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A B S T R A C T   

Background: Cerebral microbleeds are increasingly reported in critical ill patients with respiratory failure in need 
of mechanical ventilation and/or extracorporeal membrane oxygenation (ECMO). Typically, these critical illness- 
associated microbleeds involve the juxtacortical white matter and corpus callosum. Recently, this pattern was 
reported in patients with respiratory failure, suffering from COVID-19. 
Materials and methods: In this retrospective single-center study, we listed patients from March 11, 2020 to 
September 2, 2020, with laboratory-confirmed COVID-19, critical illness and cerebral microbleeds. Literature 
research was conducted through a methodical search on Pubmed databases on critical illness-associated 
microbleeds and cerebral microbleeds described in patients with COVID-19. 
Results and discussion: On 279 COVID-19 admissions, two cases of cerebral microbleeds were detected in critical 
ill patients with respiratory failure due to COVID-19. Based on review of existing literature critical illness- 
associated microbleeds tend to predominate in subcortical white matter and corpus callosum. Cerebral micro
bleeds in patients with COVID-19 tend to follow similar patterns as reported in critical illness-associated 
microbleeds. Hence, one patient with typical critical illness-associated microbleeds and COVID-19 is reported. 
However, a new pattern of widespread cortico-juxtacortical microbleeds, predominantly in the anterior vascular 
territory with relative sparing of deep gray matter, corpus callosum and infratentorial structures is documented 
in a second case. The possible etiologies of these microbleeds include hypoxia, hemorrhagic diathesis, brain 
endothelial erythrophagocytosis and/or cytokinopathies. An association with COVID-19 remains to be 
determined. 
Conclusion: Further systematic investigation of microbleed patterns in patients with neurological impairment and 
COVID-19 is necessary.   

1. Introduction 

Chronic hypertension, cerebral amyloid angiopathy and diffuse 
axonal injury are well acknowledged causes of cerebral microbleeds [1]. 
Increasingly, microbleeds have been reported in patients with critical 
illness associated with respiratory failure [1]. Only recently, micro
bleeds are reported in patients with Covid-19 [2]. We report two cases of 
cerebral microbleeds in patients diagnosed with COVID-19 with respi
ratory failure and provide a review of literature. 

2. Materials and methods 

2.1. Data collection 

From March 11, 2020 until September 2, 2020 a total amount of 279 
patients with COVID-19 were admitted in University Hospitals Ghent of 
which 34 patients died. During this period cerebral microbleeds were 
detected in two critical ill patients suffering from COVID-19. 

2.1.1. Case 1 
A 54-year-old male patient was admitted to the intensive care unit 

(ICU) because of respiratory failure with need for mechanical 
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ventilation, due to COVID-19 pneumonia. He developed severe acute 
respiratory distress syndrome (ARDS) with respiratory failure for which 
veno-venous extracorporeal membrane oxygenation (ECMO) was initi
ated. After 19 days the patient was successfully weaned from ECMO. 
Limited strength in the right arm was noticed and magnetic resonance 
imaging (MRI) of the brain was performed. Fluid-attenuated inversion 
recovery (FLAIR) imaging showed multiple white matter hyper
intensities and mild brain atrophy. There was no restricted diffusion, 
excluding acute cerebral ischemia. Susceptibility weighted imaging 
(SWI) showed multiple hypo-intense lesions located in the corpus cal
losum, compatible with microbleeds and not corresponding to the 
hyperintensities seen on FLAIR (Fig. 1). Nerve conduction studies 
showed symmetric decreased compound motor action potentials and 
sensory nerve action potentials, suggestive for critical illness sensori
motor polyneuropathy. An electromyography (EMG) disclosed a super
imposed posterior cord lesion of the brachial plexus; explaining the 
clinical characteristics of this patient, probably secondary to prone 
ventilation.. 

2.1.2. Case 2 
A 72-year-old male patient without any relevant medical history was 

diagnosed with COVID-19. He developed respiratory insufficiency, 
requiring mechanical ventilation. Because of delayed awakening, 
neurologic evaluation was warranted. Clinical neurologic examination 
demonstrated a Glasgow Coma Scale (GCS) of 5/15 (E1M3V1), sym
metric exaggerated tendon reflexes over the four limbs, normal plantar 
reflexes, slowed vestibulo-oculocephalic reflexes and miotic isocoric 
pupils reactive to light. Because of the clinical features, the use of long- 
acting sedative drugs, acute kidney failure and high probability of 
accumulation of sedative drugs and a high bilirubinemia (total bilirubin 
10.2 mg/dL [reference value: 0.2–1.1 mg/dL], direct bilirubin 7.96 mg/ 
dL [reference value: < 0.45 mg/dL]) a toxic-metabolic and/or septic 
etiology of the clinical presentation of encephalopathy was suspected. 
EEG showed diffuse slowing of the background rhythm without 
epileptiform elements. Cerebrospinal fluid (CSF) was normal, except for 
elevated bilirubin. Additional brain MRI showed no restricted diffusion 
and limited microvascular FLAIR-hyperintensities, predominantly in the 
parieto-occipital white matter. T2-imaging showed enlarged peri
vascular spaces in the lenticulostriate territory and some minor cortical 
T2-hyperintensities. SWI showed abundant cortico-juxtacortical hypo
intensities compatible with diffuse microbleeds, and a remarkable 
posterior-anterior gradient with relative sparing of infratentorial struc
tures, deep gray matter and corpus callosum (Fig. 2). Four weeks later, a 
subtle increase of T2-hyperintensities surrounding cortical microbleeds 
was found in absence of restricted diffusion.. 

2.2. Literature research 

A bibliographic Pubmed search was conducted using the keywords 
‘critical illness’, ‘COVID-19′, ‘cerebral microbleeds’ and ‘cerebral 
microhemorrhages’. Case reports and case series describing patients 
with cerebral microbleeds were included. Also, one general review on 
the topic of cerebral microbleeds was selected [3]. Articles discussing 
stroke, macrobleeds, subarachnoid hemorrhage or other vascular pa
thology occurring in patients with COVID-19 were discarded. The 
ongoing nature of this pandemic led to continuous monitoring of new 
publications and updating of our literature list. We concluded our 
literature search on October 11, 2020. 

3. Results and discussion 

Cerebral microbleeds are a well-known consequence of diffuse 
axonal injury and small vessel disease due to chronic hypertension or 
cerebral amyloid angiopathy (CAA) [1]. Particular regions in the brain 
are affected predominantly in relation to different etiologies. Micro
bleeds due to arterial hypertension are most often seen in the basal 
ganglia, thalamus, brainstem and cerebellum, whereas parieto-occipital 
cortical microbleeds predominate in cerebral amyloid angiopathy [3]. 

More recently, microbleeds have been reported in critically ill pa
tients [1,4–6]. Based on our literature search we found 6 articles relating 
critical illness-associated microbleeds [1,4–8]. In 2015, Riech et al. 
described 3 patients with severe ARDS with 2 of them receiving ECMO 
[6]. In all 3 patients, brain MRI showed microhemorrhages, particularly 
in the splenium of the corpus callosum [6]. In 2017, Fanou et al. pub
lished a case series of 12 patients who underwent brain MRI during or 
immediately after an ICU-admission [1]. Respiratory failure was present 
in all cases; 11 patients received mechanical ventilation and 3 patients 
received ECMO [1]. Brain MRI in all 12 patients showed extensive 
microbleeds, diffusely involving the juxtacortical white matter and 
corpus callosum, sparing the cortex, deep and periventricular white 
matter, basal ganglia and thalami [1]. Kuo reported a pattern of cerebral 
microbleeds, predominantly in the corpus callosum and juxtacortical 
white matter and to a lesser extent in the internal capsule in a patient 
who presented with a pneumonia, followed by respiratory failure 
requiring mechanical ventilation [7]. More specifically in the context of 
ECMO, Shah et al. reported a pattern of microhemorrhages predomi
nantly in the corpus callosum [5]. In contrast to the cases presented 
above, these microbleeds were accompanied by corresponding 
FLAIR-hyperintensities [5]. Riech et al. found that microbleeds with 
emphasis in the corpus callosum were present in 30% of patients who 
suffered from severe ARDS requiring ECMO and underwent brain MRI 
[8]. Establishing the etiopathogenesis of cerebral microbleeds in criti
cally ill patients often is hampered by the lack of previous brain imaging. 
Interestingly, Hall et al. presented a patient who developed hypoxia and 
ARDS during hospitalization in whom multiple microhemorrhages were 
discovered that were not present on brain MRI at admission, suggesting 
a relationship with the clinical presentation of respiratory failure [4]. 

De Stefano et al. were the first to report a case of critical illness- 
associated cerebral microbleeds in the context of COVID-19, present in 
juxtacortical white matter, corpus callosum and internal capsule 
without any ischemic or necrotizing lesion [2]. A similar pattern has 
recently been described in critical ill patients with COVID-19 in different 
cases and case series, based on our literature search. [9–18]. The number 
of microbleeds varied from a handful to innumerable and involved the 
juxtacortical white matter and corpus callosum [9–18]. In their retro
spective study, Kremer et al. found that extensive and isolated micro
bleeds were present in 9 of the 37 patients with COVID-19 and abnormal 
brain MRI’s (with exclusion of ischemic infarcts), mainly affecting the 
juxtacortical white matter, corpus callosum, internal capsule and cere
bellar peduncles [17]. All 9 patients suffered from serious ARDS [17]. 
One retrospective study reports an increased mortality and worse 
functional outcome in patients with microbleeds and COVID-19 [18]. 

Fig. 1. Maximal intensity projection (MIP) of susceptibility weighted imaging 
(SWI) showing remarkable hypo-intense lesions located in the corpus callosum, 
compatible with microbleeds. 
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In our first case, a similar pattern of cerebral microbleeds was found 
following MRI brain imaging, adding a case of critical illness-associated 
microbleeds to the existing literature, particularly in COVID-19-related 
ARDS. 

The pathogenesis of this condition remains unclear, but is thought to 
be related to hypoxia, as a similar pattern of microbleeds has been re
ported in patients with high-altitude cerebral edema [6,19,20]. Hackett 
et al. analyzed cerebral imaging of 8 patients with high-altitude cerebral 
edema and found extensive microbleeds mainly involving the corpus 
callosum and subcortical white matter [19]. The similarity with critical 
illness-associated microbleeds suggest a common pathogenesis, with 
hypoxia as a common factor [1,19,21]. One hypothesis suggests that 
hypoxemia leads to increased blood flow, which might exceed venous 
resistance and contribute to capillary stress, inducing a leak in the 
blood-brain barrier [6]. However, the continuous heparin infusion in 
patients treated with ECMO might cause a hemorrhagic diathesis and 
contribute to the pathogenesis of these microbleeds [5,6]. 

It remains unclear why microbleeds in ARDS are accentuated at the 
corpus callosum [5,17]. In high-altitude cerebral edema, the associated 
T2- and FLAIR-hyperintensities and restricted diffusion are explained by 
the known vulnerability of the corpus callosum and particularly the 
splenium to cytokinopathy, due to a higher density of cytokine, gluta
mate, toxin, and other excitatory amino acid receptors, leading to a 
tendency for cytotoxic edema of the corpus callosum when cytokinop
athy occurs [1,22]. However, in context of ARDS – as in our case – no 
edema was found on FLAIR-, T2- or diffusion-weighted images [1]. 

The differential diagnosis of our second case has been challenging, 
because of absence of previous brain imaging. Pre-existent alterations 
not related to the current episode might be a possible explanation. He 
had no history of chronic hypertension, head trauma, high-altitude 
exposure or brain radiation therapy. For pre-existing lesions cerebral 
microangiopathy seems to be possible given the concomitant presence of 
limited white matter hyperintensities with a posterior predominance 
and enlarged perivascular spaces on T2-imaging. According to the 
Boston-criteria for CAA, there is a lack of clinical suspicion for a diag
nosis of a probable CAA [23]. Of note is the absence of lobar hemor
rhage, cortical superficial siderosis and the relatively sparing of occipital 
lobe, features one might expect in case of CAA given the abundant lesion 
load. However, a subclinical presentation of sporadic CAA or other 
microvascular genetic pathology cannot be ruled out completely. 

Given the peculiar predilection site of the microbleeds, one might 
consider these lesions not to be a pre-existent finding. Microbleeds 
might be secondary to disseminated intravascular coagulation (DIC) or a 
hemorrhagic diathesis [24]. In this case there was no evidence for 
thrombocytopenia or thrombotic micro-angiopathy (TMA), nor did the 
patient meet the criteria for DIC. A hemorrhagic diathesis could not be 
excluded given the dosing of low molecular weight heparin at 1 mg/kg 
divided over two daily doses. An etiopathologic relation with COVID-19 
or an indirect pathophysiological mechanism through cytokine release 
could not be documented but remains a possibility, as the subtle increase 

of T2-hyperintensities surrounding cortical microbleeds on follow up 
imaging suggests an active pathology. 

Alternatively, brain endothelial erythrophagocytosis in the context 
of oxidative stress across brain endothelium, causing translocation of 
iron-rich red blood cells or degradation products across brain endothe
lium might be a promising concept to be considered regarding the 
development of imaging features of microbleeds without disruption of 
microvasculature and thus posing the idea of pseudo-microbleeds [25]. 
Infection has been described as a possible trigger for eryth
rophagocytosis, but it needs to be determined whether this might be 
elicited by Covid-19 [26]. 

Our second case is the first case reporting a pattern of widespread 
cortico-juxtacortical microbleeds, predominantly in the anterior vascular 
territory with relative sparing of deep gray matter, corpus callosum and 
infratentorial structures and not meeting the clinical characteristics for 
CAA [23]. 

In conclusion, the clinical relevance of critical illness-associated 
microbleeds is currently unknown and remains to be elucidated. 
Further research and systematic investigation of microbleeds, their 
patterns and their clinical impact in patients with neurological impair
ment and COVID-19 is necessary. 
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