particles will hit the inner electrode at different positions 
depending on their size. The smaller the particle, the longer the axial distance it travels, because it has a longer 
residence time (lower radial velocity) and a higher axial velocity. Figure 5 shows the target particle diameter d∗P 
as a function of the electric field strength E for several particle residence times between 0.3 s and 3,000 s. Because 
the target particle diameter depends on L and ugas , the target particle residence time t∗end is directly dependent on 
the ratio of L/ugas . If the sedimentation velocity is much smaller than the mean gas velocity, it follows

Figure 5 shows that, under the given conditions, the target particle diameter follows

with a coefficient of determination R2 higher than 0.99. The factor 34.9Vs0.5 accounts for the classifier geometry 
and the gas and particle properties. We generalize that finding for cylindrical classifiers: When the target particles 
diameter is one order of magnitude (OM) larger than the mean free path of the gas molecules, the target particle 
diameter is proportional to

Two limitations need to be considered: 

1.	 The vertical lines in Fig. 5 show the maximum electrical field strengths that cannot be exceeded without 
risking gas ionization at pressures of 1 bar (solid line), 5 bar (dotted line), and 60 bar (dashed line). This 
limit increases with pressure as discussed in “Methodology” section. The maximum usable electric field 

t∗end = 1.017
L

ugas
.

(20)d∗P = 34.9Vs0.5(L/ugas)
−0.5E−1

(21)d∗P ∝ t−0.5
end E−1 ∝ (L/ugas)

−0.5E−1.

Figure 5.   Numerically calculated target particle diameter d∗P as a function of the electric field strength E for 
varied residence times tend . The target particle diameter changes proportional to t−0.5

end ∝ (ugas/L)
0.5 (arrow). 

The solid ( 1 bar ), dotted ( 5 bar ), and dashed ( 60 bar ) lines indicate the maximum allowed electric field strength 
at a specific pressure (higher E could lead to breakdown) and the maximum particle diameter defined by 
sedimentation; larger particles would require higher mean gas velocities ( ugas ≥ 10 used ), which in turn would 
lead to non-laminar flow.
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strengths depending on the pressure are: E(p = 1 bar) = 1.2MV m−1 , E(p = 5 bar) = 5.4MV m−1 , and 
E(p = 60 bar) = 30.5MV m−1.

2.	 The horizontal lines in Fig. 5 represent the particle diameter that has a sedimentation velocity of 10% of the 
mean gas velocity and thus gives the upper limit for classification. The classification of bigger particles is 
possible but their trajectories change entirely compared to particles having a sedimentation velocity below 
10% of ugas : The residence time would increase significantly so that particle diffusion has a much higher 
impact on particle classification. An increase in target particle diameter further without exceeding the 10% 
limitation requires to increase the mean gas velocity. At this point it must be considered that the flow changes 
from laminar to the transition regime at Re = 2,000 . For the geometry chosen here and pressures of 1 bar, 
5 bar, and 60 bar, this results in maximum mean gas velocities of ugas = 514 cm s−1 , ugas = 103 cm s−1 , and 
ugas = 8.6 cm s−1 , respectively.

It is worth mentioning that the maximum residence time of 3,000 s is probably not practicable without having 
particle interaction, i.e. agglomeration. However, because this is a theoretical study, with the purpose to show 
dependencies and possibilities of DEP classification, it was taken as the limit. Experimental investigations need 
to follow. If the working pressure is 1 bar and if a maximum residence time of tend = 3,000 s is acceptable, the 
classifiable particle size ranges from approximately 300 nm to about 90µm (restricted by dotted lines). For 
working pressures of 5 bar and 60 bar particles with diameters from approximately 80 nm to 40µm and 20 nm 
to 12µm (restricted by the dotted and dashed lines) can be classified.

Particle probability distribution due to Brownian motion.  The presented results alone say nothing 
about the selectivity of the classification process because they don’t include particle diffusion so far. In the fol-
lowing we will show how diffusion influences the classification result by approximating the maximum resolu-
tion and yield (maximum of the transfer function) that can be achieved by DEP classification depending on the 
particle size range. The results of this section were calculated with β = 0 and the simple algorithm to calculate 
the diffusion (Eq. (7)).

As presented before the probability distribution of a particle‘s position around its average trajectory, which 
is the trajectory of a non-diffusing particle, can be assumed to be a Gaussian normal distribution. The normal 
distributions σz of selected cases as a function of target particle diameter d∗P are presented in Fig. 6 for a variation 
of classifier lengths L and two gas velocities of ugas = 8.6 cm s−1 (a) and ugas = 0.1 cm s−1 (b). The electric field 
strength increases from right to left on each graph. The residence time along the lines is virtually constant but 
can be up to 11% longer than shown in the legend for the biggest particles (steep increase of the residence time 
as soon as the sedimentation velocity approaches 10% of the gas flow velocity). The analytical approach for the 
standard deviation (lines) matches very well with our additional test simulations using the Langevin approach 
(triangles). Each triangle shows the standard deviation of 1,000 Langevin particle trajectory calculations. The 
biggest relative difference is 8%; hence we can safely assume that the analytic approach gives good results for 
determining the particle probability distribution over the whole parameter range considered in this manuscript.

Transfer function.  Using the probability distribution and the average trajectory for each particle size and 
inlet position (weighted by the aerosol flow per cross section), a transfer function as described in the “Methodol-
ogy” section can be determined. The size-dependent transfer function describes the probability that a particle is 
transferred from the inlet into the outlet sample flow. Two values characterize the transfer function and therefore 
the classification process: 

Figure 6.   Standard deviation σz as a function of target particle diameter d∗P for different classifier lengths L. 
The electric field strength E increases from right to left. The mean gas velocities are ugas = 8.6 cm s−1 (a) and 
ugas = 0.1 cm s−1 (b). The lines give the results calculated with the mean square displacement model (Eq. (8)). 
The triangles show results extracted from particle trajectories calculated through the Langevin model (Eq. (5a)).
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1.	 Resolution: The narrower the transfer function, the higher is the size-selectivity of the classifier, which is 
described by the resolution (see Eq. (19)). The higher the resolution, the sharper the separation by particle 
size.

2.	 Maximum yield: The second size for describing the classification quality is the yield that the classifier achieves 
for the target particle diameter �(d∗P) . The yield is the probability that a particle with the target particle 
diameter dP is transferred from the inlet into the outlet sample flow.

The ratio of extended outlet slit width se to the width of the spatial particle distribution of the target particle 
diameter in z-direction has a severe effect on both the resolution and the maximum yield as shown schematically 
in Fig. 7. Two cases of resolution limitation can be distinguished: classifier limitation and diffusion limitation. Keep 
in mind that the extended outlet slit width se is an auxiliary value which does not reflect the physical classifier 
design but is used here to describe the influence of β . It is calculated by Eq. (15) using Eq. (14) to determine Rout.

If the particle distribution is small compared to the outlet slit width, classifier limitation, cf. Fig. 7a, the maxi-
mum yield is 100%. According to the definition of the resolution from Eq. (19) this case leads to the expression

The particle sizes dP(z1) and dP(z2) are the two particles that fulfil � = �(dP)/2 . They define the full width at half 
maximum of the transfer function. Their terminal positions are z1 and z2 . With the proportionality of dP ∝ L−0.5 
from Eq. (21) it follows that

and with Leff = L+ se/2 , z1 = Leff − se/2 = L , and z2 = Leff + se/2 = L+ se , the classifier limited resolution 
Rcl is

If the target particle distribution is of the same size or wider than the extended outlet slit width, the resolu-
tion does not follow Eq. (24) any longer, but is reduced by diffusion. As shown in Fig. 7b, the maximum yield 
�max is then smaller than 100%. Consequently the full width at half maximum is not any longer determined 
by the extended outlet slit width, but by the positions z1 < L and z2 > L+ se . Using Eq. (23) with z1 < L and 
z2 > L+ se shows that for diffusion limitation R < Rcl,

(22)R =
d∗P(z = Leff)

dP(z1 = Leff − se/2)− dP(z2 = Leff + se/2)
.

(23)R =
L−0.5
eff

z−0.5
1 − z−0.5

2

(24)Rcl =
(L+ se/2)

−0.5

L−0.5 − (L+ se)−0.5
.

(25)R =
d∗P(z = Leff)

dP(z1)− dP(z2)
=

L−0.5
eff

z−0.5
1 − z−0.5

2

<
L−0.5
eff

L−0.5 − (L+ se)−0.5
= Rcl.

Figure 7.   Limitation of the resolution R due to the classifier (process parameters and classifier geometry) 
(a) and due to particle diffusion (b). For both cases the particle probability distribution at the outlet and the 
respective percentage that hits the outlet slit � is shown for three different particle diameters that define the 
classifier resolution. The average terminal positions of the particle diameters that fulfill � = �(d∗P)/2 = �max/2 
and thus determine the full width at half maximum of the transfer function are z1 and z2 . Note that the particle 
probability distributions are shown schematically and do not illustrate the real quantitative distributions. The 
distributions are drawn flattened since a uniform (rectangular) distribution was assumed at the inlet.
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It shows that diffusion-limited resolution is always smaller then the classifier-limited resolution Rcl . Rcl depends 
on the classifier geometry, the flow ratio β , the flow velocity, and the applied electric field strentgh. This effect 
was described for DMAs in Ref.36. In the diffusion-limited case the resolution is further decreased by diffusional 
spreading with decreasing particle diameter. The higher the amount of in- and outlet flow, the lower the maxi-
mum achievable resolution.

It is obvious that, when the flow ratio β and as a consequence the extended outlet slit width se is reduced, 
resolution increases because the full width at half maximum or the distance between z1 and z2 decreases. But 
this increase in resolution is inevitably linked to a reduced yield.

Maximum achievable resolution.  The highest resolution is achieved when the electric field strength is at the 
maximum value (defined by the dielectric strength), so that the dielectrophoretic force is maximized and the 
residence time (and thus the time available for spreading of the probability distribution due to diffusion) is 
minimized. Figure 8a shows the maximum achievable resolution depending on the particle diameter for differ-
ent flow ratios β and electric field strengths of 30.5MV m−1 and 5.4MV m−1 . The two electric field strengths 
presented in this plot correspond to the maximum applicable (cf. “Methodology” section) at p = 60 bar 
and p = 5 bar . The particle residence time correlates to the particle diameter and the electric field strength, 
tend = E−2d∗P

−21.2× 103 V2 s.
All graphs show the same behavior. Resolution increases with increasing particle diameter until a maximum 

is reached and resolution remains constant. This particle-size independent resolution is the classifier limitation. 
This maximum resolution is lower than the theoretical classifier-limited resolution Rcl (Eq. (24)). Only for the 
largest particles (points on the right end of the graph), the resolution increases slightly again. The constant 
maximum of each graph depends on the flow ratio β . The higher the flow ratio (and thus the throughput) the 
lower the maximum resolution achieved. Resolution is limited to 160 for β = 0.01 , 55 ( β = 0.03 ), 24 ( β = 0.07 ), 
and 17 ( β = 0.1 ). Before this resolution maximum is reached, thus in the diffusion-limited case, the resolution 
is independent of β.

For small particles the resolution is determined by particle diffusion because the standard deviation in z-direc-
tion is broader than the extended outlet slit width ( se < σz , cf. Fig. 7). With increasing particle size the particle 
distribution due to particle diffusion gets narrower whereas the extended outlet slit width remains the same. 

Figure 8.   Resolution R (a) and yield �(d∗P) (b) depending on the target particle diameter d∗P at pressures of 
60 bar (left) and 5 bar (right) for different flow ratios β . The respective residence time is shown on the top axis. 
The solid lines show the classifier-limited resolution Rcl (cf. Eq. (24)).
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When the extended outlet slit width is about 4 times larger than the standard deviation, the classifier limitation 
is reached and resolution remains constant with increasing particle diameter.

In the diffusion-limited regime, the resolution is proportional to about d∗P
1.3 . This particle-size dependence is 

because small particles show larger residence time and more diffusional spreading. The dependency on the elec-
tric field strength is linear. When the resolution is classifier limited, the flow ratio β is determining the maximum 
achievable resolution. The slight increase in resolution at highest particle diameter is because the residence time 
increases due to their increased sedimentation velocity of up to 10% of the average gas flow velocity. A few resolu-
tions diverge from the trend of the others. These calculation artefacts occur due to small calculation inaccuracies. 
Especially for small β values, slight inaccuracies of the particle trajectories can make a difference because the 
extended outlet slit width, where the particles are captured, is also small. Still the general trend is clearly evident.

For visualization: At a field strength of 30.5MV m−1 a resolution of about 10 is achieved for a target particle 
diameter of 100 nm. That means the particle diameters of about 95 nm and 105 nm are found with half the 
maximum yield in the sample flow. This resolution would be very attractive for some applications.

The resolution is always lower than the theoretically calculated classifier-limited resolution Rcl (Eq. (24)). The 
classifier-limited resolution gives the maximum achievable resolution for the ideal case that all particles enter 
the classifier at the exact same position. In reality and also in our calculations, particles enter the classifier at 
different radial positions between Rin and R2 which results in lower resolutions.

Yield.  Figure 8b shows the yield �(d∗P) for the same cases as presented in Fig. 8a. The yield decreases with 
the target particle diameter following an s-shape. This is because the particle distribution of the target parti-
cle diameter is increasing with decreasing particle size and is broader than the extended outlet slit width. At 
particle diameters where the process changes from diffusion to classifier limitation the slope decreases and the 
yield approaches a maximum of 0.5 to 0.57. The yield is also increasing with increasing flow ratio β (increasing 
throughput) because the extended outlet width is increasing with increasing β and thereby a broader section of 
the particle distribution enters the sampling flow.

From our description of diffusion and classifier limitation it could be expected that the yield would approach 
1. The reason for values below 1 is that the particles enter the classifier between Rin and R2 . During classification 
these particles are spread due to their dielectrophoretic migration velocity to a radial section that corresponds 
to fspread . The spreading factor is given by

with t2 being the time that a particle needs to travel in radial direction from R2 to Rin and t1 the time that a particle 
needs to travel from Rout to R1 . For the given geometry the spreading factor fspread is 1.9 for β = 0.1 and 2 for 
β = 0.01 . This explains well why the yield is limited to about 50%. For higher yields the ratio between aerosol 
and sheath gas flow βin needs to be lower than the ratio between sampling and excess gas flow βout . This does 
also explain that the resolution does not reach the derived classifier limitation Rcl , which is only achieved when 
fspread ≤ 1.

Some calculation artefacts occur also for the yield. The explanation is the same as for the calculation artefacts 
present for the resolution, slight inaccuracies of the trajectory calculations.

General remarks.  All calculations are based on single particles. Particle interactions, which are increasingly 
occurring at higher particle concentrations and residence times, are neglected. The impact of particle interac-
tions on the classification process are hard to predict by calculations and must be investigated experimentally. 
Barom et al.21 found a bimodal size distribution in their experiments on DEP fiber classification in air. They 
assumed that the smaller fibers stick to the bigger fibers and therefore both are found in the same sample. Fur-
ther, they found that fibers deposit on the inner electrode at high fiber concentrations of 2,900 cm−3 or larger. 
Nevertheless our results give a good impression of the principal possibilities of DEP classification under ideal 
conditions when no or few particle interaction occurs. To avoid accumulation, clustering, and sliding of particles 
at the inner electrode (which might lead to plugging the gap between the electrodes, increased electrical current 
due to conduction through particle agglomerates, and reduced resolution) two options can be considered. The 
first concept was applied by Baron et al.21, who used a thin oil film at the inner electrode to stop particles from 
re-dispersion and clustering. In this case the classification can only be operated as a batch process since particles 
need to be removed from the inner electrode at a certain particle loading. The second option is to add particle 
collectors (e.g. in form of a slits) at the inner electrode that collect particles that hit and slide down the inner 
electrode. This might allow a continuous operation. Simple discontinuous operation without oil film would also 
be possible to clean the classifier during the breaks. When considering higher particle loading the interaction of 
particle and fluid changes. The drag force becomes inversely proportional to the particle concentration which 
can be taken into account by using a drag force correction factor37.

A comparison of DEP classification to Differential Mobility Classification is hard to perform because clas-
sification in DMA devices occurs according to particle’s electrophoretic mobility which is, due to the particle 
charging process, not directly size-dependent but underlies stochastic variations. The resolution R of DEP clas-
sification is related to the dielectrophoretic mobility and is thus not comparable. The classifications yield �max 
is given as a function of particle size for most DMA devices and can be compared. Two fundamental differences 
between DEP classification and DMA should be considered: 

(26)fspread =
t2

t1
,
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1.	 An advantage of DEP classification is that the particle migration velocity scales proportionally to d2P , whereas 
for DMA processes the electrophoretic migration velocity shows a significantly lower dependency. This allows 
potentially higher resolutions for DEP classification. The DMA migration velocity depends on the particle 
charging modus which can be unipolar diffusion or field charging or bipolar diffusion charging (typical for 
DMA). For bipolar diffusion charging the migration velocity of nanoparticles scales proportionally to d−1

P  
( dP < 100 nm ) while the scaling for bigger particles decreases. Field charging (corona charging) becomes 
significant for particles above 100 nm and the velocity scales proportionally to dP ( dP > 1µm ) 38.

2.	 On the other hand, the DEP migration velocity is much lower than the electrophoretic migration velocity 
(approximately by four orders of magnitude at dP = 1µm ), and diffusion has a much higher impact on the 
resolution.

Hence, DEP classification is, compared to DMA, stronger limited by diffusion and less limited by the gas flow 
conditions.

Conclusion
The possibilities and limitations of the classification of aerosol particles by dielectrophoresis (DEP) have been 
evaluated for concentric cylindrical electrodes with an annular gap in between serving as separation chamber. 
The observed dependencies may however be transferred to other geometries and thus have a general character. 
In fact, a systematic investigation of the dependencies of target particle diameter, resolution, and yield of the DEP 
classification on residence time, applied electric field strength, and pressure of the carrier gas was performed. 
In addition, the influence of particle diffusion on the DEP classification was also considered for the first time.

It was found that the target particle diameter d∗P scales with the residence time tend and the field strength E 
as d∗P ∝ t−0.5

end E−1 , with the residence time being proportional to the ratio of classifier length to average gas flow 
velocity tend ∝ L/ugas.

As expected and analogous to DMA applications, the resolution of DEP classification is limited either by 
diffusion or by the classification parameters. If diffusion is the limiting factor, which is the case for small particles 
and low flow ratios β , resolution is proportional to d∗P

1.3 and can be increased by increasing the electric field 
strength. For bigger particles and larger flow ratios β resolution is limited to a value that depends mainly on the 
flow ratio and the distance between the electrodes. For the case that the yield is 1, this limitation is given by Rcl . 
We defined as a characteristic value for this limitation the extended outlet slit length se (which is an auxiliary 
value), so that the classifier limitation reads Rcl = (L+se/2)

−0.5

L−0.5−(L+se)−0.5 . The classification yield increases with the ratio 
of the extended outlet slit width se to the diffusion induced broadening σz . As expected, resolution and yield 
exhibit opposite dependencies on the ratio se/σz.

Our simulations show the theoretical possibility to classify particles with diameters from about 20 nm 
to 90µm when using pressures from 1 to 60 bar. Here, flow velocities between ugas = 0.1 cm s−1 (flow rate 
Q = 16mL s−1 ) and ugas = 514 cm s−1 ( Q = 800mL s−1 ) were used. The throughput could be increased by 
changing the classifier geometry e.g. the classifier length. At this point, it is unclear to which extend these results 
can be achieved in praxis because the presented simulations did not account for particle interactions. Particle 
interactions increasingly occur at higher particle concentration and residence time. Nevertheless, at increased 
working pressures DEP classification can in principle cover a highly interesting particle size range from 100 nm 
to 10µm , while being directly particle size-selective and particle charge independent.

Data availability
The datasets generated and analysed during the current study as well as the calculation algorithm are available 
from the corresponding author upon request.
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