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Objectives. To evaluate the application of a deep learning architecture,based on the convolutional neural network (CNN) technique,
to perform automatic tumor segmentation of magnetic resonance imaging (MRI) for nasopharyngeal carcinoma (NPC).Materials
and Methods. In this prospective study, 87 MRI containing tumor regions were acquired from newly diagnosed NPC patients.
These 87 MRI were augmented to >60,000 images. The proposed CNN network is composed of two phases: feature representation
and scores map reconstruction. We designed a stepwise scheme to train our CNN network. To evaluate the performance of our
method, we used case-by-case leave-one-out cross-validation (LOOCV). The ground truth of tumor contouring was acquired by
the consensus of two experienced radiologists. Results. The mean values of dice similarity coefficient, percent match, and their
corresponding ratio with ourmethodwere 0.89±0.05, 0.90±0.04, and 0.84±0.06, respectively, all of whichwere better than reported
values in the similar studies. Conclusions. We successfully established a segmentation method for NPC based on deep learning in
contrast-enhancedmagnetic resonance imaging. Further clinical trials with dedicated algorithms are warranted.

1. Introduction

Head and neck cancer (HNC), especially nasopharyngeal
carcinoma (NPC), is an aggressive cancer typewith high inci-
dence rate in Southern China [1]. The cancer incidence data
collected in Guangxi and Guangdong show that nasopharyn-
geal cancer is the fourth most common cancer for males [2].
External beam radiation therapy is the primary therapy to this
cancer. The 3-year local control rate for NPC after therapy is
higher than 80% and the 3-year overall survival rate is up to
90% [3]. Noninvasive medical imaging is of great importance
to determine the tumor volume for successful radiation
treatment planning [3, 4].

Dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI), a functional noninvasive imaging modality,

plays a key role in the studies of cancer by providing infor-
mation about physiological characteristics in tissues. Studies
have concluded that DCE-MRI is useful in differentiating
tumors from normal tissues in NPC [4]. Accurate segmen-
tation of NPC tumors from DCE-MRI is important for the
radiotherapy treatment planning and prognosis evaluation.
However, the accuracy of tumor segmentation in DCE-MRI
is affected by some imaging factors such as low spatial
resolution, poor signal-to-noise ratio, partial volume effect,
and the intensity changes during perfusion [5].

There have beenmany studies performed to automatically
segment NPC tumors from medical images. Zhou et al.
[6] performed NPC tumor segmentation in MR images by
using Semi-Fuzzy C-means with the percent match (PM)
values close to 0.87. Zhou et al. [7] performed NPC tumor
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segmentation in MRI by using the two-class support vector
machine (SVM)method with PM values close to 0.79.Huang
et al. [8] performed semisupervised NPC lesion extraction in
MR images by using spectral clustering-based method with
the positive predictive value up to 0.71. Huang et al. [9] per-
formed NPC tumor segmentation by using Bayesian classi-
fiers and SVM method with average specificity of 0.93.

The above-mentioned methods were all conventional
machine learning techniques that require subjective feature
extraction and selection. Deep learning (DL) technique,
such as convolutional neural network (CNN), has recently
emerged as a powerful tool in solving the challenges afore-
mentioned, which detects low-level features such as shape
and texture information autonomously from small patches
of the input images and then combines these features into
high-level features for the image processing tasks such as
classification, segmentation, and detection without the sub-
jective feature extraction and selection [10, 11]. Deep learning
techniques perform even better in generalization with new
datasets [12].

To the best of our knowledge, DL with CNN technique in
tumor segmentation has recently attracted research interest
[13, 14]. Wang et al. [15] performed NPC tumor segmentation
in MR images by using deep convolutional neural networks;
however, the average Jaccard similarity coefficient (JSC) value
was less than 0.8. In the current study, we reported an
automatic and accurate segmentation method based on the
CNN architecture with dynamic contrast-enhanced MRI.

2. Materials and Methods

2.1. CE-MRI and Preprocessing. Twenty-nine newly diag-
nosed NPC patients from August 2010 to April 2013 were
included from the First Affiliated Hospital, Sun Yat-Sen
University. This study was approved by the local institutional
review board of Sun Yat-Sen University. Written informed
consent was obtained from each patient before the MRI scan.
PVE could severely affect the images whenever the tumor size
is less than 3 times the full width at half maximum (FWHM)
of the reconstructed image resolution [16]. Thus, the patients
with lymph nodes or lesions smaller than 1 cmwere excluded
in the current study to avoid possible partial volume effects
(PVE), according to the advice from the radiologists. Imag-
ing of DCE-MRI was performed in the primary tumor
region including the retropharyngeal nodes with regional
nodal metastasis, in with a 3.0-T MRI system (Magnetom
Trio, Siemens) with the field of view of 22cm×22cm×6cm
(AP×RL×FH), a flip angle of 15∘, and scanning time of 6
minutes and 47 seconds, resulting in 65 dynamic images.The
contrast agent gadolinium-diethylenetriamine pentaacetic
acid (Gd-DTPA) (Omniscan; Nycomed, Oslo, Norway) was
injected intravenously as a bolus into the blood at around
the 8th dynamic acquisition using a power injector system
(Spectris Solaris, MedRad, USA) and a 25mL saline flush
at a rate of 3.5 mL/sec was immediately followed. The dose
of Gd-DTPA was 0.1 mmol per body weight in kg of the
patient. The matrix of the 65 reconstructed dynamic image
was 144×144×20×65.

The ground truth was manually contoured in ImageJ
(National Institutes of Health, Bethesda, MD) with the con-
sensus between two experienced radiologists (Dr. Yufeng Ye,
13 years’ experience, andDr.Dexiang Liu, 18 years’ experience
in Radiology) whowere blind to this study. Since tumorswere
mostly enhanced at the 35th scan of our DCE-MRI, this scan
from each patient was used for training and testing our DL
model, and we only selected the scanned images containing
the tumor area. There were a total of 87 slices of CE-MRI
acquired from each of the 29 patients. To fulfill the require-
ment of large number of data in training the DL model, we
augmented the 87 MRI to more than 60,000 slices of images
by using the following methods [17], namely, rotating each
slice between -10 degrees and 10 degrees with an interval of
2 degrees to augment each slice to 11 slices, changing the
image contrast with an embeddedMatlab function, Imadjust,
to adjust the image contrast automatically to produce 33 extra
different slices from one single slice and adding Gaussian
noise to the imageswith a power of 1×10−8 to produce 2 differ-
ent additional slices fromeach slice. Totallywe augmented the
images by 11×33×2=726 times for each patient’s CE-MRI set to
give a total of 63126 (87x726) slices. These augmented images
were then normalized by performing Z-score translation
[18], in which the image intensity value in each voxel was
normalized by the mean intensity of this image.

2.2. CNN Network. The CNN network included two phases
of feature representation and scores map reconstruction. In
the feature representation phase, the network consisted of
2 Pool-Conv-ReLu blocks (P1-P2) and 4 Conv-ReLu blocks
(C1-C4) (see Figure 1). A Pool-Conv-ReLu block included
one pooling layer (Pool), one convolution layer (Conv), and
one rectified linear units (ReLu) layer, while a Conv-ReLu
block consisted of one convolution layer and one ReLu layer.
The convolution layer detected local features from the input
images and the ReLu layer accelerated the convergence. The
pooling layer was designed for reducing the dimension of
feature maps and network parameters.The input images with
a matrix size of 144×144 were transformed into the feature
maps of matrix size of 36×36 in the feature representation
phase.

In the scores map reconstruction phase (D1-D2, Ct1-
Ct2, C5-C6), the images were reconstructed from the 36×36
featuremaps. Two deconvolution layers (D1-D2) were applied
to reconstruct an output image with a matrix size of 144×144.
Since some image details could be missing in this recon-
struction from the 36×36 feature maps, the fine features
obtained from the previous feature representation phase were
combinedwith the scoresmap to allow the integration of local
and global multilevel contextual information. A concatenate
layer was then used for the information connection. Then
a convolution layer was applied for information fusion and
the final reconstruction. The detailed parameters of the CNN
network are shown in Table 1.

2.3. Model Training and Model-Based Segmentation. A step-
wise training schemewas used to train the DL CNNnetwork.
Firstly, we trained the network in the feature representation
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Figure 1: The schematic diagram of the proposed convolutional neural network (CNN) structure. The proposed CNN network includes
two phases of feature representation and scores map reconstruction. The feature representation phase consists of 2 Pool-Conv-ReLu blocks
and 3 Con-ReLu blocks, while the scores map reconstruction phase consists of 2 deconv-concat-conv blocks. The output of each layer is a
three-dimensional matrix with size of h×w×d, where h and w are the length and width of the scores map, respectively, and d is the feature
dimension. a×a indicates the matrix size of the convolution kernels. Conv: convolution, Relu: rectified linear units, Pool: pooling, Deconv:
deconvolution.

Table 1: Detailed parameters of the CNN network.

Block Layer Kernel size Stride Pad Output size
Input Data - - - - 144∗144∗1
Conv-Relu 1 Conv1 5 1 2 144∗144∗80

Relu1 - - - 144∗144∗80
Pool-Conv-Relu 1 Pool1 2 2 - 72∗72∗80

Conv2 5 1 2 72∗72∗120
Relu2 - - - 72∗72∗120

Pool-Conv-Relu 2 Pool2 2 2 - 36∗36∗120
Conv3 9 1 4 36∗36∗500
Relu3 - - - 36∗36∗500

Conv-Relu 2 Conv4 1 1 0 36∗36∗300
Relu4 - - - 36∗36∗300

Conv-Relu 3 Conv5 3 1 1 36∗36∗100
Relu5 - - - 36∗36∗100

Conv-Relu 4 Conv6 3 1 1 36∗36∗1
Relu6 - - - 36∗36∗1

Deconv1 Deconv1 4 2 1 72∗72∗1
Concatenate1 Concat1 - - - 72∗72∗121
Conv-Relu 5 Conv7 1 1 0 72∗72∗1

Relu7 - - - 72∗72∗1
Deconv2 Deconv2 4 2 1 144∗144∗1
Concatenate2 Concat2 - - - 144∗144∗81
Conv6 Conv8 1 1 0 144∗144∗1
Output Flatten1 - - - 144∗144∗1

phase and a 36×36 scores’ map was obtained. Based on this
36×36’ scores map, we next trained the deconvolution layer,
the concatenate layer, and the convolution layer, resulting in a
72×72 scores’ map. Finally, based on the network parameters
and output feature maps acquired in the second step, we

reconstructed the images with matrix size of 144×144 scores’
map.

In the training process, the weights were optimized in
each iteration. The weight of a Gaussian distribution with
mean of 0 and standard deviation of 1 was used in the
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convolution kernel at the initialization step. The training
parameters were as follows: basic learning rate: 1×10−7, step
size: 1x105, gamma: 0.1, momentum: 0.9, weight decay: 5x10-
4. It took 52 hours for a complete training procedure with a
NVIDIA GeForce GTX 980 GPU equipped on an Intel Core
i7 3.5 GHz computer.

We used the trained model in the segmentation tasks of
NPC tumor lesions in the testing dataset. The testing images
were input into the trained model. A score map representing
the tumor region of the NPC tumor was acquired for each
input image.

2.4. Tumor Segmentation. We used the testing dataset to
make forward propagation and evaluated the segmentation
performance based on the trained model. Parameters of
recall, precision, and dice similarity coefficient (DSC) were
given by

recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(1)

precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(2)

DSC = 2 ∗ 1

1/𝑟𝑒𝑐𝑎𝑙𝑙 + 1/𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
(3)

where true positive (TP) denotes the correctly identified
tumor area and false positive (FP) denotes the tumor area, but
the area is normal tissue in ground truth and false negative
(FN) denotes normal tissue but the pixel isolated is tumor
area in ground truth. And those are the results for each
patient.

For the comparisons with other published results, values
of corresponding ratio (CR), percent match (PM) [7], and
Jaccard similarity coefficient (JSC) [15] were also calculated
as

CR = TP − 0.5 × FP
𝑇𝑃 + 𝐹𝑁

(4)

PM = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(5)

JSC = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(6)

The model validation technique of leave-one-out cross-
validation (LOOCV) was used such that, in one repetition,
the images of 28 patients were used as the training dataset
(which were then augmented to >60000 images), and the
images of the remaining patient were used as the testing
dataset. After each patient’s images in these 87 images were
tested, themean and variance ofDSC, recall, CR, PM, and JSC
were calculated to evaluate the segmentation performance of
our method.

3. Results

Table 2 tabulates the tumor volumes as segmented by the
radiologist (the golden standard) and by the proposed auto-
matic segmentation method together with DSC, CR, PM,

recall, and JSC.These values were calculated for each patient,
not for each lesion. Table 3 shows the comparison of seg-
mentation performance in terms of DSC, CR, and PM be-
tween our current results of DL CNN network and those of
published results using other models. The mean DSC with
our method for 29 patients was 0.89±0.05, and the range was
0.80-0.95. The mean PM with our method for 29 patients
was 0.90±0.04 with a range of 0.71-0.92, which was higher
compared to the mean PM of the value less than 0.9 in other
studies. Themean CR was 0.84±0.06 and the range was 0.83-
0.96, while the mean CR was 0.72 in similar studies using
other algorithms [7, 15, 19].

Figure 2 shows the segmentation with high accuracy, in
which the DSC, CR, and PM were 0.941, 0.915, and 0.950,
respectively, showing good accordance between segmenta-
tion results using our current DL CNN network and ground
truth.

Figure 3 shows a less accurate segmentation result as
obtained by our current DL CNN model with values of
DSC, CR, and PM being 0.797, 0.731, and 0.937, respectively,
showing slight difference between segmentation results using
our current DL CNN network and ground truth.

4. Discussion

Based on the CNN technique, we achieved a supervised
segmentation method for NPC tumors in CE-MRI with high
accuracy of mean DSC being 0.89. The performance was
also robust with a low standard deviation of 0.05 for DSC
among the results of different images. For comparison with
the other studies, we calculated CR and PM.Themean values
of CR and PM achieved with our method were 0.84 and
0.90, respectively. Compared with similar studies in litera-
ture, results of CR and PM in our study are more superior,
indicating better accuracy in tumor segmentation with our
current CNN technique than with other models with highest
mean CR and PM of 0.72 and 0.90, respectively [7, 15, 19].
This may indicate that our method has indeed improved the
automatic segmentation accuracy.

Firstly, the improvement may lie in the application of
CNN to extract the image features automatically and objec-
tively. In our model, the low-level features were combined
into high-level features with semantic information through
convolutions (Figure 1). By iterations through the back pro-
pagation algorithm, we highlighted the characteristics asso-
ciated with the targeted area and gradually suppressed irrele-
vant features [12]. In this way, our model can extract the most
useful features and achieve better segmentation results.

Secondly, in our designed network architecture, we fused
the different feature maps at feature representation phase
and scores map reconstruction phase for the final recon-
struction. As shown in Figure 4(a), which was acquired in
the reconstruction phase, the tumor location and shape are
roughly visible; however, they are unclear.Through the fusion
of this feature map and the fine-feature map acquired in
feature representation phase, we may fix the problem of
information loss in the reconstruction process. As shown in
Figure 4(b), we finally had better segmentation through the
reconstruction from the fused feature maps.
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(a) (b) (c)

Figure 2: NPC tumor segmentation with high accuracy using the current deep learning method with convolutional neural network. (a) The
original image. (b) Ground truth (white line). (c) Segmentation from our deep learning method result (white line) with the dice similarity
coefficient = 0.941, corresponding ratio = 0.915, and percent match = 0.950.

(a) (b) (c)

Figure 3: NPC tumor segmentation with less accuracy using the current deep learning method with convolutional neural network. (a) The
original image. (b) Ground truth (white line). (c) Segmentation from our deep learning method result (white line) with the dice similarity
coefficient = 0.797, corresponding ratio = 0.731, and percent match = 0.937.

Fusion of feature
and fine feature

maps

(a) (b)

Figure 4: A featuremap fusion. (a) Scores map acquired in the reconstruction phase and (b) scoresmap reconstructed from the fused feature
maps, indicating that score map reconstruction using fused maps is better than that during reconstruction phase.
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Table 2: The segmentation performance of all cases.

Patients number

Volume of
current DL
method
(cm3)

Volume
obtained by
the two

readers (cm3)

Percent
match Corresponding ratio

Dice
similarity
coefficient

Recall
Jaccard
similarity
coefficient

1 7.8 8.0 0.84 0.74 0.83 0.81 0.70
2 5.2 6.2 0.90 0.76 0.82 0.75 0.70
3 5.1 6.4 0.89 0.72 0.80 0.72 0.66
4 18.5 18.4 0.88 0.83 0.89 0.89 0.79
5 7.0 6.5 0.86 0.82 0.89 0.92 0.80
6 11.9 10.6 0.85 0.82 0.89 0.94 0.81
7 11.9 11.9 0.83 0.74 0.83 0.82 0.71
8 11.0 10.2 0.85 0.82 0.89 0.92 0.80
9 5.9 6.7 0.90 0.78 0.84 0.79 0.73
10 14.8 17.1 0.86 0.71 0.80 0.75 0.66
11 4.4 4.7 0.96 0.91 0.93 0.91 0.87
12 17.3 17.9 0.94 0.89 0.92 0.90 0.85
13 4.5 4.3 0.88 0.84 0.90 0.92 0.82
14 46.7 45.0 0.93 0.91 0.95 0.97 0.90
15 5.8 5.7 0.88 0.82 0.88 0.89 0.79
16 8.8 9.2 0.90 0.83 0.88 0.87 0.79
17 5.7 6.8 0.92 0.79 0.84 0.78 0.73
18 10.7 11.2 0.94 0.89 0.92 0.90 0.85
19 10.6 10.9 0.95 0.91 0.94 0.93 0.88
20 8.6 8.9 0.93 0.88 0.91 0.90 0.84
21 13.3 13.9 0.93 0.87 0.91 0.89 0.83
22 13.7 13.6 0.95 0.92 0.95 0.95 0.90
23 6.3 6.5 0.90 0.83 0.88 0.87 0.79
24 16.2 16.5 0.95 0.92 0.94 0.94 0.89
25 18.2 17.7 0.94 0.92 0.95 0.96 0.91
26 11.4 11.1 0.91 0.87 0.92 0.93 0.85
27 10.8 11.0 0.88 0.80 0.87 0.86 0.76
28 17.1 17.9 0.95 0.90 0.93 0.91 0.86
29 12.0 12.2 0.94 0.90 0.93 0.92 0.87
Mean±Std - - 0.90±0.04 0.84±0.06 0.89±0.05 0.88 ±0.07 0.81 ±0.07

Table 3: Comparison of segmentation performance among our convolutional neural network model and other models. N.A.: not available.

Dice similarity coefficient Corresponding ratio Percent match
Study Algorithm Mean ± SD Range Mean ± SD Range Mean ± SD Range
Current study Convolutional neural network 0.89±0.05 0.80-0.95 0.84±0.06 0.71-0.92 0.90±0.04 0.83-0.96
Zhou at al. [7] Support vector machine N.A N.A 0.72±0.06 0.58∼0.85 0.79±0.07 0.65-0.91
Huang et al. [14] Hidden Markov random field N.A N.A 0.72 0.44-0.91 0.85 0.64-1.00
Wang et al. [15] Deep Convolutional Neural Networks N.A -0.80 N.A N.A N.A -0.90

There is space to further improve the accuracy and
effectiveness of our current model. As shown in Table 3, our
method resulted in less accurate DSC results of 0.80 in some
cases. For further improvement, we may include T2 weighted
images, since T2 weighted images are widely used in the
manual contouring of tumor regions. Therefore we would
expect to have better performance with both the DCE-MRI

with T2 weighted images. We applied the Z-score translation
in preprocessing to normalize the DCE-MRI [18]. However,
some information could be lost during this normalization.
Therefore, we may investigate an appropriate method of
normalization to avoid the loss of intrinsic image features.
Importantly, we may improve our network architecture, such
as the depth of our network, for the direct training of the 3D
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images and the incorporation of time domain information
from the dynamic scans. In future studies, it is expected to
further improve our method and the segmentation results
with these ideas.

5. Conclusion

A robust segmentation method for NPC tumor based on
deep learning convolutional neural network and CE-MRI has
been established. The tumors can be segmented successfully
in seconds with high accuracy. This automatic segmentation
method may be time-effective in tumor contouring for rou-
tine radiotherapy treatment planning. Future studiesmay aim
to improve the segmentation accuracy and efficiency with
more training data and optimized network structure, thus
helping clinicians improve the segmentation results in the
clinical practice of NPC.
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