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Abstract: Exhaled breath analysis for early disease detection may provide a convenient method
for painless and non-invasive diagnosis. In this work, a novel, compact and easy-to-use breath
analyzer platform with a modular sensing chamber and direct breath sampling unit is presented.
The developed analyzer system comprises a compact, low volume, temperature-controlled sensing
chamber in three modules that can host any type of resistive gas sensor arrays. Furthermore, in this
study three modular breath analyzers are explicitly tested for reproducibility in a real-life breath
analysis experiment with several calibration transfer (CT) techniques using transfer samples from
the experiment. The experiment consists of classifying breath samples from 15 subjects before
and after eating a specific meal using three instruments. We investigate the possibility to transfer
calibration models across instruments using transfer samples from the experiment under study, since
representative samples of human breath at some conditions are difficult to simulate in a laboratory.
For example, exhaled breath from subjects suffering from a disease for which the biomarkers are
mostly unknown. Results show that many transfer samples of all the classes under study (in our case
meal/no meal) are needed, although some CT methods present reasonably good results with only
one class.

Keywords: breath analysis; MOX sensors; low sensing chamber volume; calibration transfer; stan-
dard samples; piecewise direct standardization; correlation alignment; breath sampling; eNose;
pattern recognition

1. Introduction

The importance of exhaled breath gas analysis is increasing in medical diagnostics
for early disease detection and therapy progress monitoring over the last decades [1–4].
Exhaled human breath is composed of nitrogen, oxygen, carbon dioxide, water vapor, inert
gases and trace amounts of volatile organic compounds (VOCs) [5]. The ancient physician—
Hippocrates (460–370 BC)—noticed that the exhaled breath of an ill patient differs from a
healthy one and described fetor oris and fetor hepaticus in his essay on breath aroma and
disease. In 1971 modern breath analysis started with the experiments of Pauling et al. [6], he
showed that human breath contains several hundred different VOCs in low concentrations.
Pauling’s observation was confirmed by subsequent studies from other research groups.
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Phillips et al. approved Pauling’s statement and confirmed that exhaled human breath
contains more than a thousand different VOCs in low concentrations [7,8]. Furthermore,
they observed, by gas chromatography coupled with mass spectrometry, 3481 different
VOCs in the breath of 50 healthy humans. On average each human has approximately
204 VOCs in their breath. Moreover, it was observed that only 27 VOCs were equal in
the breath of the 50 healthy humans examined. This makes breath analysis a difficult
task because there is only a small common core of VOCs in all humans. These VOCs are
probably produced by metabolic pathways common to most humans [8]. Moreover, these
VOCs can be from exogenous and endogenous origin [9]. Exogenous VOCs are inhaled
or absorbed as contaminants via breath, skin or ingestion [10] while endogenous VOCs
are produced in the body via the metabolism [3]. The identification of these VOCs is very
important and forms the focus of research, as they act or can act as important “markers”
for the early detection of a disease [11]. The identification of breath markers should be
qualitative and quantitative to distinguish between a diseased group and a healthy one.
The differences in the VOCs content between these two groups must be large enough to
reach clinical relevance. In the last 30 years, many of these molecules have been identified
and correlated to different diseases. The basis of the emission of VOCs is cell biology.
Tumor growth causes metabolic changes which are linked to the production of specific
volatile compounds [12–15]. Cancer-related blood chemistry changes lead to changes in
breath by exchange through the lung [16]. Therefore, some VOCs can be used as cancer
markers in exhaled breath [3].

Currently, the gold standard for detecting VOCs in exhaled air is gas chromatogra-
phy coupled to mass spectrometry (GC-MS) [1,17–26]. Beside GC-MS, other analytical
instrumentations are used like proton-transfer reaction-mass spectrometry (PTR-MS) and
ion mobility spectrometry (IMS). These techniques enable separation, identification and
quantification of the different VOCs in the exhaled breath gas. The main disadvantages
of the analytical instrumentation are the need of high skilled operating personnel, being
time-consuming (except for IMS) and the high costs.

To reduce costs, chemical sensors integrated into electronic noses (eNoses) for breath
analysis in medical point-of-care diagnosis have become an emerging field. Many research
groups are pushing forward the frontier of non-invasive, rapid, portable and potentially
low cost medical diagnosis tests for different diseases [3,27]. Electronic noses in breath
gas analysis are still a noticeably young research field. Different research laboratories use
different internal standardized methods for the breath sample collection, but there is no
globally accepted standard procedure. The common procedures are total or alveolar breath
gas sampling. In total breath sampling, the complete breath is collected including dead
space air, and in the alveolar breath gas sampling only the end-tidal, alveolar part of breath
is collected [1,28,29]. The method of total breath gas sampling is simple but has a big
disadvantage because of the dilution with the dead space air [1]. In comparison, alveolar
sampling reduces the concentration of contaminants [1,29].

Advantages and limitations of eNose sensor techniques are associated with different
parameters like specificity, response and recovery time, detection range, sensitivity, operat-
ing temperature, temperature as well as humidity effect on sensing technique, portability,
cost and complexity of measuring circuitry.

In the review by Röck et al., a list of commercially available eNoses is published [30].
Several preliminary studies were conducted with those commercially available eNose
systems like Cyranose 320 [31–36], LibraNose [37] and DiagNose [38] using offline sam-
pling with Tedlar or Mylar bags. Other studies with chemical sensors, surface acoustic
wave (SAW) sensors [39], metal oxide semiconductor (MOX) sensors [40], colorimetric
sensors [41], quartz microbalance (QMB) sensors [42,43], MOX-SAW sensors [44] and
trichloro-(phenethyl)silane-silicon nanowire-field effect transistor (TPS-SiNW FET) sen-
sors [45] were carried out. Furthermore, studies were conducted in which an eNose and
additionally gas chromatography coupled to mass spectroscopy were used. Those studies
showed that different organic functionalized gold nanoparticle (GNP) sensors are suitable
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to different diseases [46–51]. Amal et al. investigated the detection of gastric cancer uti-
lizing GNP sensors with offline sampling and demonstrated that the sensor technology
determines that the breath of cancer patients is different from healthy ones. [49,50].

Over recent years, the field of breath analysis with MOX-based eNose systems is
continuously progressing. Different studies of cancer detection via breath gas analysis with
eNoses based on MOX sensors have been conducted by Yu et al. [40], Wang, D. et al. [44]
and Wang, X.R. et al. [52] and some of those studies also involved other sensor technologies
in combination with a MOX sensor array. De Vries et al. integrated an eNose sensing array
into an existing diagnostic spirometer. This system is based on five identical commercially
available MOX sensor arrays out of four MOX sensors [53].

Special attention shall be given to the experiment design, most of the published
studies on breath analysis by an eNose were conducted with one device. For larger scale
studies, given the difficulties of obtaining breath measurements from patients with specific
conditions, it would be desirable to extend the study to more devices and more places
(like different hospitals or recruitment centers). However, sensor to sensor variability, time
degradation (drift), cross-sensitivities to background and environmental conditions, etc.,
causes data models (calibration models) built for one instrument at a given time and place
to not be valid for measurements collected by another instrument, or the same instrument
in another place or later in time. In other words, the data calibration models degrade when
taking measurements under conditions other than those under which the calibration model
was created. The effort in building a calibration model is costly and time consuming, and
therefore limits the use of eNoses in many applications such as breath analysis.

To reduce the impact of these limitations, data processing techniques exist that help
in reducing the effort of full calibrations by transferring information from the main cali-
bration model (built in a so-called master instrument) to be applied to new measurements
obtained under different conditions (from so-called slave instruments). These techniques
are called calibration transfer (CT) or instrument standardization in chemometrics, and
transfer learning tools in machine learning. CT methods have been largely applied in NIR
spectrometry and also in eNoses [54–57]. The objective of a calibration transfer method is
to perform its task using as few transfer samples (samples to link instruments) as possible.
In this way, the costs of calibration of individual (slave) instruments are reduced to a few
measurements of transfer samples, instead of a whole large set for proper calibration.

Calibration transfer methods can be grouped according to different criteria. For ex-
ample, the following approach [58]: (i) no standardization (feature selection, calibration
model extension (CME) by including samples from multiples instruments, special pre-
treatments like orthogonal signal correction (OSC) [59]); (ii) adjusting the output of the
calibration model to be used by other instruments, such as the simple univariate slope and
bias correction (SBC) [60]; (iii) transforming measurements from slave instruments so that
they resemble measurements from the master instrument using direct standardization (DS)
and piecewise direct standardization (PDS) [61,62] and (iv) removing differences between
instruments that are orthogonal to the calibration model [63]. Indeed, PDS has shown good
results and is considered by many to be a reference for novel techniques [64–69].

Other classification of calibration transfer techniques can be made with regard to the
domain of the transfer and the transfer samples. For the first one, we can have (a) transfer to
the master space or the slave space, such as DS and PDS, (b) transfer to a common subspace
such as OSC. Additionally, for the latter, CT methods regarding transfer samples; (a) meth-
ods that need transfer samples such as DS, PDS, OSC [70], Shenk’s algorithm [71], spectral
space transformation (SST) [72] and canonical correlation analysis (CCA) [73] (b) and
methods that do not need transfer samples, such as methods from the IR spectra field:
multiplicative signal correction (MSC) [66], finite impulse response (FIR) [68,69], stacked
partial least-squares (SPLS) [67] and from the machine learning field, like transfer compo-
nent analysis (TCA) [74] and transfer sample-based coupled task learning (TCTL) [54] and
others that have been applied to eNoses [75]. Reviews and discussions can be found in
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literature about the use of standard samples [76], about the techniques based on orthogonal
projections [77,78] and reviews of different techniques [58,65,79].

An important matter in calibration techniques that need transfer samples is the se-
lection of these transfer samples. Such samples must be representative of the samples
under study and the respective instruments, keeping other variables such that they can be
linked between the instruments. The required transfer samples would be those measured
at the same conditions by different instruments, for example, by having the instruments
measuring the same sample at the same time; we call them standard samples. When stan-
dard samples are not available, we can use reference (or nonstandard) samples, which are
measurements made under exact or similar conditions in all master and slave instruments.

In addition, the fact that transfer samples must be representative of the samples under
study may be a limitation in out-of-lab applications, such as breath analysis, because repre-
sentative samples of given cases might be difficult to obtain. In an ideal situation, samples
representative of the cases under study can be artificially made, such that measurements
of these samples can be made in a laboratory under controlled conditions and thus be
used as transfer samples. This way, all instruments would be referred to the same general
samples under specified conditions. However, it is difficult to create synthetic samples
representative of complex samples such as human breath samples, especially for patients
suffering diseases for which the exhaled VOCs pattern is poorly known or even unknown
and which is affected by numerous variables. Therefore, the use of on-site measured
samples as transfer samples may be helpful, or alternatively hard-to-obtain sample classes
could be excluded from the transfer sample set. In summary, for practical reasons we
wonder whether on-site measured sample measurements can be used as transfer samples
and whether the quality of the calibration transfer would decrease much if one sample
class (necessary for the calibration model) is excluded from the transfer sample set. We can
find an example in the literature where breath samples from electronic noses were used,
although case breath samples were artificially made by mixing control breath samples with
chemicals [57].

In this work, we explore the performance of several CT techniques in a real-life breath
analysis study using our recently published [80,81] sensing array and three instruments.
The experiment consists of the discrimination of breath samples from people before and
after eating a specified meal. The performance of the CT methods is evaluated in regard to
the number and type of transfer samples (standard or nonstandard) and class membership
(transfer samples belonging to one class or both classes meal/no meal), to explore the
possibility of using transfer samples from the on-site experiment in the CT methods.

This study is mainly motivated by the difficulty of calibration of eNoses for breath
analysis applications, the differences between instruments, the frequent recalibrations
needed due to aging and drift and the environmental and other different conditions present
in different hospitals which prevents obtaining a unified dataset for deep statistical studies.
Another goal in this work, is to present our modular breath analyzer (MBA) platform
(shown in Figure 1), a new updated version of our modular eNose [80–82] specifically
designed for breath analysis. The previous version of the modular eNose concept was
recently presented [80–82]. It consisted of a new eNose platform based on a novel modular
sensing chamber, where different kinds of chemoresistive sensors can be combined [80–82].
In one of these works, we combined analog and digital commercial surface mount devices
(SMD) MOX gas sensors and checked its potential in an experiment aiming to detect VOCs
under a high humidity background in a future application [82]. The other experiment
consisted of testing the instrument for on-line monitoring under dry and moderate humid
conditions with six concentrations of two VOCs of interest [80]. The MBA is based on the
previously presented innovative iLovEnose concept of a modular eNose system [80,81]
and incorporates a direct alveolar breath sampling system, which is explicitly used in the
breath analysis experiment.
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ment and details both experiments: the breath analysis study. Section 3 explains the anal-
ysis methods and followed methodology. Section 4 shows and discusses the results and 
finally Section 5 derives some conclusions. 

2. Material 
2.1. Device Description 

The presented novel modular breath analyzer (MBA) platform is developed for la-
boratory and clinical use. The internal components of the MBA platform are shown in 
Supplementary Materials, Figure S1, while its basic arrangement and the connection of 
the individual units is shown with a schematic drawing of the MBA platform in Figure 2. 
It contains a direct breath sampling unit and three modules able to host different types of 
sensors and technologies. The MBA platform contains three main units: (i) a sampling unit 
with an internal exhalation monitoring unit (EMU), (ii) a temperature control unit and (iii) 
a modular sensing chamber unit. The sampling unit is especially designed for breath anal-
ysis, based on the buffered-end-tidal (BET) sampling process [83]. Our presented system 
weights about 2.1 kg and has the dimensions 280 mm × 118 mm × 75 mm. 

 
Figure 2. Schematic drawing of the modular breath analyzer platform for laboratory and clinical use 
showing the linkage of the individual units. Fluidic units are drawn in blue (sampling and exhala-
tion monitoring unit) and dark gray (modular sensing chamber). 

Figure 1. Modular breath analyzer (MBA) platform based on chemoresistive sensors for laboratory
and clinical use; external view with cap opened to exchange the glass sampling tube.

The manuscript is organized as follows. Section 2 describes our updated MBA in-
strument and details both experiments: the breath analysis study. Section 3 explains the
analysis methods and followed methodology. Section 4 shows and discusses the results
and finally Section 5 derives some conclusions.

2. Material
2.1. Device Description

The presented novel modular breath analyzer (MBA) platform is developed for lab-
oratory and clinical use. The internal components of the MBA platform are shown in
Supplementary Materials, Figure S1, while its basic arrangement and the connection of
the individual units is shown with a schematic drawing of the MBA platform in Figure 2.
It contains a direct breath sampling unit and three modules able to host different types
of sensors and technologies. The MBA platform contains three main units: (i) a sampling
unit with an internal exhalation monitoring unit (EMU), (ii) a temperature control unit and
(iii) a modular sensing chamber unit. The sampling unit is especially designed for breath
analysis, based on the buffered-end-tidal (BET) sampling process [83]. Our presented
system weights about 2.1 kg and has the dimensions 280 mm × 118 mm × 75 mm.
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The two fluidic units—sampling unit as well as sensing unit—which are described
below are integrated into a temperature-controlled aluminum body to ensure that all fluidic
paths within the MBA platform are kept above body temperature to avoid temperature
effects on the sensors to avoid influences towards the composition of the exhaled breath
gas. Without thermostatic control the temperature within the fluidic paths will drop below
body temperature and thus vapor will condense and trap water soluble volatile organic
compounds (VOCs). For this reason, the temperature inside the sensing chamber of the
presented modular breath analyzer platform is 45 ◦C ± 1 ◦C.

2.1.1. Buffered-End-Tidal (BET) Sampling and Exhalation Monitoring Unit (EMU)

During an exhalation into the device the volume of the sampling tube is exchanged
several times. After the exhalation process has finished, the last 38 mL of the exhaled
breath are buffered within the tube and remain there until the sample is transferred into
the sensing chamber by a controlled pumping process. The buffered volume of approx.
30 mL allows the system to transfer several times the volume inside the sensor chamber,
which can be set by the software. The internal exhalation monitoring unit is coupled to the
sampling tube to operate the pump directly when the exhalation stops to draw selected
parts of the alveolar air inside the sensor chamber. Sensors within the EMU allow real-time
monitoring of the full exhalation process. EMU parameters (like pressure, temperature,
humidity) are recorded during the exhalation process of the volunteer or patient to ensure
proper repeatable sampling and enable capturing relevant parts of the exhaled breath,
which are different portions of the pulmonary volume.

For a reliable breath analyzer platform, it is crucial that the EMU is not only recogniz-
ing the end of the exhalation, it is also important to ensure that the volume of the exhaled
breath and the profile is within a certain variance. Direct feedback to the patient and the
study nurses may help to improve the sampling process. This enables capturing relevant
parts of the exhaled breath and allows a more accurate transfer of sample to sensors as
well as selective sampling of different portions of the pulmonary volume. To avoid cross-
infection between the patients the glass sampling tube can be exchanged and cleaned by
sterilization. The disposable mouthpiece is exchanged for every volunteer or patient.

2.1.2. Modular Sensing Chamber Unit

To utilize the buffered end-tidal breath sampling method, we designed a specific
valve-controlled inlet for our recently published sensing chamber [80–82] to be able to plug
the exchangeable glass sampling tube to the sensing chamber of our eNose system. The
current sensing array setup consists of three compartments: one with 8 analog and two
with 10 digital sensors each. The low volume of the sensing unit (less than 3 mL) ensures
that the volume of the sensor chamber could be flushed several times with the BET air from
the sampling tube. The sensing unit consists of a modular sensor array that contains three
exchangeable sensor modules with a valve-controlled inlet connected to the sampling tube
and one outlet (can be seen in Figure 3). The exchangeable modular design of the sensor
unit allows the MBA to host three modules containing sensors of different types, but those
three modules can also contain the same type of sensors, which is useful in the study of
sensor chip variability.

The current setup contains many of the most relevant analog and digital surface
mount devices (SMD) sensors on the market. A list of all integrated sensors, number of
obtained signals from each sensor and used heater/supply voltages are summarized in
Tables S1 and S2, see Supplementary Materials. The concept of the sensing unit follows a
modular structure to allow an easy and simple exchange of the sensors [80].

The cleaning of the sensor chambers is done by a two-step process. First, the pump
and the valve shown in Figures 2 and 3 are used to generate a low vacuum for a few
seconds to remove the breath gas out of the sensing chamber, and then ambient air is
driven through the sensing chamber. The cleaning cycle is programmed in the firmware of
the MBA, and it is started after a successful and a cancelled measurement.
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sensing array inlet.

2.2. Experiment–Pilot Study Description

A group of 15 generally healthy 17–18 year old individuals were recruited for an
experimental study using three modular breath analyzer prototypes, the first breath sam-
ple was obtained following a 12 h fasting period with all three MBA devices; then the
participants were given a standardized meal and invited for a follow-up (second) breath
sample 4 h thereafter. The test-meal was a hamburger with 0.5 L water. To avoid potential
contaminants, on the day of testing the recruited study participants did not use mouthwash,
chewing gum, furthermore they did not perform excessive physical activity, did not smoke
or consume alcohol for 24 h before the breath test. The same restrictions were applied to
the 4-h pause between two measurements. This experimental routine was repeated three
times, each measurement day was one week apart from the previous one. The general
scheme of the breath sample collection (measurement day) of the pilot study can be seen
in Figure 4. Signed consent was obtained from all recruited study participants. For study
participants under 18 years of age the parents or legal guardians signed this consent.
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In this study, the firmware of the used MBA devices was set to 10 s for baseline
acquisition and 20 s for breath acquisition.

3. Methods
3.1. Calibration Transfer Algorithms

In this work, we compare three methods for calibration transfer based on different
principles: Correlation alignment (CORAL) [84], partial least squares-based calibration
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transfer (PLSCT) [85], direct standardization (DS) and piecewise direct standardization
(PDS) [61,86] and a partial least squares discriminant analysis-based method (PLSDA) [81].

DS, PDS and PLSCT are based on adjusting the slave features to the master by using
a set of labeled transfer samples measured in both the master and the slave instruments.
These samples can be standard samples, i.e., samples related to both instruments, such as
same samples measured at the same time, samples measured at the exact same conditions,
etc., or non-standard samples if they are labeled but not related as the standard samples. In
turn, CORAL is a simple method that transforms data from the master to the slave space
using their covariance structure without the need of labelled samples. Finally, PLSDA finds
a common master-slave space by removing components using unlabeled transfer samples,
only the information about their membership to the master or the slave instrument is used.

Direct standardization (DS) and piecewise direct standardization (PDS) methods—DS
and PDS [61,86,87] methods were created in the field of NIR spectrometry to correct the
slave spectra by computing a transfer matrix. This transfer matrix is obtained by relating
the master spectra to the slave’s spectra by using a small number of labeled transfer samples.
The PDS method is in fact an extension of DS by which each wavelength (variable) at the
master spectra is related to a sliding window of fixed size in the slave spectra. PDS can
deal with having a larger number of variables than samples [64].

DS and PDS are widely used methods which have provided good results in laboratory
experiments using a relatively small number of samples [56,79] and are typically employed
as a reference for other novel techniques [64].

DS assumes a linear relationship between master and slave instruments such that:

Xm
ct = Xs

ct B (1)

where B is the transformation matrix and Xm
ct and Xs

ct are the data measured from the
transfer samples at the master and slave instrument, respectively. Therefore, B can be
estimated by

B = (Xs
ct)+ Xm

ct (2)

where (Xs
ct)+ is the pseudo inverse of Xs

ct. The new samples from the slave instrument Xs

can be projected onto the master instrument Xm:

Xm = Xs B (3)

In turn, PDS creates local PLS models relating the master instrument j-th variable to a
sliding window of size w centered at the j-th variable in the slave instrument. The resulting
transformation matrix BPDS has a diagonal structure:

BPDS = diag(b1T, b2T, . . . ,) (4)

where k is the number of variables on both instruments. Finally, Xs can be projected on the
master instrument by:

XmT = XsT BPDS (5)

Partial least squares discriminant analysis-based calibration transfer (PLSDA)—the
PLSDA-based method builds a PLSDA model relating transfer unlabeled samples from
both master and slave instruments with a dummy vector containing their membership
(master or slave) label. Furthermore, the predicted data from this model is removed from
the original data set.

If W and P are notations for the resulting PLSDA weight and latent variable matrices,
respectively, Xm and Xs denote the original data from the master and the slave instrument,
respectively, and Xm’ and Xs’ denote the transformed data from the master and the slave
instrument, respectively:

Xm’ = Xom − Xom W ((P)T W)−1 P (6)
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Xs’ = Xos − Xos W ((P)T W)−1 P (7)

The number of components or latent variables (LVs) to be removed must be selected.
Finally, a classification/regression method can be built on the Xm’ and be used to predict Xs’.

Partial least squares-based calibration transfer (PLSCT)—In PLSCT [85], a PLS model
is built in the master instrument and a subset of samples are used to relate master and slave
instruments. This operation is made in the PLS low dimensional space between projected
spectra from transfer samples in both master and slave instrument.

If Xm and Ym are the calibration set data and label matrices in the master instrument,
respectively, Wm, Pm and βm are the weight, latent variable and regression coefficient
matrices of the PLS model for Xm and Ym in the master instrument (with selected number
of latent variables (LVs)), the projection of the master’s transfer samples Xm

ct in the PLS
model Tm

ts and the projection of the slave’s transfer samples Xs
ct in the PLS model Ts

ts are
given by:

Tm
ts = Xm

ct Wm ((Pm)T Wm)−1 (8)

T’sts = Xs
ct Wm ((Pm)T Wm)−1 (9)

Assuming a linear relationship between the projection matrices:

Ts
ts = T’sts M = Tm

ts (10)

where M can be obtained by the ordinary least squares method:

M = ((T’sts)T T’sts)−1 (T’sts)T Tmts (11)

when M is obtained, a classification/regression method can be applied on the projected
matrices T or from the PLS model already built in the master instrument:

Ys = Xs βm (12)

Since in this work we use PLSDA for a classification problem, we will call this method
PLSDA-CT instead of PLSCT.

Correlation alignment (CORAL)—CORAL [84] is an unsupervised domain adaptation
method coming from the machine learning field that attempts to minimize the differences
in the data distributions between two domains (master and slave instruments in our case)
by transferring the data structure of the target domain (slave).

Notating Xm and Xs subsets of unlabeled data from master and slave, respectively,
having Nm and Ns number of features each (X matrix columns), the proposed transforma-
tion is:

Cm = (Xm)T Xm + λ INm × Nm (13)

Cs = (Xs)T Xs + λ INs × Ns (14)

Xm = Xm Cm
−1/2 Cs

1/2 (15)

where Cm and Cs are the master’s and slave’s data covariance matrices, respectively,
adapted with a small regularization parameter λ that allows it to be full rank and thus
the square root to be computed. Therefore, CORAL uses two steps to align both data
distributions: whitening the master data and re-coloring it with the slave covariance.

3.2. Data Analysis Methodology

In this work, we study the performance of several CT algorithms to transfer calibration
models between pairs of 3 instruments in an experiment consisting of an on-site real breath
analysis study for discrimination of breath samples from subjects before and after eating a
specific meal. Thus, data is classified into classes “meal” and “no-meal”. We use device 1
as the master device, thus devices 2 and 3 are considered the slave devices. Denoting the
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master instrument as M and the slave instrument as S, two instrument pairs considered
are: M1–S2 and M1–S3.

To illustrate the effect of the different CT algorithms, we followed a procedure con-
sisting of three steps. In the first step, dimensionality reduction and a classifier using data
from M is built and evaluated with selection of their optimal parameters for each of the
3 devices. In the second step, a small number of samples (transfer samples) from both M
and S are selected and the CT is performed. Finally, in the third step, the CT algorithm is
evaluated using the classifier from the first step on S data. The result of the M classifier
applied on the M data is considered the reference to be achieved, while the result of the M
classifier applied on each S data is considered the threshold to be overcome.

Since only two classes are involved in the classification task, the classification results
are given in area under the receiver operating characteristic curve (AUC) and standard
errors (SE). Results for each S device are compared before and after the application of
the CT algorithms; if the results of the corrected S data (after CT) are similar to the M’s
reference classification result we consider a successful CT, if the S’s result is higher than the
one before the CT (threshold) we consider good CT.

Classifier—First, the basic pre-processing step here is given by the ratio of the sensor’s
conductance (1/R) with the baseline, which gives R0/R, where R0 is the sensor output
resistance to room air (baseline) and R is the sensor’s response resistance to the breath
exposure. The considered R is one value that summarizes the sensor’s response to the
whole analyte exposure. It corresponds to the mean of the latest measurements before the
cleaning step, in this case the last 5 s, when the sensor responses are most stable (steady
state). Therefore, the resulting data sets from measurements with our 18 sensors have
18 columns, one per sensor.

As specified above, the results of the classifier built in M and applied on each S is
considered the reference for the evaluation of the CTs. The considered classifier is linear
discriminant analysis (LDA) with a previous dimensionality reduction task using principal
component analysis (PCA). Therefore, the number of PCA components (nPCs) for the
PCA + LDA classifier is the parameter to be selected. For this, cross-validation is made
on two random subsets of the M’s data: a training set containing 48 samples with equally
represented classes (24 + 24), and a validation set with the remaining samples (~39). The
procedure is repeated 20 times for each parameter value to obtain the optimal nPC.

Transfer samples—Once the optimal nPCs for the classifier in M are selected, the
CT task is carried out as follows. For every pair M–S, a sample subset (M-training set)
is selected from M with both classes equally represented. The M’s transfer samples are
selected from this subset. Then, the S’s transfer samples are selected according to the CT
algorithm as described below, and the CT is performed.

The CT algorithms need a number of samples (transfer samples), labeled or not,
from both M and S. To select the transfer samples from M, we use first the Kennard–
Stone algorithm (KS) [88], and then for CT methods that use labeled transfer samples,
the transfer samples from S are selected according to standard samples or nonstandard
samples. Instead, for CT methods that use unlabeled transfer samples, KS is also used to
select the S’s transfer samples. The standard samples correspond to the M’s equivalent
samples in S, this is, the samples that were taken close in time (the subjects exhaled on
each instrument right one after the other) from the same patients by the 3 instruments.
In turn, the non-standard transfer samples are an alternative to the standard samples
and correspond to the very likely case where standard samples as defined above are not
available. Non-standard transfer samples are selected as follows: once M’s transfer set is
selected with KS, from a subset of 20 known (labeled) S samples, each selected S transfer
sample is the closest to each M’s transfer sample.

In addition, for cases with labeled samples the selection of M and S transfer samples
is made according to 2 class membership conditions: samples belonging to (a) both classes
in the experiment (meal/no-meal) or (b) only one class corresponding to no-meal. As for
the healthy class in a disease-control breath analysis experiment, subjects belonging to
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no-meal are easier to collect and thus, a CT method based on only such sample class would
be more practical.

CT evaluation—To assess the CT algorithms’ performance, the selected M classifier
is built using the M’s training samples and the S’s transfer samples if they are labeled.
The classifier is then applied on the corrected S’s samples excluding its transfer samples
(Figure 5).
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An additional reference can be considered for the CT algorithms that need known
labeled transfer samples from S; the calibration extension method (CEM) which consists of
the LDA classifier built with M’s training samples plus original (non-corrected by CT) S’s
labeled transfer samples, this is S’s samples without CT. Then, the CT can be considered
good if its AUC overcomes the CEM’s AUC. The procedure is repeated 20 times and the
AUC and SE are computed.

The number of considered transfer samples is 10, 20, 30 and 40. If the transfer samples
are labeled, as for DS, PDS and PLSDA-CT, the classes are equally represented within them.

4. Results and Discussion
4.1. The Dataset

After removing few outliers using PCA, the data set composition of the breath analysis
experiment is shown in Table 1.

Table 1. Data set composition.

Device Meal No-Meal

1 41 45
2 43 45
3 42 45

Figures 6 and 7 show the PCA scores plots of the complete data set according to the
devices and the meal status (classes), respectively. Measurements from the three devices
depend strongly on the device, since the breath samples come from the same individuals
and the sampling is made on each device one right after the other (Figure 6). On the other
hand, a certain degree of overlap between the data classes meal/no-meal can be seen in
Figure 7. This happens in every device, as it is shown by the sample symbols shown in
Figure 6.
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4.2. Classification

The references to compare the performance of the CTs are the results of the classifi-
cation of every device’s data using a PCA + LDA model built with M’s training set data
(48 samples) before the CT. Table 2 shows the classification results for the PCA + LDA
models giving the best AUC according to device master-slave pairs, which indicates: device
to build model-device to test model. For example, for pairs with the same device as M1–M1,
it indicates that a training set (~48 samples) from M1 was used to build the model and a
test set (~39 samples) from the same device was used to evaluate it. When the pairs are
formed by different devices, the number of samples in the training set is ~48 samples but
for the test set is ~80 samples.



Molecules 2021, 26, 3776 13 of 22

Table 2. Classification results before calibration transfer (CT).

Pair Train-Test Device AUC (%) Accuracy (%) Sensitivity (%) Specificity (%) PCA nPCs

M1–M1 89.26 ± 0.87 80.01 ± 0.14 84.11 ± 0.20 75.75 ± 0.22 13

S2–S2 93.34 ± 0.65 86.41 ± 0.10 85.53 ± 0.17 87.25 ± 0.16 -

S3–S3 91.03 ± 0.12 81.56 ± 0.17 80.63 ± 0.30 82.50 ± 0.21 15
M1–S2 73.15 ± 1.15 64.83 ± 0.09 49.65 ± 0.26 79.66 ± 0.20 13
M1–S3 75.72 ± 2.40 66.88 ± 0.18 79.00 ± 0.38 54.75 ± 0.61 13

We can see in Table 2 that results for pairs of the same devices show good results
for discriminating human breath before and after the meal for the individual devices.
However, there is a significant performance decrease when the classifier is built with the
master device, which is a clear indicator of the fact that the devices differ.

The selected reduced dimension obtained after cross-validation (13 PCs) corresponds
to the model with optimal results in M1 (89.26 ± 0.87). The same model applied to devices
2 and 3 gave 73.15 ± 1.15 and 75.72 ± 2.40, respectively. These values are the lower value
reference for the evaluation of the methods (shadowed in Table 2).

4.3. Calibration Transfer Using Two-Class Transfer Samples

Figures 8 and 9 show the results of CT methods CORAL and PLSDA for both slave
devices. These are methods that do not need labeled samples from S. However, since
results for CORAL depend on λ and PLSDA depend on nLV, some known samples in the
slave device must be known in order to find an optimal value. Results for CORAL depend
on the device but good results are obtained for both devices at high λ with low dependency
on the number of transfer samples. AUC results for the low λ increase with the number of
transfer samples. The lowest λ give the best results for device 3, while it is the contrary for
device 2. In turn, for PLSDA the optimal number of PLSDA components to be removed
depends on the slave device and the number of transfer samples. Best results are obtained
with the maximum number of transfer samples. Figures 10 and 11 show the results of CT
methods DS, PDS and PLSDA-CT for both slave devices, when using standard samples.
CEM is a reference which shows whether it is worth applying any of these CT methods
or simply building the CEM classifier with labeled samples from each pair of M and S
devices together.
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Figure 10 shows that when using standard transfer samples, PDS can give good results
in on-field experiments, although with many more transfer samples than those reported
for lab experiments. The optimal parameters for PDS or DS depend on the slave device
and number of transfer samples. For device 3, it is better to use CEM than the PDS as
CT. For both slave devices, PDS at the maximum window size (13) and a high number of
transfer samples gives the best results. In turn, when using PLSDA-CT (Figure 11) we can
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see that the best results are obtained with few components and medium number of transfer
samples. However, good and more stable results with respect to the nLVs are obtained
with many transfer samples.

Figures 12 and 13 show that there is a considerable decrease in the general performance
of PDS, DS and PLSDA-CT methods when using non-standard transfer samples. CEM
results, which are similar to the case of standard transfer samples above, are still the best
for device 3 (as in Figure 10). However, for device 2 it becomes comparable to PDS with
window size 1, while DS and PDS for window size 13 drop below the threshold. Window
size equal to 1 for PDS does not give good results but it keeps the values mostly above
the threshold level for both devices at the two cases of transfer samples used. Given the
general behavior of DS in Figures 9 and 10, for a study with more data for which more
transfer samples were available (thus bigger training set size) much better rates could be
achieved. The general worsening of the results can also be seen for PLSDA-CT. However,
AUC is still good for the smallest number of LVs.
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4.4. Calibration Transfer Using One-Class Transfer Samples

The following figures show results for the case of using transfer samples of only one
class, “no-meal” in our case. Figure 14 shows results for CORAL, which behaves similarly
although slightly worse than for the previous case (Figure 8). The high λ values give
close results which are stable with respect to the number of transfer samples, while small
λ values give increasingly better results with increasing number of transfer samples. In
fact, best results for device 3 are given by the smallest λ but it is the contrary for device 2.
Unfortunately, in this case none of the results given by PLSDA overcomes the threshold,
therefore we do not show them here.
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Results for DS and PDS are not good when using one-class standard transfer samples,
only PDS with window size equal to 1 gives AUC slightly over the threshold (Figure 15).
However, PLSDA-CT still shows good results for small numbers of LVs but only for high
number of transfer samples (Figure 16).
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Finally, the use of one-class non-standard transfer samples results in Figure 17, which
shows a worsening in the performance of DS and PDS and a similar behavior of PLSDA-CT.
In addition, PLSDA-CT shows a change in the trend for the smallest number of one-class
transfer samples (Figures 16 and 18) of the performance, which increases with the LVs,
with respect to two-class transfer samples (Figures 11 and 13) for which the performance
decreases with the LVs.
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In summary, we have shown the performance of several CT methods using labeled
transfer samples (DS, PDS, PLSDA-CT) with samples from one or two classes, and using
unlabeled transfer samples (CORAL, PLSDA) knowing that they contain one or two classes.
Since CORAL is based on covariance and in our data set the covariance of both classes
are not dramatically different (so we can use LDA as classifier), its performance using
a transfer sample set with one class is not much worse than using two classes. On the
contrary, PLSDA needs both classes in the transfer sample set to find a component on a
suitable direction to be removed. In turn, due to their nature, DS and PDS are very sensitive
not only to the classes present in the transfer set but also to the type of samples. Therefore,
standard samples of both classes are necessary for correct performance. Finally, results for
PLSDA-CT are more robust and stable for standard samples of both classes, but for a small
number of components and a high number of transfer samples, PLSDA-CT is giving good
results for all cases.
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5. Conclusions

In this work, we have presented a novel, compact and easy-to-use breath analyzer
platform with a modular sensing chamber and direct breath sampling unit. Furthermore,
we have tested the performance of four calibration transfer methods in a breath analysis
experiment using real human breath measurements to classify breath samples of subjects
before and after eating a specific meal. In our study the breath measurement is taken about
4 h after the food intake; this leads to the conclusion that the sensors are affected by every
food intake. This can be viewed as a potential disorder in studies with healthy and sick
people and should be considered when designing an appropriate sampling protocol.

The measurements were made using three instruments. One of them (device 1) was
selected as the master instrument, so that its measurements were used to build classification
models along with transfer samples whenever their classes were known. The other two
instruments were the slave instruments.

The four CT methods tested follow very different approaches, especially with regard to
the transfer samples they use. The test of these CT methods is in fact focused on the transfer
samples they need for an acceptable performance as a response for a practical problem
that arrives in on-field experiments, in our case in experiments using real human breath
measurements with gas sensor-based instruments. In such experiments, measurements of
samples at different locations and with different instruments are usual. The problem arrives
when transferring the calibration from the master to the remaining slave instruments,
because labeled samples from the slaves are needed and sometimes, they are difficult to
obtain. We wondered firstly if real sample measurements (instead of lab-samples) could be
used as transfer samples, and if so, how many and whether or not they must contain all
classes under study in the classification problem.

In the figures above, we have shown that real human breath measurements can be
used as transfer samples, although in large numbers, much larger than in lab experiments,
and with results that depend on the device. However, we could derive some general
conclusions. First, in all cases that need labeled transfer samples, the best performance of
all methods was obtained for two-class standard samples, and a decrease could be seen
when the two-class samples were not standard. Methods like PLSDA, DS and PDS need
transfer samples containing all the classes involved in the classification problem, although
for PLSDA these samples do not need to be specifically known. However, PLSDA-CT
gives good results for small LVs and large transfer samples which in our experiment
could contain only one class. CORAL also shows good results for both one and two-
class unlabeled transfer samples, although it depends on the device and a parameter.
Therefore, calibration transfer methods such as CORAL and PLSDA-CT could be used
in on-field experiments using transfer samples from the samples under study, without
the need of laboratory samples specifically measured for calibration transfer tasks or for
recalibration purposes.

Supplementary Materials: The following are available online, Figure S1: Internal view with de-
scription of the three main units of the Modular Breath Analyzer (MBA) platform for laboratory
and clinical use, Table S1: List of integrated analog sensors, number of obtained signals from each
sensor and used heater voltages (adapted with permission from Jaeschke et al., Copyright 2018 by the
authors), Table S2: List of integrated digital sensors, number of obtained signals from each sensor and
used heater voltages (adapted with permission from Jaeschke et al., Copyright 2018 by the authors).
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