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Abstract

Osteoarthritis is a prevalent joint disease and a major cause of disability worldwide with no curative therapy. Development of disease-
modifying therapies requires a better understanding of the molecular mechanisms underpinning disease. A hallmark of osteoarthritis
is cartilage degradation. To define molecular events characterizing osteoarthritis at the whole transcriptome level, we performed
deep RNA sequencing in paired samples of low- and high-osteoarthritis grade knee cartilage derived from 124 patients undergoing
total joint replacement. We detected differential expression between low- and high-osteoarthritis grade articular cartilage for 365
genes and identified a 38-gene signature in osteoarthritis cartilage by replicating our findings in an independent dataset. We also
found differential expression for 25 novel long non-coding RNA genes (lncRNAs) and identified potential lncRNA interactions with
RNA-binding proteins in osteoarthritis. We assessed alterations in the relative usage of individual gene transcripts and identified
differential transcript usage for 82 genes, including ABI3BP, coding for an extracellular matrix protein, AKT1S1, a negative regulator
of the mTOR pathway and TPRM4, coding for a transient receptor potential channel. We further assessed genome-wide differential
splicing, for the first time in osteoarthritis, and detected differential splicing for 209 genes, which were enriched for extracellular
matrix, proteoglycans and integrin surface interactions terms. In the largest study of its kind in osteoarthritis, we find that isoform
and splicing changes, in addition to extensive differences in both coding and non-coding sequence expression, are associated with
disease and demonstrate a novel layer of genomic complexity to osteoarthritis pathogenesis.

Introduction
Osteoarthritis is a joint disease characterized by progres-
sive degeneration of articular cartilage, remodeling of the
underlying bone, and synovitis (1,2). It is the most com-
mon joint disorder and a major cause of pain and disabil-
ity worldwide (3). Currently, no curative treatments are
available, and management strategies focus on symp-
tom alleviation through pain relief and joint replace-
ment surgery, stressing the need to identify new targets.
The defining hallmark of osteoarthritis progression is
cartilage degeneration. Identification of transcriptomic
changes in osteoarthritis can help elucidate genes and
pathways that play a role in disease pathogenesis.

Previous studies have focused on gene-level changes
in expression with larger sample sizes being required
for an exhaustive characterization of differences (4–19).

Recently, alterations in gene expression during
osteoarthritis have also been attributed to epigenetic
phenomena and their interaction (4,6,9–11,16–19). To
assess the role of long non-coding RNA genes (lncRNAs),
which have low expression levels, deep RNA sequencing
(RNA-seq) is needed. To date, the majority of RNA-
seq studies in osteoarthritis have explored expression
differences at the gene level only, without considering
the dynamics in the expression of multiple related
transcripts. Alterations in relative transcript abundances
or isoform-switches have been shown to play a role
in other diseases (20,21). Disentangling the different
isoforms is crucial as they can result in functionally
different protein products, affect topology and mRNA
stability (20). Differential use of untranslated transcripts
and non-principal isoforms is primarily responsible
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for tissue-specific isoform expression patterns, with
even minor alterations in isoform usage potentially
having a significant impact on protein expression (20–
22). Additionally, alternative splicing can affect function
without inducing significant changes in expression.

In this work, we investigated transcriptomic dif-
ferences between low-osteoarthritis grade and high-
osteoarthritis grade cartilage in 124 patients undergoing
total knee replacement (Supplementary Material, Table
S1) increasing the sample size by 50% compared to the
largest study of its kind (5). We identified differentially
expressed genes and performed extensive comparison
with transcriptomic studies published to date to define
an osteoarthritis-specific transcriptomic signature. We
examined previously understudied biotypes (lncRNAs)
(23), found enrichment for disease-involved biological
pathways, and detected transcriptome-wide differences
in isoform usage and alternative splicing to our knowl-
edge for the first time (Fig. 1).

Results
Gene-level changes between low-osteoarthritis
grade and high-osteoarthritis grade cartilage
In order to detect the most informative gene expression
changes in osteoarthritis cartilage, we defined differen-
tially expressed (DE) genes as those that had a larger than
2-fold (|log2FC| > 1) increased or decreased expression
in high-osteoarthritis grade cartilage at 5% FDR. This
resulted in 365 DE genes. Of these genes, 241, were
significantly upregulated (log2FC:[1, 2.47]) and 124 were
downregulated (log2FC:[−2.88, −1]) in high-osteoarthritis
grade cartilage (Fig. 2A, Supplementary Material, Table
S2). Comparison with 16 studies reporting osteoarthritis-
specific alterations in cartilage tissue indicated large
agreement among top signals and added 54 novel
associations (4–19) (Fig. 2A and B, Supplementary Mate-
rial, Table S2). TMEM59L (log2FC = 2.45, P = 1.4 × 10−34)
was the most significantly upregulated gene. TMEM59L
encodes a neuron-specific transmembrane protein
mediating oxidative stress-induced cell death through
caspase-3 in mice, a mechanism also associated with
chondrocyte cell death in osteoarthritis experimental
models (24,25). Conversely, CHRDL2 (log2FC = −2.87,
P = 1.8 × 10−26) was the most significantly downregulated
gene, and the gene with the largest observed fold-
decrease in expression levels in high-osteoarthritis
grade compared to low-osteoarthritis grade cartilage.
CHRDL2 codes for chordin-like protein two, which
is implicated in the negative regulation of cartilage
formation (26).

Following the identification of DE genes, we performed
gene set enrichment analysis (GSEA) to identify coordi-
nated changes in expression of biological pathways. The
main pathways enriched were relevant to inflammation,
extracellular matrix organization and the transla-
tion machinery (Supplementary Material, Table S3).

Upregulated genes were mainly enriched for processes
related to inflammation, including increased cytokine
activity, neutrophil degranulation, signaling by GPCR; as
well as structural terms including collagen formation,
extracellular matrix organization and integrin inter-
actions (Fig. 3A and B). The pathway with the highest
positive enrichment (normalized enrichment score—
NES) was ‘cytokine activity’ (NES = 2.12, P = 1.2 × 10−2)
and the one that was most significantly upregulated
was ‘integrin cell surface interactions’ (NES = 2.01,
P = 5.4 × 10−3). The leading-edge subset (core genes) of the
cytokine activity pathway included the upregulation of
SPP1 (osteopontin), several members of interleukin fami-
lies 1 and 6 (CRLF1, IL1RN, IL36G, IL11, IL1B) and members
of the tumor necrosis factor family (TNFSF18, TNFSF8)
indicating inflammation driven by mainly IL-1 and IL-6
cytokine families in osteoarthritis cartilage. Apart from
increased expression of pro-inflammatory cytokines,
we also observed upregulation of the interleukin-
10 anti-inflammatory signaling pathway (NES = 2.04,
P = 9.6 × 10−3). The leading edge of this pathway impli-
cated upregulation of IL1RN1 that encodes the inter-
leukin 1 receptor antagonist. However, in contrast, the
gene encoding IL10 itself was downregulated in our
dataset (logFC = −0.74, P = 1.9 × 10−7), a finding which
is consistent with the complex pattern of crosstalk
between the different cytokines in osteoarthritis carti-
lage. In addition to that, we identified upregulation of
the cell-type markers of M1 macrophages (NES = 2.07,
P = 2.1 × 10−3), neutrophils (NES = 2.15, P = 3.2 × 10−5) and
T cells (NES = 2.02, P = 2.1 × 10−3) indicating potential
immune cell infiltration in osteoarthritis cartilage
(Fig. 3C and D, Supplementary Material, Table S3). The
leading-edge of ‘integrin cell surface interactions’
pathway included the upregulation of SPP1 along with
multiple collagen coding genes (COL18A1, COL1A1,
COL5A3, COL3A1, COL1A2) indicating the extensive
remodelling of the extracellular matrix. We identified
downregulation (NES < 0) for spliceosome and RNA
processing terms and terms relevant to ribosome for-
mation and the translational machinery (Fig. 3A and B,
Supplementary Material, Table S3). The leading edge
of translation terms implicated suppression of several
genes coding for ribosomal proteins (RPS5, RPS15, RPS8,
RPS6, RPL3, RPL38). Such proteins are essential for
maintaining the overall ribosomal subunit structures
and this finding is indicative of aberrations in ribosome
assembly in high-osteoarthritis grade cartilage (27).
We identified positive enrichment for terms relevant
to cholesterol metabolism, including the synthesis of
bile acids and 27 hydroxycholesterols supporting the
metabolic spectrum component of osteoarthritis (28).
Upregulated DE genes were further enriched for targets
of ZNF-507 transcription factor, which is predicted to
interact with ADAMTS-7, a metallopeptidase previously
associated with osteoarthritis (29,30) (Supplementary
Material, Table S3).
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Figure 1. Study overview.

LncRNAs involved in osteoarthritis progression
Sequencing depth and mapping to non-coding tran-
scriptome allowed us to further investigate lncRNAs. In
total, we detected 33 lncRNAs among DE genes out of
which 25 were reported for the first time in osteoarthritis
cartilage (Supplementary Material, Fig. S1). The lncRNA
with the largest increase was MYOSLID (log2FC = 1.49,
P = 1.6 × 10−21), which has been reported to be in a posi-
tive feedback loop with the transforming growth factor
(TGF)-β/SMAD pathway in vascular smooth muscle cells
(31). The most significant newly implicated lncRNA was

TENM3-AS1 (log2FC = 1.38, P = 2.7 × 10−27), which was
upregulated in high-osteoarthritis grade cartilage. The
direction of effect was consistent with its sense gene
TENM3 (log2FC = 1.57, P = 3.3 × 10−26) indicating potential
cis activity or co-expression due to its location proximity
(Fig. 4C).

To further characterize DE lncRNAs, we examined their
enrichment among RNA-binding proteins (RBPs), which
have been recently recognized as important lncRNA
regulators in disease (32,33). Differentially expressed
lncRNA genes were overrepresented among 166 RBPs
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Figure 2. Differentially expressed (DE) genes between paired low- and high-osteoarthritis grade cartilage. (A) Differential expression of all genes. (B)
Differential expression of lncRNA genes. Gene names shown in white boxes in A and B highlight newly implicated differentially expressed genes. (C)
Biotype annotations of the DE genes. (D, E) Enlarged C. gene biotype bar plots showing less abundant biotypes. (F) Hierarchical clustering on top 100 DE
genes (logCPM: log-counts-per-million). Gene names highlighted in bold show newly implicated DE genes.

(downstream interaction data derived from LncSEA
database (34)) (Supplementary Material, Table S4). Three
out of the 166 enriched RBPs (PRDM1, RUNX3 and
PPARG) were also DE in our dataset and have been
extensively linked to osteoarthritis (4–6,8,35–37). In order
to detect RBPs that are potential regulators of lncRNAs
and identify potential interactions, we examined the
correlation of expression between the DE RBP genes and
DE lncRNAs. We identified 20 significant correlations
(r > 0.7) including 10 individual lncRNAs (Fig. 4A), eight
out of which were associated for the first time with
osteoarthritis (Supplementary Material, Tables S2 and
S5). The highest positive correlation was found for
the pairs TENM3-AS1-PPARG and LINC01411-PPARG and
ZNF295-AS1-PRDM1 (r > 0.8, P < 2e−16) (Fig. 4B). PPARG has
been proposed as a therapeutic target for osteoarthritis
(37), therefore its regulation axis could provide possible
intervention points. Notably, we also detected a strong
inverse correlation between MEG9 and all of the DE RBP
genes (r < 0.7, P < 2e−16) in our dataset.

Transcript-level changes in osteoarthritis
cartilage
In order to gain a better understanding of the spliceo-
some and RNA processing terms enriched among

downregulated DE genes, we examined fine changes
in the balance of different isoforms by performing
differential transcript usage (DTU) analysis. We iden-
tified 89 isoforms belonging to 82 genes that were
differentially used between low- and high-osteoarthritis
grade cartilage at 5% FDR (Supplementary Material,
Table S6). The differentially used transcripts were 73%
protein-coding, 10% included retained introns, 9% were
annotated as lncRNAs and 8% were prone to non-
sense-mediated decay (Fig. 5A). For ABI3BP, AKT1S1,
TRPM4, VDAC2 and GADD45A, we detected two or more
significantly differentially used transcripts (isoform-
switches) (Fig. 5B–F).

Among the leading signals, we detected four protein-
coding transcripts of ABI3BP, a gene coding for an
extracellular matrix protein and implicated in cell–
extracellular matrix interactions (38). Transcripts ENST00
000471714 (log2FC = 0.85, P = 1.1 × 10−11), ENST000005279
43 (log2FC = 1.48, P = 8.1 × 10−7) and ENST00000533795
(log2FC = 0.73, P = 0.009) demonstrated increased usage
in high-osteoarthritis grade cartilage, while ENST0000048
3129 (log2FC = −0.95, P = 2.2 × 10−11) usage was decreased
(Fig. 5B). ENST00000471714 is the longest transcript of
ABI3BP and encodes the longest protein isoform (1786 aa),
which contains two fibronectin III domains, important
for structural and functional properties including
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Figure 3. Gene set enrichments among DE genes. (A) Gene sets significantly associated with DE genes at 5% FDR. Only the ten gene sets with the most
significant enrichment in each category are shown. Log2FC: log-fold-change. Adj. P val: FDR. (B) Hierarchical clustering of Gene Ontology (GO) terms
based on gene semantic similarity using the Jaccard coefficient. (C) Gene set enrichments among cell type makers. (D) Genes associated with different
inflammation-related cell types discussed in the text. Genes are colored according to their log2FC.

Figure 4. Differentially expressed lncRNAs between low- and high-osteoarthritis grade cartilage. (A) Heatmap of Spearman correlations between
differentially expressed RBP genes and differentially expressed lncRNAs. (B) Network of differentially expressed lncRNAs targeted by three differentially
expressed RBP genes that have been previously associated in osteoarthritis cartilage. Novel lncRNAs identified in our analysis are highlighted with a
thicker border width. All network nodes are colored according to the log2FC: log-fold-change. (C) Expression (covariate-adjusted logCPM: log counts
per million) of long noncoding RNA (lncRNA) TENM3-AS1 and gene TENM3 in low- and high-osteoarthritis grade cartilage. Both TENM3-AS1 and TENM3
were significantly upregulated in high-osteoarthritis grade cartilage. Violin plots show the expression distribution across samples. Boxplots center at
the median and whiskers extend to 1.5 times the interquartile range.
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Figure 5. Differential transcript usage between low- and high-osteoarthritis grade cartilage. (A) Distribution of differentially used transcripts between
low- and high-osteoarthritis grade cartilage among ENSEMBL transcript biotypes. (B–F) Violin plots show the distribution of usage of differentially used
transcripts for ABI3BP, TRPM4, AKT1S1, VDAC2 and GADD45A. Boxplots within the violin plots have their center at the median and whiskers extend to
1.5 times the interquartile range. Heatmaps show the normalized expression of the respective transcripts between low and high-osteoarthritis grade
cartilage accounting for technical variation. logCPM: log-counts-per-million.

integrin interactions, cell adhesion and the extracellular
matrix (38). ENST00000483129, ENST00000527943 and
ENST00000533795 encode shorter proteins (187, 151, 187
aa) that lack both 5′ and 3′ untranslated regions (UTRs)
and the fibronectin III domain. The upregulated isoforms
in high-osteoarthritis grade cartilage contain disordered
regions spanning the first 105aa for ENST00000527943, all
187aa for ENST00000533795 and amino acids 315–1529
for ENST00000471714 (23). We also detected differential
usage for two transcripts of the AKT1S1 gene. Transcript

ENST00000391834 (log2FC = 0.42, P = 0.008) demonstrated
increased usage in high-osteoarthritis grade cartilage,
while ENST00000344175 (log2FC = −0.52, P = 3.3 × 10−4)
usage was decreased (Fig. 5C). Although both transcripts
code for the same protein, ENST00000391
834 has a longer 5′ UTR, which may affect its conforma-
tion and subsequently its translational regulation (39).
Closer examination of the 5′ UTR of both ATKT1S1 tran-
scripts through functional diversity analysis (40) revealed
that ENST00000344175 contains an upstream open
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Figure 6. Differential splicing between low- and high-osteoarthritis grade cartilage for COL11A1. The figure illustrates decreased skipping of exon 8
of COL11A1 in high-osteoarthritis grade cartilage. The exons affected by the skipping event fall within the N-terminal variable region of collagen. The
violin plot shows the distribution of intron usage (covariate-adjusted PSI) of the differentially excised intron cluster containing exon 8 (E8) for low- and
high-osteoarthritis grade cartilage.

reading frame spanning positions 4–93, which is absent
in ENST00000391834. Upstream open reading frame
(uORFs) have been extensively linked to translation
disruption in disease (41) and therefore their presence in
AKT1S1, which is a repressor of the mTOR pathway, can
have significant implications in mTOR subtle regulation.
Another notable example was the isoform switching
detected for TRPM4 gene between its protein coding
ENST00000599628 transcript (log2FC = −0.83, P = 0.03) and
its ENST00000594568 (log2FC = 0.79, P = 0.03) transcript
including a retained intron and not coding for any protein
(Fig. 5D). Functional diversity analysis for these tran-
scripts revealed that ENST00000599628 contains multiple
Alu elements along its coding region (at positions 933–
1237, 1238–1375, 1388–1690) as well as a particular
type of conserved interspersed repeat region called
Mammalian-wide interspersed repeat (position: 592–
765). These regions have been proposed to be associated
with enhancer function and tissue-specific expression
(42). TRPM4 codes for a transient receptor potential ion
channel activated by calcium. These type of channels
have been reported to be involved in mechanotransduc-
tion (43) and have been proposed as a drug target for
osteoarthritis (44).

Of the 82 genes showing differential transcript usage,
none was found to be DE highlighting the additional
level of information gained by transcript-level analysis.

The genes showing differential transcript usage (isoform-
only genes) were enriched for Gene Ontology (GO) terms
including cadherin binding and cell adhesion at 5% FDR
(Supplementary Material, Table S7).

Differential splicing in osteoarthritis cartilage
Variety at the protein-transcript level is accomplished
by a combination of events that include alternative
transcription initiation and termination sites, splicing
and polyadenylation (22). We investigated differential
splicing phenomena and detected 230 differentially
spliced junctions between low- and high-osteoarthritis
grade cartilage in 209 genes (at 5% FDR). Of the 230
significant events, 157 included one or more novel
exon junctions (Supplementary Material, Tables S8–
S11). The leading signals based on the significance
(FDR < 0.05) and their effect size (difference in the
percentage of spliced in intron cassettes-|�PSI|) included
ABI3BP, COL11A1 and S100A4 for which we identified
four, two and one significantly differentially spliced
junctions, respectively (Supplementary Material, Figs S2
and S4). For ABI3BP we detected increased inclusion of
the exon cassette spanning the region (chr3:100808235–
100846372) in high-osteoarthritis grade cartilage. This
region is annotated to code the disordered parts of the
ABI3BP protein and could potentially affect its structural
conformation or binding state (45). For COL11A1, complex
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Figure 7. Comparison of gene expression differences of the DE genes identified in the discovery and replication datasets. The plot shows gene-level
log-fold-changes of DE genes identified in the discovery compared to the replication dataset. Individual genes are shown as single points, and the color
corresponds to whether the gene is identified as DE in discovery and replication dataset (red), in the discovery dataset only (black).

splicing phenomena, including decreased skipping of its
eighth exon (Fig. 6), affect its N-terminal variable region
(exons 6–9, chr1:103021769–103025521). As this region
is present in all five COL11A1 transcripts, it could have
a regulatory role in the shape and size of the collagen
fiber. Alternative splicing was also detected for other
collagen coding genes, including COL1A1, COL1A2 and
COL2A1. For COL1A1, COL1A2 and COL2A1, complex
splicing phenomena, which include skipping of multiple
exons, affect the coding region for the alpha1 chain
of triple-helix collagen (Supplementary Material, Fig.
S3). This domain is an important structural feature
of collagen and a binding site for receptors, proteases
and extracellular matrix proteins (46). With regard to
S100A4, we identified increased skipping of the region
chr1:153547846–153548345 spanning the first intron of
S100A4 and the second intron of S100A3 (Supplementary
Material, Fig. S4). This region includes a promoter-
enhancer-like signature (EH38E1385470/GH01J153539)
sequence which targets S100A4–S100A5. For the same
gene, we also detected decreased skipping of the region
(chr1:153544809–153545753) which also overlaps with
another promoter region (EH38E1385466/GH01J153539).

Differential splicing was also found for genes coding for
regulatory components including MIR22HG, a lncRNA
promoting osteogenic differentiation of mesenchymal
cells through the PTEN/AKT pathway (47). We detected
increased skipping of the third exon in all MIR22HG
isoforms in high-osteoarthritis grade cartilage. We iden-
tified seven genes (ABI3BP, PRDX1, SQSTM1, GADD45A,
HNRNPM, PTPRE and CALR) that showed evidence
of both differential transcript usage and differential
splicing between low- and high-osteoarthritis grade
cartilage, suggesting that local splicing phenomena could
underpin the observed different transcript usage for
these genes. Differentially spliced genes were enriched
for terms related to the extracellular matrix including
proteoglycan and glycosaminoglycan binding, and cell
surface interactions at 5% FDR (Supplementary Material,
Table S11).

Replication
We replicated our findings at gene level using an inde-
pendent RNA-seq dataset from the RAAK study, which
contained matched low- and high-osteoarthritis grade
cartilage tissue from 17 knees of osteoarthritis patients
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(12) (Supplementary Material, Table S1). Comparing
the effect sizes (log-fold-changes) of discovery and
replication datasets, we found a high correlation between
the effect sizes of DE genes (Pearson’s correlation r = 0.92,
P < 10−15). This correlation was lower when considering
all expressed genes (r = 0.36), indicating a higher level of
noise for measurements of small and null effect sizes.
In total, we detected 175 genes that were nominally
significant in the discovery dataset and were replicated
in the validation dataset (Supplementary Material, Table
S12) and 38 genes being DE in both datasets (with
|log2FC| > 1 and P < 0.05) (Fig. 7). Further examination
of these genes indicated that they were enriched for
known pathways related to osteoarthritis progression
including serine/threonine protein kinase signaling (48),
BMP signalling (49) and interleukin-6 signalling (50). All
of these pathways have been proposed as drug targets
for osteoarthritis (51–53) (Supplementary Material, Fig.
S5B). Additional comparison of the 38 genes with the 16
studies reporting osteoarthritis-specific changes (4–19)
in cartilage showed that each of the genes was found
to be DE in at least another two studies. Hierarchical
clustering analysis on the expression of the 38 genes
indicated clustering based on the cartilage tissue grade
(Supplementary Material, Fig. S5A). This suggests that
the 38 genes accurately reflect transcriptomics changes
in osteoarthritis cartilage supported by multiple lines of
evidence and can be potentially interesting therapeutic
targets.

Discussion
We comprehensively assessed transcriptome-wide changes
in osteoarthritis patient knee cartilage tissue in the
largest patient cohort to date, and identified novel
molecular markers of disease that robustly replicate in
an independent dataset. Our key novel findings were
the identification of differences in transcript usage for
a total of 82 genes, genome-wide significant splicing
differences between low- and high-osteoarthritis grade
cartilage for 209 genes and the implication of 25 lncRNA
genes among the 54 genes associated with osteoarthritis
in knee cartilage for the first time.

Consistent with previous studies, we identified altered
gene expression in biological pathways reflecting exten-
sive remodelling of the extracellular matrix in an
inflammatory environment (5,6,54). Specifically, we iden-
tified increased expression of members of interleukin-1
and interleukin-6 among generally increased cytokine
activity and integrin surface interactions. Cytokines have
been previously implicated in osteoarthritis progres-
sion as a secretion product of synovial macrophages
being activated by fragments of extracellular matrix
components. Recent studies have also shown that
activated macrophages are polarized into either M1
or M2 populations with the M1/M2 ratio being higher
in osteoarthritis synovium compared to controls (55).
Additionally, M1 macrophages produce large amounts

of inflammatory cytokines including IL-1 and IL-6,
altering the chondrocyte environment and inducing also
secretion of interleukins from chondrocytes (56). The
increased expression of the M1 macrophage markers in
high-osteoarthritis grade cartilage along with the signifi-
cant upregulation of pro-inflammatory cytokines (IL36B,
IL11B, IL1B) and lower IL10 expression is in agreement
with this model, indicating macrophage and chondrocyte
interaction during osteoarthritis development.

With regard to extracellular matrix remodelling,
we identified increased integrin interactions in high-
osteoarthritis grade cartilage with osteopontin (SPP1)
being the most upregulated integrin. Osteopontin is
a multifunctional matricellular phosphoprotein with
cytokine chemoattractant activities that mediates
biomineralization, has been shown in vitro to promote
the formation of calcium crystals in articular cartilage,
and is associated with osteoarthritis severity (57,58). The
significant upregulation of osteopontin in our study can
therefore be indicative of increased calcification of high-
osteoarthritis grade cartilage. Integrins are important
connection molecules between the extracellular matrix
components and their upregulation in our study can be
potentially explained by the extensive reorganization of
these components (mainly collagen) during osteoarthtis
progression.

We identified downregulation for terms relevant to the
translation machinery and ribosome biogenesis. More
detailed view of these terms implicated the suppression
of genes codding for the ribosomal small and large sub-
units as well as rRNA processing. This finding is in agree-
ment with a recent model proposing that osteoarthritis
can be also viewed as acquired ribosomopathy (59).

Our work extends our current understanding of the
molecular events associated with osteoarthritis progres-
sion in that the depth of sequencing allowed detailed
examination of changes beyond differential gene expres-
sion to include isoform-switching and splicing events.
The lack of evidence for differential expression for
the genes demonstrating differential transcript usage
indicates additional signatures independent of gene
expression. We report isoform-switches in genes relevant
to osteoarthritis pathophysiology. These include ABI3BP,
coding for a constituent protein of the extracellular
matrix (38), which undergoes extensive remodeling in
osteoarthritis (60), AKT1S1, coding for a repressor of
mTOR, which is a proposed drug target for osteoarthritis
(52), and TPRM4 coding for a transient receptor ion
channel activated by intracellular calcium levels (61),
which are proposed to be altered in osteoarthritis
chondrocytes as a response to mechanical stimuli (44).

We identified enrichment for cadherin binding among
genes demonstrating isoform-switching. Cadherins
are proteins that mediate cell–cell interactions, cell
condensation and signaling in cartilage tissue (N and E-
Cadherin) (62). Cadherin-11, in particular, has been pre-
viously associated with increased migration and invasive
capacity of fibroblast-like synoviocytes, a cell population

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac017#supplementary-data
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involved in osteoarthritis cartilage degradation (62). The
above examples indicate the complementary nature
of the transcript-level analysis and its relevance to
osteoarthritis molecular mechanisms.

We also identified 209 genes with evidence of dif-
ferential splicing between low- and high-osteoarthritis
grade cartilage. Seven of these genes (ABI3BP, CALR,
PRDX1, SQSTM1, PTPRE, GADD45A and HNRNPM) also
showed differential transcript usage. The lack of a larger
overlap can be attributed to the fact that transcript-
level quantifications need to be imputed from short-
read RNA-seq data using existing genomic annotations
in contrast to local splicing. Therefore, these estimates
are affected by limitations of short-read sequencing (63)
as well as by the fact that transcriptomic diversity is
not fully represented in the reference transcriptome.
Additionally, our analysis did not include detection of
phenomena of intron retention, which was the case
for 10% of the cases of differentially used transcripts
between low- and high-osteoarthritis grade cartilage.
A potential biological explanation can also be that
other mechanisms, such as the use of alternative
transcription start sites, alternative termination sites
and polyadenylation may explain better the differences
between low- and high-osteoarthritis grade cartilage
compared to splicing (22). Further, splicing can simul-
taneously affect multiple transcripts of the same gene
without changing their expression. For example, we
found decreased skipping of the eighth exon for COL11A1
(among the complex splicing events affecting the N-
terminal protein region) affecting all of its transcripts
in high-grade cartilage. As the N-terminal contains
regulatory sequences including heparan sulfate proteo-
glycan binding motifs, alternative splicing could affect
the interaction with extracellular matrix constituents,
including glycoproteins and collagen type II (64). In
addition to that, we identified differential inclusion of
promoter sequences for S100A4. S100A4 has been found
to be upregulated in osteoarthritis chondrocytes (also
in our study log2FC = 0.8, P = 1.9 × 10−15) and has been
proposed to be a transcriptional regulator of MMP13,
which is a key metalloprotease of extracellular matrix
degradation (65).

Cohort size coupled to sequencing depth also allowed
the identification of further DE genes including the
less abundant lncRNAs. To our knowledge, we are the
first to report differences in lncRNA expression in
knee osteoarthritis cartilage at this depth using RNA-
sequencing, utilizing >100 million reads per sample,
which is five times the depth of all RNA-seq studies pub-
lished to date exploring lncRNAs in knee osteoarthritis
cartilage (9,11,18,19). MYOSLID, which demonstrated the
largest increase in high-osteoarthritis grade cartilage,
is in a positive feedback loop with the transform-
ing growth factor (TGF)-β/SMAD, a pathway involved
in osteoarthritis development through regulation of
articular chondrocyte hypertrophy and maturation
(31,66). Furthermore, it has been shown that antisense

lnRNAs can function in cis on their overlapping protein-
coding genes affecting their expression. It has also been
demonstrated that lncRNAs can have enhancer-like
functions leading to increased expression of their protein
coding target genes (67). This may be the case for TENM3-
AS1, one of the leading upregulated lncRNAs in high-
osteoarthritis grade cartilage, due to the presence of
enhancer regulatory elements along its sequence (23)
and the consistent upregulation of its sense TENM3 gene.
Another potential explanation can also be that TENM3
and TENM3-AS1 are co-expressed due to their proximity
and the lack of autonomy observed between neighboring
genes in gene expression (68). TENM3 encodes for
Teneurin 3, a transmembrane protein, a mutation which
has been associated with hip dysplasia (69). TENM3 has
previously been found to be upregulated in high-grade
cartilage (4–6,8). To understand TENM3-AS1 mechanism
of action and its potential clinical relevance in the mod-
ulation of TENM3 levels, further functional studies are
warranted.

In order to gain a better understanding of the potential
function of lncRNA, we calculated their enrichment
among lncRNA annotation datasets and identified
enrichment among 166 RBP. To identify the potential
interactions in osteoarthritis cartilage we focused on the
RNA-biding proteins that were also DE in our dataset and
calculated their correlation of expression with the DE
lncRNAs. The highest positive correlations were found
for the pairs PPARG-TENM3-AS1 and PPARG-LINC01411.
PPARG, which was found significantly upregulated in
our study consistent with previous RNA-seq studies
comparing low- and high-osteoarthritis grade cartilage
(4–6,8), encodes for a ligand-activated transcription
factor with a chondroprotective role and has been
proposed as a therapeutic target for osteoarthritis
through activation of mTOR/autophagy pathway (37).
LINC01411 has been reported to be the most upregulated
lncRNA in the study of lncRNA in osteoarthritis from
Hoolwerf et al. (11), as well as in our study. TENM3-
AS1 is a lncRNA identified first time in our study. Since
both LINC01411 and TENM3-AS1 are located in different
chromosomes than PPARG, it is likely that they regulate
PPARG in trans.

Our study has limitations. We compared low- and
high-osteoarthritis grade cartilage in patients with end-
stage disease. Therefore, the observed transcriptional dif-
ferences may differ from molecular changes involved in
early stage disease. Additionally, a common mechanism
of action of lncRNAs includes ‘sponging’ of microRNAs
and reducing their availability to target mRNAs (33).
To this end obtaining microRNA expression data using
small RNA-seq would increase the functional interpre-
tation of the associated lncRNAs. Quantifications on the
transcript level were based on short-read RNA-seq data
and, therefore, factors that include incomplete annota-
tion, coverage and GC content could affect quantifica-
tion estimate accuracy. To this end, long-read sequenc-
ing would achieve more accurate transcript estimates.
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Going forward, the study of protein-level data will extend
the biological relevance of the findings to give a direct
quantitative measure of the different protein isoforms on
cartilage tissue.

In conclusion, we used deep sequencing in the
largest knee osteoarthritis population to progress our
understanding of the genomics of the disease. In
addition to the discovery of differential gene expression
signatures associated with known and new biological
pathways in osteoarthritis, our analyses revealed qual-
itative and quantitative differences in transcript usage
and splicing across multiple genes that are also asso-
ciated with disease severity independent of differential
gene expression. Our analysis also revealed potential
interactions between RBPs and lncRNA including TENM3-
AS1 and LINC01411, which can be potential preclinical
targets by modulating PPARG expression levels. These
findings increase our understanding of the biological
complexity that hallmarks the disease. Further in-depth
examination of these transcriptional variations through
perturbation experiments will help unravel their role
in the causal pathways of osteoarthritis and the tissue
specificity of the observed variants.

Materials and Methods
Study samples
Patients undergoing knee replacement for osteoarthritis
with no history of significant knee surgery (apart from
meniscectomy), knee infection, or fracture and no
malignancy within the previous 5 years were recruited.
We further confirmed that no patient had been treated
with corticosteroids (systemic or intra-articular) within
the previous 6 months, or any other drug associated
with immune modulation. Both within-patient, matched
cartilage samples were taken from the weight-bearing
parts of the joint to ensure biomechanical loading did
not influence within-pair differences in gene expression
and were scored macroscopically using the International
Cartilage Repair Society (ICRS) scoring system (70).
From each patient, we obtained one cartilage sample
of ICRS grade 0 or 1 signifying low-osteoarthritis grade
degeneration (‘low-grade sample’) and one sample
of ICRS grade 3 or 4 signifying high-osteoarthritis
grade degeneration (‘high-grade sample’). All study
participants provided informed consent and samples
were collected under Human Tissue Authority license
12182 and National Research Ethics Service approval
15/SC/0132, South Yorkshire and North Derbyshire
Musculoskeletal Biobank, University of Sheffield, UK.
Cohorts’ ethical approval for the RAAK study collection
was obtained from the medical ethics committee of the
LUMC under protocol numbers P08.239 and P19.013.

This project was conducted under a National Research
Ethics Service approved biobank that is overseen by a
steering committee, which includes two lay members.
The lay members reviewed this project proposal prior to
its initiation, and had the opportunity to comment upon
and make edits to the study design, as did the Sheffield

Lay Advisory Panel for Bone Research. The conduct of the
biobank and its outputs are also reviewed by the biobank
lay committee members.

RNA sequencing and preprocessing
RNA was extracted using Qiagen AllPrep RNA Mini
Kit, as per manufacturer’s instructions and previously
described in Steinberg et al. (4). Poly-A tailed RNA (mRNA)
was isolated from total RNA using Illumina’s TruSeq RNA
Sample Prep v2 kits. RNA was fragmented and libraries
were prepared and multiplexed according to standard
Illumina protocols. The libraries were sequenced on
the Illumina HiSeq 2000 and HiSeq 4000 (75 bp paired-
ends), yielding a median of 115 million reads per
sample (IQR: 104.4–132.7). We used Samtools v1.10.2
(71) and biobambam v2.0.148 (72) to convert files from
the compressed cram format to the fastq format. We
performed quasi-mapping of the reads on the reference
transcriptome Ensembl GRCh38 release 97 (cDNA and
non-coding) (23) using Salmon v.14 (73), yielding a
median of 89.5% (IQR: 87.2–91.2) of reads mapped and
74.8% (IQR: 71.5–77.8) of de-duplicated reads. All the
analyses after generation of the count matrix were
performed using R v.3.6.1 (74) and Bioconductor v.3.10
(75).

Gene abundances were quantified using tximport
using the same reference (76). The transcript-level
expression estimates were summarized to gene-level
length scaled transcripts per million (TPM) estimates
by specifying countsFromAbundance = lengthScaledTPM
option. For the differential transcript usage analysis, the
transcript-level estimates were scaled to TPM estimates
by specifying txOUT = TRUE and countsFromAbun-
dance = dtuScaledTPM options in tximport. We excluded
genes and transcripts with low expression levels (<1
count per million in >50 samples for genes and in >90
samples for transcripts). These thresholds were defined
based on the voom (77) plot exploring the mean–variance
trend for different expression thresholds. The optimal
threshold was selected visually as the one of removing
genes with low expression without a drop in the variance.

Samples that had a mapping percentage <75% (12
samples), had two or more FastQC (78) fails (six samples)
and poor RNA quality measured (RNA Integrity Number
<5; 22 samples) were excluded from the analysis. We
also excluded samples based on non-European ancestry
of individuals (six samples) and abnormal expression
density plots (seven samples). For individuals with
bilateral knee replacement, we excluded one pair of
matched samples each (eight samples), keeping only the
sample pair with the best quality. Finally, the analysis
was restricted to paired low-and high-osteoarthritis
grade cartilage samples. The final dataset included
15.872 genes and 35.140 transcripts for 248 paired low-
and high-osteoarthritis grade cartilage samples from 124
osteoarthritis patients.

For the differential splicing analysis, we aligned reads
to the reference genome GRCh38 release 97 (23) using the
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STAR v2.7.6a (79) two-pass mode and including the XS
strand tags to all canonically spliced alignments based
on their intron motifs (parameters: alignSJoverhang-
Min = 8, outSAMstrandField = intronMotif). The resulting
Binary Alignment Map (BAM) files were converted to
juncfiles using Regtools v0.5.2.6a (80) (regtools junctions
extract command) specifying an 8 nt anchor length and a
50 and 50.000 nt minimum and maximum intron length,
respectively.

Identification of surrogate variables representing
hidden confounders
We used surrogate variable analysis to enable adjust-
ment for hidden confounders and unwanted technical
variation. SVAseq (81) yielded 14 surrogate variables
separately for gene-level and transcript-level summa-
rized matrices. These surrogate variables were included
as covariates when testing gene-level expression differ-
ences and differential transcript usage between low- and
high-osteoarthritis grade cartilage.

Differential gene expression
We tested differential gene expression between low-
and high-osteoarthritis grade cartilage using limma (82)
using filtered counts which were also normalized for
observational-level weights after mean variance estima-
tion (voom transformation) (77) to remove heteroscedas-
ticity. The final model accounted for the paired study
design and for the 14 surrogate variables representing
technical variation. We used the Benjamini–Hochberg
False Discovery Rate (FDR) to correct for multiple testing.
We defined DE as the genes that had FDR < 5% and a
fold change more than 2 in either direction (|log2FC| > 1)
(83). The biotypes of the DE genes were extracted
using the Bioconductor package AnnotationHub (84).
Comparison of the results of differential expression
with another 16 RNA-sequencing and microarray studies
containing more than five patients were performed after
summarizing their respective results to the Ensembl gene
stable IDs (4–19).

Differential transcript usage
For each gene, we tested for differences in transcript
usage using median normalized transcript abundances.
Differences in transcript usage were computed using (82)
diffSplice function using voom (77) transformed counts.
Expression of each transcript was compared to the
average expression of all other transcripts of the same
gene in a series of t-tests. Raw P-values were aggregated
to the gene level using the function perGeneQValue
from the DEXSeq package (85). The stage-wise method
implemented in the stageR (86) package was applied
to the raw P-values to control the gene-level false
discovery rate. Transcripts with stage-wise adjusted
(OFDR) P-values ≤0.05 were considered significant.
The relative transcript usage for each transcript was
calculated by diving the batch corrected counts of the
transcript of interest by the total counts of the all the

transcripts belonging to the same gene customizing
the function plotDTU from satuRn package (87). Plots
were created using ggplot2 (88). Individual transcript
features (Number of exons, presence of 3/5′ UTR
regions) were extracted from the Ensembl version 97 (23)
.gtf file (Homo_sapiens.GRCh38.97.gtf) using functions
from GenomicFeatures package (89). To evaluate the
regulatory potential and functional consequences of the
differentially used transcripts we performed functional
diversity analysis implemented in tappAS software
(version 1.0.7) (40).

Differential local splicing analysis
Local splicing changes were assessed using Leafcutter
v.0.2.9 (90), which quantifies differential intron usage
across samples. Initially, intron clustering was performed
using Binary Alignment Map (BAM) files output of align-
ment using STAR v2.7.6a (79). Variably spliced introns
were called using all samples (total of 248 paired low-
and high-osteoarthritis grade cartilage samples—same
as for all the other analyses). Differential splicing was
assessed using a Dirichlet-multinomial generalized lin-
ear model. The final model included the condition of
interest (low- versus high-osteoarthritis grade cartilage),
the paired sample status and the estimated unknown
technical variation in the form of 14 surrogate vari-
ables (same covariates as used for differential transcript
usage). The overlapping introns (spliced reads) were clus-
tered using the default parameters. We specified 50 split
reads supporting each cluster and allowed introns of
up to 500 kb. This resulted in 44 589 successfully called
intron clusters belonging to 13350 genes. Intron clusters
with FDR < 5% were considered significant. Significant
intron clusters were visualized using the Leafviz shiny
app. The individual differential splicing events were fur-
ther manually inspected for exon skipping, alternative
exon usage, alternative 5′ or 3′ site usage and complex
splicing. The differentially spliced clusters were mapped
to transcripts using the GViz package (91). The func-
tion proteinToGenome from ensembldb package (92) was
used to map protein domains on the transcripts (93).
The different splicing events were manually inspected.
The splicing events discussed in the text were the ones
that combined the highest statistical significance and
effect size (measured in percent spliced in for each intron
cluster—�PSI) of at least 4%.

Functional enrichment
Gene set enrichment analysis and overrepresentation
analyses were performed using the Molecular Signatures
Database (MSigDB v7.0) gene collections including GO
(C5—Biological Process-BP and Molecular Function-MF),
Kyoto Encyclopaedia of Gene and Genome (KEGG) (C2),
REACTOME (C2) and transcription binding motifs (C3)
annotations (94,95). For characterization of DE genes, we
used GSEA ranking genes by their effect size (log-fold
change) and enrichr and GSEA functions from cluster-
Profiler (96). In order to get a better understanding of the
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enriched terms, we calculated the gene semantic similar-
ity between the enriched terms using the Jaccard coef-
ficient (96) and performed hierarchical clustering of the
terms using the ward.D2 clustering algorithm. Addition-
ally, we performed GSEA using the curated markers of
human cell types. The CellMarker data were downloaded
from http://bio-bigdata.hrbmu.edu.cn/CellMarker/ (97).

Due to the lack of representation of lncRNA genes in
GO and KEGG, functional enrichments for lncRNA genes
were tested separately using the annotation datasets and
overrepresentation analysis provided by the platform
LncSEA, which contains information for downstream tar-
gets of lncRNAs (34). Specifically, DE lncRNAs between
low- and high-osteoarthritis grade cartilage were tested
for overrepresentation among the RBP sets from the Lnc-
SEA database (34).

For genes showing evidence of differential splicing
or differential transcript usage, we applied overrepre-
sentation analysis. In case a gene had more than one
significant intron clusters, we considered the differential
splicing result of the most significant cluster and the
background list included all genes with identified intron
clusters. For GO, KEGG and REACTOME analyses, we only
considered terms annotated to >10 and <250 genes in
order to avoid inaccuracies in the calculation of normal-
ized enrichment scores as proposed by GSEA authors (95).
Significance for the enriched pathways was defined at
5% FDR.

LncRNA–RNA-binding protein potential
interactions
As lncRNA expression is highly tissue-specific (98) we
have built upon the proposed targets from overrepre-
sentation analyses and identified the ones that are DE
in our dataset and significantly co-expressed with DE
lncRNAs in osteoarthritis cartilage. Specifically, in order
to detect potential regulation of lncRNAs by the RBP
coding genes, we calculated the Spearman correlation
between the identified DE lncRNAs and DE RBP genes
in our dataset. LncRNA expression data was normalized
using log(CPM), and the batch effect in the form of sur-
rogate variables was removed using the limma remove-
BatchEffect function (82). Spearman’s correlations were
calculated using the Hmisc R package (version 4.2.0).
Correlations with P-values less than 0.05 were considered
significant. Network visualization was performed using
Cytoscape v.3.8.2 (99).

Replication
The differential expression analysis results were vali-
dated in an independent dataset containing paired low-
and high-osteoarthritis grade cartilage tissue from par-
ticipants of the RAAK study (n = 17 patients after QC)
(12) (Supplementary Material, Table S1). The replication
dataset was analyzed using the same approach and soft-
ware as the discovery dataset, with small adaptations to
reflect the smaller number as samples as follows: reads
that had a mapping percentage <50%, had >2 FastQC

(78) fails or had abnormal gene expression density plots
as described for the discovery dataset were excluded
from the analysis. Genes with low expression levels in
the replication dataset (<1 CPM for >10 samples) were
excluded. We defined DE genes in the replication dataset
as those that had a larger than 2-fold (|log2FC| > 1) change
in high-osteoarthritis grade cartilage at 5% FDR. The
comparison of replication results to the discovery results
was done using the transcriptome-wide FDR adjusted P-
values for both replication and discovery datasets. Hier-
archical clustering was performed using robustly repli-
cated genes (|log2FC| > 1 and FDR < 0.05 in both datasets).
For clustering samples, covariate-adjusted logCPM val-
ues were used with ward.D2 hierarchical clustering algo-
rithm and Spearman clustering distance.

Supplementary Material
Supplementary Material is available at HMGJ online.
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