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Abstract

Human-mediated disease outbreaks due to poor biosecurity practices when processing ani-

mals in wild populations have been suspected. We tested whether not changing nitrile

gloves between processing wood frog (Lithobates sylvaticus) tadpoles and co-housing indi-

viduals increased pathogen transmission and subsequent diseased-induced mortality

caused by the emerging pathogen, ranavirus. We found that not changing gloves between

processing infected and uninfected tadpoles resulted in transmission of ranavirus and

increased the risk of mortality of uninfected tadpoles by 30X. Co-housing tadpoles for only

15 minutes with 10% of individuals infected resulted in ranavirus transmission and 50% mor-

tality of uninfected tadpoles. More extreme mortality was observed when the co-housing

infection prevalence was >10%. Our results illustrate that human-induced disease out-

breaks due to poor biosecurity practices are possible in wild animal populations.

Introduction

Humans can play a role in the emergence of infectious diseases in animal populations. Com-

monly cited examples are humans increasing stressors in the environment that compromise

the immune system of a host and pathogen pollution [1, 2]. Pathogen pollution is generally

defined as human-mediated translocation of a novel pathogen over large geographic distances

and subsequent release into a naïve population [2]. Examples of pathogen pollution include

the emergence of Pseudogymnoascus destructans in North American bat populations and the

emergence of Batrachochytrium salamandrivorans in European salamander populations [3, 4].

Another way that humans can alter disease processes in animal populations is by facilitating

pathogen transmission. Numerous cases exist in human medicine of iatrogenic pathogen

transmission between patients and health care workers due to poor biosecurity practices [5–7].

Many pathogens are highly contagious, hence practices such as co-housing animals could

result in transmission between infected and uninfected individuals [8, 9]. Some pathogens also

can be shed through the skin [10, 11], hence handling different individuals without changing

gloves could facilitate transmission. We tested the possibility of human-mediated pathogen

transmission if gloves were not changed between handling infected and uninfected amphibi-

ans, and if infected and uninfected individuals were co-housed. The model system we used
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was a highly transmissible pathogen, ranavirus, that is emerging globally in ectothermic verte-

brate populations [12].

Materials and methods

We performed two experiments for this investigation: one where the researcher did not change

examination gloves between handling animals and one where infected and uninfected animals

were co-housed for different durations. Although biologists increasingly use examination

gloves when processing animals in the wild [13, 14], there is some skepticism about using

them [15] and in some cases, gloves are not changed between animals (MJG, personal observa-

tion). Also, captured animals may be co-housed. For example, amphibian tadpoles occasion-

ally are placed together in buckets as they are processed for biological data or pathogen

surveillance [16, 17]. We performed the experiments in a controlled laboratory environment

at the Joe Johnson Animal Research and Teaching Unit of the University of Tennessee Insti-

tute of Agriculture. The experiments were performed using wood frog (Lithobates sylvaticus)
larvae (tadpoles), which are known to be highly susceptible to the pathogen we used [18]. We

raised the tadpoles from egg masses collected in the wild in eastern Tennessee, USA. Because

the susceptibility to ranavirus can change among amphibian developmental stages [19], we

began the experiments at Gosner stage 30 [20], which has been used as a standard development

stage to test host susceptibility [18]. Prior to the experiment, tadpoles were raised communally

in wading pools and fed commercial-grade pelleted fish food. We performed all experiments

using a chimeric Frog virus 3 (FV3)-like ranavirus originally isolated in Georgia, USA [21, 22].

Our virus replication procedures have been described previously [23].

Glove experiment

We designed this experiment with a glove treatment (change or no change) and different

infection prevalence levels. For the change treatment, we wore nitrile examination gloves and

changed them between handling each individual. This treatment was crossed with two infec-

tion prevalence treatments (10 and 40%). For the no-change treatment, we wore nitrile gloves

but they were not changed between handling individuals. This treatment was crossed with

four infection prevalence treatments (5, 10, 20 and 40%). Each treatment was replicated five

times, and each replicate consisted of processing 20 tadpoles (20 tadpoles per replicate x 5 rep-

licates x 6 treatments) for a total of 600 tadpoles. Twenty control tadpoles were also included

and experienced the identical processing procedures. Processing included handling the tadpole

(mean = 11.5, SD = 3.8 seconds) and swabbing its mouthparts. Swabbing is a common nonle-

thal sampling technique used to test for various herpetofaunal pathogens [17, 24]. We guaran-

teed infection by exposing the tadpoles designated as infected to 103 plaque forming units

(PFU) of the FV3-like ranavirus per mL of water, which is a concentration above the Lethal

Dose (LD)-50 for wood frog tadpoles [18, 25]. We exposed the tadpoles individually to the

virus (106 PFU total) in 2 L containers with 1 L of de-chlorinated municipal water for 72

hours. Thereafter, tadpoles were transferred to 2 L containers with 1 L of virus-free, de-chlori-

nated water until the experiment began three days later. Our previous work suggested that six

days post-exposure to the ranavirus and dose we used would result in systemic infection in

wood frog tadpoles [18]. The position of the infected tadpole during processing depended on

the prevalence treatment. For the 5% treatment, the first tadpole of 20 processed was infected.

For the remaining treatments, tadpoles were systematically placed with an equal number of

uninfected tadpoles between them. Hence, for the 10% treatment, the first and 10th tadpoles

processed were infected. To minimize the possibility of contamination, three researchers han-

dled animals: one person handled the infected tadpoles, one person handled uninfected
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tadpoles, and one person swabbed individuals and either changed or did not change gloves.

Each tadpole was netted from its 2 L container, temporarily placed in a petri dish, and deliv-

ered to the researcher performing the swabbing. A new paper towel was placed on the work

area by a fourth researcher between each tadpole within treatments, and the work surface was

decontaminated with 1% Nolvasan1 (Zoetis, Parsippany, NJ, USA) between each treatment

[26]. After uninfected tadpoles were swabbed, they were returned to new 2 L containers with 1

L of de-chlorinated water, containers and water were changed every three days thereafter, and

survival was monitored for 14 days, which is a sufficient duration for ranaviral disease to

develop in wood frog tadpoles [18]. We euthanized all initially infected tadpoles after swabbing

was completed and verified infection using quantitative PCR (qPCR, discussed below). Within

the no-change treatment, we also swabbed gloves for evidence of shed virus after processing

the last (20th) tadpole for each replicate. As individuals died, or at the end of the experiment,

we performed necropsies, collected a homogenate of kidney and liver tissue to test for rana-

virus infection using qPCR, and performed histopathology on cross-sections of the liver to ver-

ify ranaviral disease [27].

Co-housing experiment

We designed this experiment with three co-housing duration treatments (15, 30, and 60 min-

utes) and three infection prevalence treatments (10%, 20%, and 40%). These treatments were

crossed for a total of nine treatment combinations each replicated five times. The replicate was

a 19-L bucket filled with 4 L of water, which represents typical conditions for temporarily

housing tadpoles captured in the wild [16]. In each bucket, there were 10 tadpoles with the

aforementioned infection percentages. For example, 2 of 10 tadpoles were infected for the 20%

prevalence treatment. In many field-sampling scenarios, 10 tadpoles per bucket would repre-

sent a low co-housing density. The total number of tadpoles used in this experiment was 450

(9 treatments x 5 replicate buckets x 10 tadpoles per buckets). Infection of the tadpoles desig-

nated as infected was guaranteed following the same procedures as the glove experiment. We

co-housed uninfected and infected tadpoles for 15, 30, or 60 minutes, which is a reasonable

range of co-housing duration when sampling in the wild. We clipped a small section of tail

from the infected tadpoles prior to co-housing so they could be identified. After the co-hous-

ing duration, we euthanized all initially infected tadpoles and verified infection using qPCR.

The uninfected co-housed tadpoles were removed from the buckets with individual nets and

placed in individual 2 L containers with 1 L of de-chlorinated municipal water, and their sur-

vival followed for 14 days. As individuals died and at the end of the experiment, we necropsied

tadpoles, used a homogenate of liver and kidney tissue to test for ranavirus infection, and per-

formed histopathology on liver samples to confirm ranaviral disease. We also monitored 10

control tadpoles (one replicate bucket) exposed to the same co-housing conditions and verified

no infection with qPCR.

Pathogen testing

Our goal with pathogen testing was to verify that ranavirus infection was associated with the

observed mortality events. Because a large number of tadpoles was used in this study, we tested

three of five random replicates per treatment per experiment, which was 360 and 270 tadpoles

for the glove and co-housing experiments, respectively. We extracted genomic DNA from the

homogenate of liver and kidney tissue using a DNeasy Blood and Tissue Kit (Qiagen, Hilden,

Germany). Prior to qPCR analysis, we eluted 100 μl of the extracted DNA and quantified the

amount of DNA present in each sample. We used a model ABI 7900HT Fast Real-Time PCR

System (Life Technologies, Carlsbad, California, USA) to test samples for ranavirus DNA
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using PCR primers and probe targeting a 70-bp region of the ranavirus major capsid protein

[28, 29]. We considered a sample infected if the qPCR cycle threshold (CT) value was less than

32 based on standardized optimization with known quantities of ranavirus. For each qPCR

analysis, we ran each extracted DNA sample in duplicate along with 2 positive controls (i.e.

positive viral DNA and viral DNA from a ranavirus-positive amphibian) and 2 negative con-

trols (i.e. DNA from a ranavirus negative amphibian and a sample containing only molecular

grade water [27]). Survival and qPCR data for the glove and co-housing experiments are pro-

vided in the S1 Dataset and S2 Dataset files, respectively.

Histopathology

A different set of autoclaved instruments was used for each animal necropsied. After collection

of liver and kidney samples for PCR analysis, the remaining animal was placed into 10% neu-

tral buffered formalin. Formalin-fixed liver tissue was routinely processed for histopathology

at the University of Tennessee Veterinary Medical Center Diagnostic Laboratory, embedded

in paraffin blocks, sectioned at approximately 5 μm onto glass slides, which were then stained

with Hematoxylin and Eosin and examined by light microscopy for evidence of ranaviral dis-

ease [27].

Data presentation and statistical analyses

We estimated survival functions for all treatments using the Kaplan-Meier method, and used a

log-rank test to determine if statistical differences (α = 0.05) existed among survival curves

[30]. When differences existed, we estimated hazard ratios (i.e., instantaneous rate of death)

for each treatment as an index of mortality risk using Cox’s proportional hazards model [31,

32]. All survival analyses were performed using R (v. 3.3) statistical software (https://www.r-

project.org). Code for the survival analyses is provided in S1 Code and S2 Code files for the

glove and co-housing experiments, respectively. We reported infection prevalence results by

treatment according to the fate of individuals (clinical infection = died, infected; subclinical

infection = survived, infected; incidental mortality = died, uninfected; and resistant = survived,

uninfected). We also reported mean viral loads on the gloves that were not changed for each of

the infection prevalence treatments, and tested for differences using a one-way analysis-of-

variance.

Ethics statement

All husbandry and euthanasia procedures described herein were in accordance with the Asso-

ciation for Assessment and Accreditation of Laboratory Animal Care International Standards

and followed recommendations provided in the Amphibian Husbandry Resource Guide of the

Association of Zoos and Aquariums and the Guide for Euthanasia published by the American

Veterinary Medical Association. All activities were approved by the Institutional Animal Care

and Use Committee (IACUC) at the University of Tennessee-Knoxville (UTK, protocol

#2357). Collection of egg masses from the wild was approved under Tennessee Wildlife

Resources Agency Scientific Collection Permit #1990 and followed collection and transport

protocols described in approved UTK IACUC protocol #2357.

Results

Glove experiment

Survival differed significantly among the glove treatments (Χ2
(6) = 328, P< 0.001; Fig 1A). Sur-

vival of control animals did not differ from the glove change treatment (Χ2
(1) = 0.2, P = 0.68),
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hence controls were removed from further analyses to allow direct comparison between

change-no change treatments. Not changing gloves increased the risk of mortality of unin-

fected tadpoles by nearly 30X compared to changing gloves between animals (Table 1, Fig 2).

Increasing the prevalence of infected individuals processed from 10% to 40% increased the

risk of mortality of uninfected tadpoles by 2.4X (Table 1, Fig 2). However, if gloves were not

changed, increasing the prevalence of infected individuals processed from 5–40% increased

the risk of mortality of uninfected individuals by 5 – 13X (Table 2, Fig 3).

Fig 1. (A) Survival of uninfected wood frog (Lithobates sylvaticus) tadpoles that were processed with infected tadpoles at different levels of infection prevalence with and

without changing gloves, (B) corresponding mortality and infection prevalence for 3 of 5 replicates in (A), (C) survival of uninfected wood frog tadpoles that were co-

housed with infected tadpoles at different levels of infection prevalence and for different durations, (D) corresponding mortality and infection prevalence for 3 of 5

replicates in (C).

https://doi.org/10.1371/journal.pone.0193243.g001
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Quantitative PCR verified that 85% of infected individuals died and 15% survived with sub-

clinical infections after 14 days (Fig 1B). Ranaviral disease, including liver necrosis and viral

inclusion bodies, was confirmed by histopathology (Fig 4). For the no-change treatment,

Table 1. The difference in the instantaneous rate of mortality (i.e., hazard ratio) for uninfected wood frog (Lithobates sylvaticus) tadpoles that were processed with

and without changing gloves (yes vs. no) at two known ranavirus infection prevalence levels (10 vs. 40%).

Treatment Coefficient:

b

Hazard Ratio (HR):

exp(b)

95% CI for HR P-value

Glove

Change

Yes 0 1 - -

No 3.383 29.465 (15.674, 55.389) <0.001

Prevalence 10% 0 1 - -

40% 0.889 2.433 (1.719, 3.444) <0.001

https://doi.org/10.1371/journal.pone.0193243.t001

Fig 2. Survival functions for uninfected wood frog (Lithobates sylvaticus) tadpoles that were processed with and without changing gloves (yes,

no) at two known ranavirus infection prevalence levels (10%, 40%).

https://doi.org/10.1371/journal.pone.0193243.g002
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significantly more virus occurred on gloves when >5% of individuals that were processed

were infected (Fig 5). A small fraction (2%) of tadpoles that were processed died with no

detectable infection (Fig 1B). Also, two control tadpoles died, but they were not infected.

Table 2. The difference in the instantaneous rate of mortality (i.e., hazard ratio) for uninfected wood frog (Lithobates sylvaticus) tadpoles that were processed with-

out changing gloves at four known ranavirus infection prevalence levels.

Prevalence Coefficient: b Hazard Ratio (HR): exp(b) 95% CI for HR P-value

5% 0 1 - -

10% 1.597 4.940 (3.042, 8.023) <0.001

20% 1.872 6.502 (3.992, 10.589) <0.001

40% 2.553 12.847 (7.784, 21.203) <0.001

https://doi.org/10.1371/journal.pone.0193243.t002

Fig 3. Survival functions for uninfected wood frog (Lithobates sylvaticus) tadpoles that were processed without changing gloves at four known

ranavirus infection prevalence levels.

https://doi.org/10.1371/journal.pone.0193243.g003
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Interestingly, some transmission occurred in the glove-change treatments (11% infection

summed across both treatments), resulting in approximately 7% total mortality (i.e., sum of

black bars across change treatments in Fig 1B). All tadpoles that were exposed to ranavirus

that we processed as the infected individuals were infected with ranavirus and contained high

viral loads in their livers and kidneys (mean = 1,569, SE = 252 PFU per 0.25 μg of gDNA).

Co-housing experiment

Survival differed significantly among the co-housing treatments (Χ2
(8) = 57, P< 0.001; Fig

1C). Co-housing 10 tadpoles for 15, 30 or 60 minutes when only one individual was infected

resulted in 50–75% mortality of uninfected tadpoles after 14 days (Fig 1C). If two of 10 tad-

poles were infected, average mortality of uninfected tadpoles among co-housing durations was

86%. If 40% of tadpoles were infected, average mortality of uninfected tadpoles was 93% (Fig

1C). The risk of mortality for uninfected individuals doubled and tripled if 20% and 40% of

co-housed tadpoles were infected, respectively, compared to when only 10% were infected

(Table 3, Fig 6). There was no difference in risk of mortality among co-housing durations

(Table 3).

Quantitative PCR verified that 91% of infected individuals died and 8% survived with sub-

clinical infections after 14 days (Fig 1D). Ranaviral disease, including liver necrosis and viral

Fig 4. Sections of liver from a control animal (A) and from ranavirus qPCR positive animals demonstrating ranaviral

disease (B-D). (B) Necrosis of hematopoietic cells (arrows) and degeneration and necrosis of hepatocytes (arrowheads)

in a liver from an amphibian co-housed for 60 minutes in a container where 40% of the amphibians were infected with

ranavirus. (C) Diffuse necrosis of hematopoietic cells (arrows) and hepatocytes (arrowheads) in a liver from an

amphibian processed in a simulated swabbing event where 10% of the amphibians were infected with ranavirus and

gloves were not changed during processing. (D) Intracytoplasmic inclusion bodies (inset) and diffuse necrosis of

hematopoietic cells and hepatocytes in a liver from an amphibian processed in a simulated swabbing event where 40%

of the amphibians were infected with ranavirus and gloves were not changed during processing. Hematoxylin and

Eosin stain. Bar equals 50 μm.

https://doi.org/10.1371/journal.pone.0193243.g004
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inclusion bodies, was confirmed by histopathology (Fig 4). A small fraction (1%) of co-housed

individuals died with no detectable infection (Fig 1D), and no control animals died or were

infected. All tadpoles that were exposed to ranavirus that we used as the infected individuals in

the co-housing buckets were infected with ranavirus and contained high viral loads in their liv-

ers and kidneys (mean = 26,933 SE = 1,837 PFU per 0.25 μg of gDNA).

Discussion

Our study demonstrates that poor biosecurity practices can increase pathogen transmission

and disease-related mortality in wild amphibians that are processed as part of routine epidemi-

ological and biological studies. Not changing gloves between processing infected amphibians

increased the risk of mortality for uninfected individuals by 30X. Some ranavirus transmission

Fig 5. Cycle threshold (CT) for qPCR on swabs taken from gloves at four known ranavirus prevalence levels after infected wood frog

(Lithobates sylvaticus) tadpoles were processed. Low CT corresponds to higher viral load; different letters above boxes indicate significant

differences by ANOVA and Tukey’s post-hoc comparison test.

https://doi.org/10.1371/journal.pone.0193243.g005

Table 3. The difference in the instantaneous rate of mortality (i.e., hazard ratio) for uninfected wood frog (Lithobates sylvaticus) tadpoles that were co-housed with

infected tadpoles at three durations and three known ranavirus infection prevalence levels.

Treatment Coefficient: b Hazard Ratio (HR): exp(b) 95% CI for HR P-value

Prevalence 10% 0 1 - -

20% 0.665 1.945 (1.445, 2.619) <0.001

40% 1.058 2.882 (2.104, 3.947) <0.001

Duration 15 min 0 1 - -

30 min 0.118 1.125 (0.837, 1.513) 0.434

60 min 0.073 1.076 (0.796, 1.456) 0.634

https://doi.org/10.1371/journal.pone.0193243.t003
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and mortality (~7%) also occurred if gloves were changed between animals, illustrating that

even under controlled laboratory conditions there is a risk of transmitting pathogens among

processed individuals. Co-housing infected amphibians with uninfected individuals at low

densities for 15–60 minutes increased disease-related mortality by 50–95%. Collectively, these

results emphasize the importance of good biosecurity practices when processing amphibians

in the field or laboratory if pathogens are present.

Several researchers that study amphibians have advocated single glove use for each pro-

cessed animal [17, 33, 34]; however, biologists have been reluctant to change gloves between

animals due to the cost or because of waste generated [13]. In addition, some examination

gloves appear to have anti-microbial properties against certain pathogens. For example, the

fungus, Batrachochytrium dendrobatidis, was inactivated on nitrile and vinyl gloves in <1 min;

however, this effect was reduced if gloves were rinsed with water or if latex or polyurethane

Fig 6. Survival functions for uninfected wood frog (Lithobates sylvaticus) tadpoles that were co-housed with infected tadpoles at three known

ranavirus infection prevalence levels.

https://doi.org/10.1371/journal.pone.0193243.g006
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gloves were used [13]. Although the nitrile gloves used in our experiment may have had anti-

viral properties, clearly sufficient virus remained on them to facilitate transmission to a large

percentage of tadpoles that were processed. In addition, virus was detected on our gloves using

qPCR after processing individuals. Not changing gloves might also contribute to sample con-

tamination and increase false positive qPCR test results [35].

Use of bare hands has been suggested as an alternative to gloves, because human hands

have natural antimicrobial properties and their temperature may facilitate inactivation of

some pathogens [13]. However, the persistence of pathogens on bare hands is longer than on

examination gloves [13, 36, 37], and gloves can protect researchers from pathogens in the envi-

ronment or on animals that are zoonotic [33]. Bare hands also may affect sample quality. For

example, quality RNA in amphibian mucosome was greater in samples when animals were

processed with gloves compared to bare hands [38].

Our results also indicate that changing gloves between each animal can still result in occa-

sional pathogen transmission. Several human medicine studies have documented that hands

and clothes of health care workers can become contaminated even though gowns are worn

and gloves are changed frequently [39]. Double gloving has been shown to reduce the likeli-

hood of pathogen transmission during laryngoscopy and intubation [40]. Gray et al. [17] sug-

gested that a disposable plastic bag wrapped around a gloved hand might function similar to a

double glove.

Dipping gloves into disinfectant between processing animals or wearing gloves with manu-

facture-coated disinfectants might reduce iatrogenic pathogen transmission [17, 41, 42]; how-

ever, these practices may have toxic effects on wild animals. Rinsing gloves with distilled water

prior to use can reduce the toxic effects of gloves on amphibians [14], but it also reduces their

antimicrobial properties. Cashins et al. [43] warned about possible toxic effects of gloves on

amphibians; however, this team of researchers later published that the benefits of using gloves

exceeded possible negative effects [14]. Indeed, we observed some control mortality (8%) in

our experiment possibly associated with processing, but the risk of mortality by accidental

ranavirus transmission was about 30X greater if gloves were not changed. Gray et al. [17] rec-

ommended changing gloves between processing herpetofauna, which our data support.

Co-housing uninfected and infected tadpoles also resulted in substantial transmission of

ranavirus and increased mortality over control animals by 50–93%. Fifteen minutes was suffi-

cient to increase mortality by 50–75%. Isolation is standard procedure for animals under quar-

antine or in captivity with unknown infection status [44]; however, this procedure has been

used less frequently in the wild. Gray et al. [17] provided several recommendations for how to

isolate herpetofaunal species to prevent iatrogenic pathogen transmission during biological

processing.

Our results illustrate a clear, negative impact on amphibians that are processed using poor

biosecurity practices; however, it is unknown whether releasing these animals into the wild

would manifest into a disease outbreak in a population. Disease outcomes likely would be a

consequence of pathogen virulence, host density, and environmental conditions [45]. For

FV3-like ranaviruses in wood frog populations, it is reasonable to foresee a subsequent out-

break, because this species is very susceptible to ranavirus [18], the tadpoles exist at high densi-

ties [46], and the pathogen can be transmitted via direct contact, exposure to contaminated

water or sediment, and by necrophagy [11, 47]. Additionally, environmental persistence of

FV3-like ranaviruses outside the host is probably at least one week [48, 49]. It has been casually

suggested that strict biosecurity practices are unnecessary if a pathogen already exists in a wild

animal population (MJG, personal observation). In general, we disagree with this recommen-

dation, because in many cases, processing animals increases the probability of pathogen trans-

mission compared to endemic levels, which could facilitate the start of an epidemic in the wild.
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As responsible scientists and natural resource practitioners, we should exercise prudent biose-

curity practices that result in minimal impacts on the animal populations we study [17].
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