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Abstract

Privacy concerns for rare disease data, institutional or IRB policies, access to local

computational or storage resources or download capabilities are among the reasons

that may preclude analyses that pool data to a single site. A growing number of multi-

site projects and consortia were formed to function in the federated environment to

conduct productive research under constraints of this kind. In this scenario, a quality

control tool that visualizes decentralized data in its entirety via global aggregation of

local computations is especially important, as it would allow the screening of samples

that cannot be jointly evaluated otherwise. To solve this issue, we present two algo-

rithms: decentralized data stochastic neighbor embedding, dSNE, and its differentially

private counterpart, DP-dSNE. We leverage publicly available datasets to simulta-

neously map data samples located at different sites according to their similarities.

Even though the data never leaves the individual sites, dSNE does not provide any

formal privacy guarantees. To overcome that, we rely on differential privacy: a formal

mathematical guarantee that protects individuals from being identified as contribu-

tors to a dataset. We implement DP-dSNE with AdaCliP, a method recently proposed

to add less noise to the gradients per iteration. We introduce metrics for measuring

the embedding quality and validate our algorithms on these metrics against their cen-

tralized counterpart on two toy datasets. Our validation on six multisite neuroimaging

datasets shows promising results for the quality control tasks of visualization and

outlier detection, highlighting the potential of our private, decentralized visualization

approach.
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1 | INTRODUCTION

Even though the availability of public data continues to increase, there

are still many “unsharable,” private datasets which arise multiple chal-

lenges for machine learning systems (Plis, Sarwate, Dylan,D. K. Saha, V. D. Calhoun, and S. M. Plis contributed equally to this study.
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et al., 2016). The importance of operating on decentralized sensitive

data and, as a result, of (virtually) pooling very large-scale neuroimag-

ing datasets is exemplified by the success of the ENIGMA project

(Thompson Paul, Stein Jason, Sarah, et al., 2014). The continuing

growth in the value of large and diverse neuroimaging datasets should

inevitably increase the demand for similar decentralized consortia.

Multiple large consortia, such as the Global Imaging Genetics in Ado-

lescents (GIGA) consortium (Gunter, Vivek, Chunshui, et al., 2019), are

already leveraging decentralized approaches. Several decentralized

systems are being developed to virtually pool and facilitate computa-

tion on distributed datasets, for example COINSTAC (Plis, Sarwate,

Dylan, et al., 2016) and others (Amadou, Yannick, Julia, et al., 2014;

Carter Kim et al., 2015; Carter Kim, Francis Richard, Carter, et al., ;

Shuang, Jiang Xiaoqian, Yuan, Samuel, & Lucila, 2013). For all of them,

quality control is essential.

Intuitive visualization of the complete virtual dataset that is physi-

cally spread across multiple locations is a much-needed tool for filtering

out participating sites with bad data, detecting incorrect processing, or

identifying mistakes in the input process. For example, consider a mag-

netic resonance image (MRI) data sample that consists of the entire

brain, containing on the order of 100,000 volumetric pixels (voxels)

(Scott, 2014). Outliers in smaller datasets at consortium sites make sta-

tistical analyses of the consortium data much more difficult. One solu-

tion is to develop methods for quality control of large-scale brain

imaging data. Since it is challenging to scan through each data sample,

an effective method of quality control is to simultaneously embed mul-

tiple samples onto a lower dimensional space for visualization. These

visualizations have been shown to be useful tools to assess and monitor

data quality, while revealing interesting relationships (Panta Sandeep,

Runtang, Jill, et al., 2016). Beyond data quality, we can also use these

approaches to visualize relationships among groups (e.g., diagnostic cat-

egories) or continuous measures (such as disease severity or cognitive

performance) (Plis, Devon, Ruslan, et al., 2014).

A common way of visualizing a dataset consisting of multiple high-

dimensional data points is to embed them into a 2- or 3-dimensional

space. Existing methods like principal component analysis (PCA)

(Hotelling, 1933) can be useful for revealing the linear structure of data.

However, the nonlinearity of biomedical data makes analysis with PCA

difficult, failing to preserve and convey the hidden structure within the

data. To resolve this issue, many other methods, including Sammon

mapping (Sammon Jr, 1969), curvilinear component analysis (Pierre &

Jeanny, 1997), stochastic neighbor embedding (Geoffrey & Sam, 2003),

isomap (Tenenbaum Joshua, Vin, & Langford John, 2000), maximum

variance unfolding (Weinberger & Saul, 2006), locally linear embedding

(Roweis Sam & Saul, 2000), and Laplacian Eigenmaps (Mikhail &

Partha, 2003) were developed to embed and visualize nonlinear

datasets. These methods perform well on artificial data, but can strug-

gle in real high-dimensional settings due to their inability to retain local

and global structure in a single map. Several methods have been pro-

posed to overcome these problems as well. To visualize underlying

structure and intrinsic transitions in high-dimensional biological data, an

approach that is highly scalable both in memory and runtime, called

potential of heat diffusion for affinity-based transition embedding

(PHATE), was recently introduced (Kevin, David, Zheng, et al., 2019).

Other notable methods include t-distributed stochastic neighbor

embedding (t-SNE) (Laurens & Geoffrey, 2008), viSNE (El-Ad, Kara,

Michelle, et al., 2013), and hierarchical stochastic neighbor embedding

(HSNE) (van Unen, Höllt, Pezzotti, et al., 2017). Lastly, to reduce dimen-

sions and overcome computational restrictions, Uniform Manifold

Approximation and Projection (UMAP) (Leland, John, Nathaniel, &

Lukas, 2018) was proposed and has proven to be effective in the field

of bioinformatics. However, all of these methods were built on the prin-

ciple that the datasets are locally accessible. If the data samples were

distributed across multiple sites, the sites would have to pool their data

to a single site for analysis.

In this paper, we propose decentralized stochastic neighbor

embedding (dSNE), an algorithm that embeds a high-dimensional,

decentralized dataset into a 2D map for subsequent visualization and

inspection. Our approach improves on our preliminary adopts the

method of embedding multiple modalities into the same Euclidean

space based on their co-occurrence statistics (Amir, Gal, Fernando, &

Naftali, 2007). Since we cannot physically pool all of the data to a single

local site, we use publicly available anonymized datasets as a common

reference and build the overall embedding around it. This approach is

most similar to the method of landmark points, previously used for

improving computational efficiency (Vin & Joshua, 2004; Vin &

Tenenbaum Joshua, 2003). Our approach, dSNE, significantly extends

the original landmark points approach, using t-SNE as the base of our

algorithm. Our method can be seen as a dynamic modification that can

embed data points into a common space after capturing the relation-

ship among samples distributed across different locations. It signifi-

cantly improves on our prior work (Saha, Calhoun, Panta, & Plis, 2017)

by using multiple iterations to improve the embedding. Even though

dSNE provides a way to visualize data in a decentralized manner, it

comes with no formal privacy guarantees. To remedy this, we also pro-

pose an (ϵ, δ)-differentially private version of dSNE (DP-dSNE). Differ-

ential privacy is a framework which quantifies the privacy risk to

individuals when functions of their data are released to untrusted

parties. DP-dSNE adds noise to the gradients of the private and shared

data per iteration, using a method called AdaCliP. We evaluate our DP-

dSNE algorithm using Rényi Differential Privacy (Ilya, 2017) and present

a privacy analysis using the moments accountant to keep track of the

privacy loss per iteration. To evaluate and compare the performance

with the centralized version in controlled settings, we demonstrate

both of our algorithms (dSNE and (ϵ, δ)-DP dSNE) on multiple datasets.

We also introduce a novel performance metric of overlap and round-

ness to quantify the quality of our embeddings. Lastly, we apply our

approaches to six different multisite neuroimaging datasets, showing

that our methods can capture information and perform quality control

of distributed datasets producing highly pragmatic visualizations.

2 | METHODS

In the centralized problem of data embedding, we are given the task

of producing a dataset of N samples Y¼ y1…,yN½ �, where yi �ℝm, from
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a dataset X¼ x1…,xN½ �, where xi �ℝn, such that m� n. For the conve-

nience of visualization, m is usually set to m = 2. The goal is for the

embedding Y to give a “faithful” embedding of the data X in the sense

that similar points in X will be mapped to close points in Y.

2.1 | Background: t-SNE

In t-SNE, the distances between the points in Y must be as close to

the distances between the corresponding points in X, where preserv-

ing the closeness of nearby points is weighted more heavily than far

points (Laurens & Geoffrey, 2008). In the first step, t-SNE converts

the high-dimensional Euclidean distances between datapoints into

conditional probabilities, called pairwise affinities, that represent simi-

larities between data points (see Algorithm 1). The algorithm takes a

scalar parameter called the perplexity ρ. To compute similarity of a

datapoint xj to datapoint xi, the algorithm first computes the weight of

xj given by a Gaussian kernel centered at xi with bandwidth (variance)

σi(ρ)
2, where it identifies the value of σi separately for each datapoint

by performing a binary search across a range of values until it can

match the user-specified perplexity. The similarity is a conditional

probability distribution pjji formed by renormalizing the N likelihoods

into a probability mass function:

pjji¼

0 j¼ i

exp � xi�xj
�� ��2=2σi ρð Þ2� �

P
k ≠ i

exp � xi�xkk k2=2σi ρð Þ2
� � j≠ i

8>>><>>>: : ð1Þ

These similarities can be gathered into an N � N matrix eP and the

affinity is the symmetrized matrix P¼ ePþeP >� �
= 2Nð Þ. This makes P a

matrix representing a joint distribution on pairs of data points.

For the low-dimensional representation Y, we compute pairwise

weights in a similar way, except that this time for the joint distribution

qij we use the Student's t distribution with one degree of freedom

(or a Cauchy distribution) instead of a Gaussian:

qij¼

0 j¼ i

1þ yi�yj
�� ��2� ��1

P
k ≠ l

1þ yk�ylk k2
� ��1 j≠ i

8>>>><>>>>: : ð2Þ

These can be gathered into a matrix Q representing a joint distri-

bution for the embedded points. Algorithm 2 outlines the full t-SNE

procedure. To embed the data points into a low-dimensional space, t-

SNE tries to minimize the mismatch between distribution P and Q in

higher and lower dimensional spaces. The algorithm performs gradient

descent on the Kullback–Leibler (KL) divergence (or relative entropy)

between the joint distribution P and the joint distribution Q:

J Yð Þ¼
X
i

X
j≠ i

pijln
pij
qij
: ð3Þ

The gradient of the Kullback–Leibler divergence between P and

the Student's t based joint probability distribution Q is expressed in

Equation (4),

∂J
∂yi
¼4

X
j

pij�qij
� �

yi�yj
� �

1þ yi�yj
�� ��2� ��1

: ð4Þ

Inspired by the overall satisfactory performance of t-SNE on a

range of tasks, we use it as the base of our decentralized algorithm.

2.2 | Proposed method: dSNE

In the decentralized setting, the privacy and sensitivity of datasets

often preclude the pooling of local data, making computation of dis-

tances among samples across different sites difficult. Without these

distances (see Equation (1)), we cannot obtain a common embedding.

Fortunately, in neuroimaging (and many other fields), there are now

multiple large public repositories of MRI data that we can leverage to

make this computation feasible (Dan, Huerta Michael, McAuliffe Mat-

thew, & Farber, 2012; Mary, 2015; Xavier, Adriana, Cameron, Mehta

Ashesh, & Milham, 2013).

In the decentralized setting we have L sites where each site ℓ has

(local) data Xℓ¼ xℓ1,x
ℓ
2,…x

ℓ
Nℓ

h i
consisting of Nℓ vectors xℓ in ℝn. In

Algorithm 1 PairwiseAffinities

Input: ρ (perplexity), X�ℝN�n

Output: P�ℝN�N

Equation (1) to compute pjji with perplexity ρ

Set pij = (pjji + pijj)/(2 N) for all i, j

Algorithm 2 tSNE

Input:

Data: X¼ x1,x2…xN½ �,xi �ℝn

Scaling parameter: ρ (perplexity)

Optimization parameters: T (number of iterations),

η (learning rate), α (momentum)

Output: Y¼ y1,y2,…,yNf g,yi �ℝm,m� n

{pij} = PairwiseAffinites(ρ, X)

Y/N 0,10�4I
� �

, I�ℝm�m initialize from Gaussian

for i = 1 to T do

Equation (2) to compute low-dimensional affini-

ties qij

Equation (4) to compute ∂J/∂yi(t � 1)

yi(t) = yi(t � 1) + η(∂J/∂yi) + α(t)(yi(t � 1) � yi(t � 2))

end for
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addition, we have a shared data set Xs ¼ xs1,x
s
2,…,xsNs

h i
. The goal is to

produce embeddings {Yℓ} and Ys, where Yℓ¼ yℓ1,y
ℓ
2,…yℓNℓ

h i
for each ℓ

and Ys ¼ ys1,y
s
2,…ysNs

h i
contain vectors in ℝm where m�n. Typically

we will consider m = 2 to produce 2D visualizations of the data set.

As in t-SNE, we want the distances close x points to remain close in

the embedding of y points. We assume all sites have access to the

shared data Xs and its embedding Ys and can modify Ys when they

update locally.

We implemented three algorithms: (1) Single-shot dSNE,

(2) Multi-shot dSNE, and (3) Differentially private multi-shot dSNE,

which we describe in the following subsections. Detailed procedure

and experimental results of Single-shot dSNE are provided in our prior

work (Saha et al., 2017), in C, and Figure 14.

2.3 | Multi-shot dSNE

For multi-shot dSNE, we pass messages iteratively between the local

sites and central site in rounds. At time t, the centralized site passes

the reference embedding Ys(t � 1) from the previous iteration to each

of the local sites. At this point each site ℓ has Xℓ, past values of

Yℓ(t � j) for j = 1, 2, …, t, the reference data set Xs, and the updated

embedding Ys(t � 1). Each local site then computes the gradient

update (Algorithm 3) using a “momentum” approach that combines

information from the past two iterations. The result are updates Yℓ(t)

and Ys,ℓ(t) for the local and shared data embeddings, respectively. The

sites send their new embeddings of the local data Ys,ℓ(t) to the central

site, which averages them to form Ŷ
s
and sends that back to the local

sites.

The local sites then update their local and shared embeddings and

compute the average of all embedding to help recenter. They send

this average to the coordinator, who averages across sites and sends

back a global mean that sites use to center their local and shared

embeddings to get Y(ℓ)(t) and Y(s)(t) for the next iteration. The

pseudocode and overall procedure for multi-shot dSNE are shown in

Algorithm 4. Note, at each iteration, the embedded vector Y for the

shared dataset will be the same at all of the local sites. This ensures

that the local values of different sites are influenced by the same and

common reference data at each iteration. [Correction added on

24 March 2022, after first online publication: Repeated text deleted.

Text appears at end of section 2.4.]

2.4 | Differentially private multi-shot dSNE

We begin by reiterating the setup of multi-shot dSNE. In dSNE, there

are n local sites (each with their own disjoint dataset) that would like

to collaborate to learn a global structure among the data samples.

However, the sensitivity of biomedical data prevent centralized ana-

lyses that pool all of the data to a single site. Even though the local

data samples never leave the sites in dSNE, since the embeddings of

the shared data are influenced by the local data points, there is room

for a potential privacy leak. To resolve this, we introduce DP-dSNE, a

differentially private dSNE algorithm that formally guarantees privacy.

We now define differential privacy (Cynthia, Frank, Kobbi, &

Adam, 2006) and the AdaCliP algorithm (Venkatadheeraj, Ananda, Yu

Felix, Sashank, & Sanjiv, 2019).

We say that two datasets D, D
0
are neighboring datasets if they

differ by one data entry. A randomized mechanism A :D!ℛ is said

to be (ϵ, δ)-differentially private if for all neighboring databases

D,D0 �D, and any measurable set S�ℛ, we have

P A Dð Þ�Sð Þ≤ eϵP A D0ð Þ�Sð Þþδ, ð5Þ

where P Bð Þ is the probability of the event B and the probability is

taken over the randomness in the mechanism A �ð Þ.
We use the shorthand notation (ϵ, δ)-DP for (ϵ, δ)-differentially

private. A standard method to preserve privacy of a function is to add

noise, where the variance of the noise is proportional to the sensitiv-

ity of the function. Mathematically, we define the ℓ2 global sensitivity

of a function f as

Δ2 fð Þ¼max
D�D0

f Dð Þ� f D0ð Þk k2: ð6Þ

Given that the ℓ2 sensitivity of a function f is Δ, one way to pre-

serve privacy is to add Gaussian noise (Cynthia & Aaron, 2014) of var-

iance Δ2σ2, such that A Dð Þ¼ f Dð ÞþN 0,Δ2σ2
� �

. Then, if we choose σ

to be Δ
ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log1:25

δ

q
, each iteration of the algorithm is (ϵ, δ)-DP

(Cynthia & Aaron, 2014; Martin, Andy, Ian, et al., 2016). However, in

practice, finding a priori bound on the size of the gradients (i.e., the

sensitivity of the gradients) is difficult, and often does not exist. In lit-

erature, one way to solve this issue is to bound the gradients by clip-

ping each gradient in ℓ2 norm for a clipping threshold C (Martin

et al., 2016). This clipping would ensure that the sensitivity of the gra-

dients change by at most C. Although this is a plausible method, clip-

ping all of the gradients to a fixed value of C can often add more noise

than needed, as the size of the gradients generally grow smaller during

training (Algorithms 5 and 6).

To add less noise per iteration, we adopt in using AdaCliP

(Venkatadheeraj et al., 2019), a recently proposed method to

Algorithm 3 LocalGradStep

Input:

Data embeddings: Yℓ(t � 1), Yℓ(t � 2) (local), Ys(t � 1),

Ys(t � 2) (shared), P�ℝ NℓþNsð Þ� NℓþNsð Þ

Optimization parameters: η, α

Output: Ŷ
ℓ
tð Þ (local), Ŷs

tð Þ (shared)
Equation (2) on [Yℓ(t), Ys(t)] to compute low-dimensional

affinities qij

Equation (4) to compute ∂J/∂yi(t � 1)

ŷi tð Þ¼ η ∂J=∂yi t�1ð Þð Þþα yi t�1ð Þ�yi t�2ð Þð
Group ŷi tð Þf g into Ŷ

ℓ
tð Þ (local) and Ŷ

s
tð Þ (shared)
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adaptively clip and add noise based on the size of the gradients. By

introducing AdaCliP into our multi-shot dSNE algorithm, we can

preserve the privacy of the individuals in the dataset. The modifica-

tion that we need in order to make dSNE (ϵ, δ)-DP is to replace

LocalGradStep in Algorithm 4 with DP-LocalGradStep, as shown in

Algorithm 7. There are two things to note about the DP algorithm:

(1) DP-LocalGradStep brings two extra parameters, m and s that we

use and update at every iteration and (2) even though we are com-

puting a global mean based on each local site's mean, each step is

still differentially private due to postprocessing invariance

(Cynthia & Aaron, 2014). In the next section, we provide a privacy

analysis using Rényi Differential Privacy and the moments accoun-

tant to keep track of the total privacy loss during training (Martin

et al., 2016).

Algorithm 4 multishotDSNE

Input:

Objective parameters: ρ (perplexity)

Optimization parameters: T, η, α

Shared Data: Xs¼ xs1,x
s
2…xsNs

h i
,xsi �ℝn

Local Data: Xℓ¼ xℓ1,x
ℓ
2…xℓNℓ

h i
, xℓi �ℝn , ℓ = 1, 2, …, L}

Output: {Yℓ: ℓ = 1, 2, …, L}, Ys

Sample Ys(0) i.i.d. from N 0,10�4Im
� �

▷Initialize from

Gaussian

Coordinator sends Xs, Ys(0) to all sites

for ℓ = 0 to L do ▷Initialize at sites

Pℓ = PairwiseAffinities(ρ, [Xp, Xs])

Sample Yℓ(0), Yℓ(�1) from N 0,10�4I
� �

, I�ℝm�m

end for

for t = 1 to T do

Coordinator sends Yℓ(t � 1) to all sites

for ℓ = 1 to L do

Ŷ
ℓ
tð Þ, Ŷs,ℓ

tð Þ¼ LocalGradStep

Yℓ t�1ð Þ,Yℓ t�2ð Þ,Ys t�1ð Þ,Ys t�2ð Þ,η,α� �
Site ℓ sends Ŷ

s,ℓ
to Cooordinator

end for

Ŷ
s ¼ 1

L Ŷ
s,ℓ

▷Average local shared embeddings

Coordinator sends Ŷ
s
to all sites

for p = 0 to P do ▷At local siteseYℓ¼Yℓ t�1ð Þþ Ŷ
ℓ

eYs ¼Ys t�1ð Þþ Ŷ
s

yℓ¼ 1
NℓþNs

PNℓ

i¼1
eyℓi þPNs

i¼1
eysi� 	

▷Mean embedding

Send yℓ to Coordinator

end for

y¼ 1
L

PL
ℓ¼1

yℓ

Coordinator sends y to all sites

for ℓ = 1 to L do ▷Recenter the embeddings

Set yℓi tð Þ¼eyℓi �y for all i

Set ysi tð Þ¼eysi �y for all i

end for

end for

[Correction added on 24 March 2022, after first online

publication: Expression has been corrected in Algorithm 4]

Algorithm 5 noiseAddition

Input:

Gradients: gt (gradient at iteration t)

Noise Parameters: mt, bt, σ (noise scale)

Output: egt (privacy-preserving approximation of gt)

Compute transformed gradient: wt¼ gt�mt

bt

Clip transformed gradient: ŵt¼ wt

max 1, wtk k2ð Þ
Add noise to gradient: ewt¼ ŵtþN 0,σ2I

� �
Rescale the gradient: egt ¼ btewtþmt

Algorithm 6 AdaCliP

Input:

Gradients: gt (gradient at iteration t)

Noise Parameters: mt, st, σ (noise scale)

Parameters: h1, h2, β1, β2

Output: egt (gradient at iteration t), mt+1, st+1 (updated noise

parameters)

for i = 0 to n do

bti ¼
ffiffiffiffi
sti

q
�

ffiffiffiffiffiffiffiffiffiffiPn
i¼1

sti

s
end for

Noise addition to gradients: egt = noiseAddition(gt, mt,

bt, σ)

Update mt: mtþ1¼ β1m
tþ 1�β1ð Þegt

Compute variance vt: vt = min(max ( egt�mt
� �2

� bti
� �2

σ2,

h1), h2)

Update st: stþ1¼ β2 sti
� �2þ 1�β2ð Þvt

Algorithm 7 DP-LocalGradStep

Input:

Data embeddings: Yℓ(t � 1), Yℓ(t � 2) (local), Ys(t � 1),

Ys(t � 2) (shared), P�ℝ NℓþNsð Þ� NℓþNsð Þ

Optimization parameters: η, α

Output: Ŷ
ℓ
tð Þ (local), Ŷs

tð Þ (shared)
Equation (2) on [Yℓ(t), Ys(t)] to compute low-dimensional

affinities qij

Equation (4) to compute gt�1i = ∂J/∂yi(t�1)egt�1, mt, st = AdaCliP(gt�1, mt�1, st�1)

ŷi tð Þ¼ η gt�1i þα yi t�1ð Þ�yi t�2ð Þð�
Group ŷi tð Þf g into Ŷ

ℓ
tð Þ (local) and Ŷ

s
tð Þ (shared)
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2.5 | Privacy analysis of differentially private multi-
shot dSNE

In this section, we analyze the privacy loss of our differentially private

multi-shot dSNE algorithm using Rényi Differential Privacy (RDP)

(Ilya, 2017). In order to define Rényi Differential Privacy, we first need

to define the Rényi divergence. Let P and Q be two probability distri-

butions over a set ℛ. Then, the Rényi divergence of order α for α>1

is defined as

Dα P
���Q� �

¼ 1
α�1

logQ
P xð Þ
Q xð Þ


 �α
: ð7Þ

Rényi Differential Privacy uses the Rényi divergence on the pri-

vacy loss random variable (i.e., the ratio between the distributions

over the neighboring datasets) to naturally “relax” the privacy parame-

ters. Formally, a randomized mechanism A :D!ℛ is said to be (α,

γ)-Rényi differentially private if for all D,D0 �D with D�D
0
and any

measurable set S�ℛ the following holds:

Dα PD
���PD0� �

≤ γ, ð8Þ

where PD(y) is the distribution of the mechanism A Dð Þ. We can keep

track of the privacy loss of the DP-dSNE algorithm in terms of RDP and

then convert the result into an (ϵ, δ)-DP bound. Recall that in our

decentralized setup, each local site has data that is disjoint from the

other local sites. Thus, it is sufficient to analyze the privacy loss random

variable of a single site. We start our analysis of the DP-dSNE algorithm

by reviewing some definitions and connections between RDP and DP.

If A is a randomized algorithm satisfying (α, γ)-RDP, then it also

satisfies (γþ log1δ
α�1 ,δ)-DP for any 0< δ<1. Further, if A has ℓ2 sensitivity

Δ, then the Gaussian mechanism A Dð ÞþZ, where Z�N 0,σ2
� �

, sat-

isfies (α, αΔ2σ2)-RDP (Ilya, 2017). We now need to derive the sensitivity

of our gradients from using AdaCliP to translate our RDP bound to an

(ϵ, δ)-DP bound. [Correction added on 24 March 2022, after first

online publication: Z eN 0,σ2
� �

has been corrected to Z�N 0,σ2
� �

]

Let gt ¼ gt1,g
t
2,…,gtn

� 

and g0t¼ g0t1 ,g

0t
2 ,…,g

0t
n

� 

be gradient vectors of

two neighboring datasets at iteration t. Using AdaCliP, we have two

additional vectors for each dataset: mt¼ mt
1,m

t
2,…,mt

n

� 

and

bt¼ bt1,b
t
2,…,btn

� 

. By the definition of the sensitivity of the gradients

of neighboring databases, we have

1¼max
D�D0

wt�w
0t

�� ��
∞, ð9Þ

¼max
D�D0

gt�mt

bt
�g

0t�mt

bt

���� ����
∞
, ð10Þ

¼max
D�D0

gt�g
0t

bt

���� ����
∞
, ð11Þ

bmax¼max
D�D0

gt�g
0t

�� ��
∞, ð12Þ

where xk k∞¼maxi j xi j (i.e., the ℓ∞ norm a vector x with i entries) and

bmax¼ bt
�� ��

∞. Since the transformed gradient wt is clipped at norm

1, its sensitivity is also 1. Following this analysis and from the gradient

transformation of AdaCliP, we obtain that the sensitivity of the gradi-

ent gt is bmax.

By using the conversion definitions stated previously, if J denotes

the number of iterations, the DP-dSNE algorithm satisfies

( αJ2σ2þ
log1δ
α�1 ,δ)-DP, where σ2 is the variance of the noise, 0 < δ<1, and

α is

α¼1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

bmaxJ
σ2log

1
δ

s
: ð13Þ

Note that in the DP conversion, ϵ is directly proportional to α and

J, which indicate that as the number of iterations increase, the overall ϵ

will also increase, guaranteeing less privacy. This is an inherent trade-

off that arises across all differentially private algorithms, and hence it is

important to keep track of how ϵ changes throughout the course of our

algorithm by using Equation (13). At each iteration, we keep track of

bmax in order to compute our (ϵ, δ)-DP guarantee. Note that in our pri-

vacy analysis, we defined our (ϵ, δ)-DP guarantee in terms of RDP, but

we can also easily derive these values using the moments accountant

(Martin et al., 2016), similar to that of the analysis done by Imtiaz

et al. (Imtiaz, Mohammadi, Silva, et al., 2019), since RDP and the

moments accountant are equivalent notions. In the following sections,

we make comparisons between RDP and the moments accountant by

demonstrating how ϵ changes for a fixed value of δ for DP-dSNE.

2.6 | Comparison metrics

To measure the performance and quality of clustering, several metrics

have been proposed, including the Davies-Bouldin (DB) index

(Davies & Bouldin, 1979), Dunn index (Dunn, 1974), quality index

(Halkidi, Vazirgiannis, Batistakis, & Zighed Djamel, 2000), Bayesian

information criterion (BIC) index (Raftery, 1986), and the silhouette

coefficient (Rousseeuw, 1987). Other metrics such as F-measure,

entropy, purity, and rand index can also be used as an external com-

parison metric.

In the distributed setting, it is important to make sure that the

embedding of a data point gets clustered into its correct

corresponding class. To test the cluster qualities of our decentralized

algorithms, we use two a priori labeled datasets: (1) the MNIST

dataset and (2) the COIL-20 dataset, whose clusters are known and

described (Laurens & Geoffrey, 2008). We consider each label as the

known number of clusters as our ground truth. We introduce three

new validation techniques: (1) K-means ratio, (2) Intersection area,

and (3) Roundness.

1. The k-means criterion (or ratio) is the ratio of intra and inter-

cluster distances between clusters. Mathematically, this is

defined as
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α¼

Pn
d¼0

P
SϵXd

μd�xds
�� ��

2P
i, jð Þ, i> jð Þ, i≠ jð Þ

μi�μj
�� ��

2

, ð14Þ

where n is the number of clusters. We can interpret this ratio as the

following: the numerator indicates intra cluster distance, in which a

smaller value shows that each distinct cluster is tightly bounded. A

larger denominator value implies that the inter clusters are well sepa-

rated from each other. Thus, if the α value is generally small, we can

conclude that the algorithm performs well.

2. The intersection area can be seen as computing the overlap

between two clusters. We first remove the outliers (see Figure 1)

(Tony, Ming, & Zhi-Hua, 2012) to compute the convex hull for

each group and use them to measure the overlap. For the inter-

section area, we find the area of each polytope(cluster) and find

the total area by summing them. After that we compute the over-

lap area between each cluster. In specific, this is done by summing

all of the polytope areas minus the area of the union of all the

polytopes, normalized by the area of the union. The lower value of

intersection area determines the formation of good cluster with

less overlap.

3. Roundness is the ratio of the area of each polytope to the area of

the circumscribed circle. To compute the roundness of each clus-

ter, we first represent each cluster as a cloud with a convex hull.

To remove the effect of the differences in perimeters, we normal-

ize the perimeters. This normalization effectively approximates the

process of making the perimeters equal. Finally, we compute the

area of the polytope and use the area as our measure of round-

ness. The higher roundness metric value determines the good qual-

ity of the cluster. More precisely, it quantifies how the samples are

distributed around the mean of a given cluster.

3 | DATA

We base our experiments on eight datasets:

1. MNIST dataset1 (Yann & Corinna, 2010).

2. COIL-20 dataset2 (Nene, Nayar, & Hiroshi, 1996).

3. Autism Brain Imaging Data Exchange (ABIDE) fMRI dataset3

(Di Martino, Yan, Li, et al., 2014).

4. Pediatric Imaging Neurocognition Genetics (PING) dataset4

(Jernigan, Brown, Hagler, et al., 2016).

5. Structural Magnetic Resonance Imaging (sMRI) dataset.

6. Function Biomedical Informatics Research Network (fBIRN) struc-

tural MRI dataset (Yuhui, Zening, Sui, et al., 2019).

7. Bipolar and Schizophrenia Network for Intermediate Phenotypes

(BSNIP) structural MRI dataset (Du Yuhui et al., 2019).

8. Mind Research Network (MRN) fMRI dataset.

MNIST dataset was taken from a Kaggle competition which had

28,000, 28 � 28 gray-scale images of all 10 handwritten digits. For

our experiments, we randomly chose 5,000 different samples from

the dataset (while preserving class balance). For centralized t-SNE and

dSNE, we preprocessed the dataset by reducing the dimensions of the

data samples from 784 to 50 using Principal Component Analy-

sis (PCA).

COIL-20 dataset contains images of 32 � 32 = 1,024 pixels of

20 different objects. Each object was placed on a motorized turntable

against a black background. Between 0	 and 360	, a picture was taken

in 5	 intervals. Each object was viewed from 72 equally spaced orien-

tations, yielding a total of 1,440 images.

ABIDE fMRI dataset contains data samples of 1,153 subjects

accessible through the COINS data exchange.5 The ABIDE dataset

was preprocessed down to multiple spatial and temporal quality con-

trol (QC) measures.6 Since this dataset inherently had lower

F IGURE 1 A t-SNE output on centralized MNIST and COIL-20 dataset; and outlier-free convex hull boundaries
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dimensions, we ran t-SNE and dSNE directly on the dataset without a

dimensionality reduction step.

PING is a multisite study containing neural developmental histo-

ries, information about developing mental and emotional functions,

multimodal brain imaging data, and genotypes for well over 1,000 chil-

dren and adolescents between the ages of 3–20. We take 632 sub-

ject's fMRI data from this dataset for our experiment. The data is

preprocessed with SPM5 (John & Friston Karl, 2005) software. It is

slice time corrected and warped to the standard MNI brain template

from SPM5. This image is used for extracting the data for the experi-

ment. For the first time point, the voxel values at each location from

all the brain slices are first added across slices along the Z axis,

resulting in a single row vector of size 3,339. This was done to reduce

the computational load on the system, and hence improve run time of

the proposed algorithm. These voxel values from each image scan

served as inputs to the t-SNE and dSNE algorithms.

sMRI scans (3D T1-weighted pulse sequences) are prepro-

cessed through the voxel based morphometry (VBM) pipeline using

the SPM5 software. VBM is a technique using MRI that facilitates

examination of focal differences in brain anatomy, using the statisti-

cal approach of parametric mapping. Gray matter maps are

extracted from segmenting the T1 weighted nifti images. The

unmodulated gray matter concentration images from the VBM pipe-

line are registered to the SPM template. In some cases, the non-

modulated maps are preferred compared to the modulated maps

according to existing literature (Meda et al., 2008). The data from

these unmodulated gray matter normalized images is used for this

experiment. To reduce the computational load on the system, and

hence improve run time of the proposed algorithm, for each scan,

the voxel values at each location from all the brain slices are first

added across slices, resulting in a matrix size of 91 � 109. All of the

voxel values from each image scan are converted into a single row

vector of size 9,919 for each data point and passed as inputs to the

t-SNE and dSNE algorithms.

fBIRN and BSNIP datasets used in this study were collected from

seven and six imaging sites, respectively. Each subject was selected

based on head motion (≤3	 and ≤3 mm) and functional data providing

nearly full brain normalization (Fu, Caprihan, Chen, et al., 2019). These

criteria yielded a total of 311 subjects (160 schizophrenia

(SZ) patients and 151 healthy control (HC)) for the fBIRN dataset and

419 subjects (181 SZ and 238 HC) for the BSNIP dataset. In this

study, the Neuromark pipeline (Du Yuhui et al., 2019) was adopted to

extract reliable intrinsic connectivity networks (ICNs) that were repli-

cated across independent datasets.

MRN fMRI is a multiscanner, and multistudy dataset where the

harmonized imaging protocol was used during the acquisition. This

dataset consists of 3,910 subjects of echo planar imaging data by fol-

lowing different protocols across multiple sites and studies. For

preprocessing, the statistical parametric mapping (SPM5) toolbox was

used for slice time correction, motion correction, and spatial normali-

zation. For each of these images, six quality control (QC) metrics are

computed from this data and are given as inputs to t-SNE algorithm.

As the QC matrices values were low-dimensional, we directly run t-

SNE and dSNE without reducing the dimensions.

4 | EXPERIMENTAL SETUP

In this section, we discuss the experiments used to compare centralized

t-SNE to dSNE and DP-dSNE. The experiment with the fMRI dataset

illustrates how we can use dSNE for outlier detection and quality control.

We use the terms “reference” and “shared” data interchangeably

throughout the setup. We organize this section into two parts: (1) experi-

ments on t-SNE and dSNE and (2) experiments on t-SNE and DP-dSNE.

4.1 | Experiments with dSNE

4.1.1 | MNIST data

The objective of this experiment is to investigate the adaptability of our

algorithm when there is an imbalance in the number of data samples

between the local site and central node. This imitates a plausible phe-

nomenon, where the centralized site accumulates and stores more data

than the local sites (and perhaps, vice versa). In this experiment, each

local site holds samples according only one digit (label), while the refer-

ence dataset contains all of the digits (0–9). We consider two cases:

(1) each site contains 400 samples while each digit in the reference

consists of 100 samples and (2) the inverse case, in which the local sites

have only 100 samples, while the reference has 400 samples.

4.1.2 | COIL-20 data

For the COIL-20 dataset, we have two different experiments:

1. Our first experiment is very similar to the experiment of MNIST.

Here, we apply the same strategy in which the centralized node

holds more data than the local sites. In this experiment, each local

site contains only one type of object while the reference dataset

contains all of the objects (1–20). We consider two cases: (1) each

site contains 52 samples of its corresponding object while each

object in the reference dataset consists of 20 samples (2) and the

inverse case, when each site holds 20 samples, while the reference

objects are represented by 52 samples.

2. Here, we investigate the scenario in which some objects are miss-

ing from the shared dataset. Each local site out of 20 contains a

single object. We run 10 experiments with different random seeds,

where in each run, the reference dataset is missing objects from

local sites 16–20. For each of these experiments, we have two

conditions: (1) the reference dataset is small (20 samples for each

object) while the sites are large (52 samples per site) and (2) the

reference dataset is large (52 samples per object) and the dataset

of the sites are small (only 20 samples).

4.1.3 | ABIDE fMRI data

To simulate a consortium of multiple sites, we randomly partition the

ABIDE dataset into 10 local and one reference dataset. We run three

2296 SAHA ET AL.



different dSNE experiments, each corresponding to one random split.

We use this dataset to also demonstrate how we can perform quality

control of data samples using dSNE. Lastly, we collect all of the data

into one local site to simulate a centralized visualization using t-SNE

to compare to our dSNE algorithm.

4.1.4 | sMRI data

The sMRI dataset consists of subjects with four different age groups:

below 11, 11 to 17, 30 to 34, and above 64. We run a total of three

experiments using this dataset:

1. We use each age group as a unique local site (four sites in total)

and form reference samples by taking 100 samples from each

local site.

2. For this experiment, we keep the local sites the same as the previ-

ous setting, but create reference data by taking 100 samples from

only the first site.

3. In this case, we randomly take 50 samples from site 2 and place

them in site 1 and take 100 samples from site 4 and distribute

them equally between sites 2 and 3. This analyzes the effect in

which each local site has data samples from the same class.

4.1.5 | PING data

We collect our PING dataset from five different data sources to run

four different experiments:

1. For the first experiment, we use each data source (total of five) as

a local site and form our reference samples by taking small samples

from each site.

2. The second experiment also uses five local sites, but we form the

reference dataset by taking 100 samples from only the sec-

ond site.

3. Similar to Experiment 3 of the sMRI dataset, we randomly take

30 samples from site 2 to place in site 1, take 20 samples from site

3 to place in site 2, take 10 samples from site 2 to place in site

3, and take 10 samples from site 1 to place in site 4. The reference

samples are formed by taking small samples from each local site.

4. For this experiment, we keep sites 1, 3, and 4 unchanged from the

first experiment, but form reference samples by taking all of the

samples from sites 2 and 5. This yields a total of 3 local sites and

one reference sample, consisting of data from sites 2 and 5.

4.1.6 | fBIRN and BSNIP data

For the dSNE experiment, as we collected the fBIRN data from seven

different sites, we considered each of them as a local site. The BSNIP

dataset (collected from six imaging sites) served as our reference

dataset. For t-SNE, we treated each dataset as its own and ran t-SNE

separately. We also ran t-SNE on combined datasets (fBIRN + BSNIP)

for visual comparisons with dSNE.

4.1.7 | MRN fMRI data

We collected MRN data from three different sites (MRN, Avanto, and

Boulder). For the dSNE experiment, we use each data site as its own

unique local site (total of three local sites). However, we randomly

picked 200 samples from site 2 and placed them in site 1. Sites 2 and

3 had its own corresponding data from Avanto and Boulder, respec-

tively. We formed the reference dataset by picking 1,383 samples

from site 1 and 622 samples from site 2. For comparison, we pooled

data from all three sites and performed a centralized t-SNE analysis.

We ran another experiment where the shared samples only contains

the bad scans. The procedure and experimental results are pro-

vided in B.

4.2 | Experiments with DP-dSNE

For the DP-dSNE experiment, we used the MNIST and PING

datasets to demonstrate the robustness of dSNE even in formal pri-

vate settings. For the MNIST dataset, we manually created three

local sites and one coordinator node to participate in the computa-

tion. Each local site holds two classes (digit) from the dataset and the

coordinator node contains all classes (four in total). For the PING

dataset, we used the same setup as stated in Experiment 1 of sec-

tion 4.1.5. We compare our results to centralized t-SNE and dSNE

and show that our algorithm still provides good utility. We hypothe-

size that our DP-dSNE algorithm will generalize well to other

neuroimaging data.

5 | RESULTS

We organize this section into three parts: (1) comparison between t-

SNE and dSNE, (2) comparison between t-SNE and dSNE on biomedi-

cal data, and (3) comparison between t-SNE and DP-dSNE.

5.1 | Comparison between t-SNE and dSNE

5.1.1 | MNIST data

Figure 2 represents the results of MNIST dataset. In Figure 2, the

plots in each row correspond to the best and worst performing runs,

respectively. The first column layout is colored by the digits, rep-

resenting different clusters. The second column has layouts colored

corresponding to sites. The box plots on the left show performance

metrics computed by the three proposed metrics. t-SNE was com-

puted on pooled, centralized data and SMALL and LARGE represent

smaller and larger sizes of the reference dataset in dSNE runs. The
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comparison metrics show that performance is generally better when

the shared portion of the data contains a large amount of data. How-

ever, the cluster roundness degrades with the size of the sample in

the shared data. Thus, we observe this tradeoff between the round-

ness of the cluster and general performance. Overall, however, we

observe that the dSNE clusters are less “round” compared to central-

ized t-SNE. Some additional results with different experimental set-

tings for the MNIST dataset are provided in our prior work (Saha

et al., 2017).

5.1.2 | COIL-20 data

Figure 3 depicts the results of Experiment 1 on the COIL-20 dataset.

Similar to that of Figure 2, the rows of the plots correspond to best

and worst dSNE runs. The first column has plots colored by each

object, whereas the second column has clusters colored by sites. In

the boxplots, t-SNE was computed on pooled data and SMALL and

LARGE represent smaller and larger sizes of the reference datasets,

respectively. The comparison metrics show similar results as the

MNIST experiments. For large amounts of shared data, the compari-

son metric shows better performance than in the case of smaller sam-

ples in the reference dataset.

Figure 4 depicts the results of Experiment 2 of the COIL-20

dataset. The comparison metrics show that we always obtain better

results when the reference sample size is larger. For smaller reference

samples, we observe highly overlapped clusters for which it is hard to

distinguish the clusters for different objects. From this experiment,

we observe that it does not affect the performances when the refer-

ence samples does not contain all type of objects, but the local

sites do.

5.2 | Comparison of t-SNE and dSNE on
biomedical data

We investigate the performance of multi-shot dSNE in comparison

with the embedding produced by t-SNE on the pooled data using the

QC metrics of the ABIDE fMRI, sMRI, PING, fBIRN, BSNIP and fMRI

datasets.

F IGURE 2 MNIST Experiment: Reference data contains samples of all of the MNIST digits, but is either a small or large amount. In the
boxplots, tSNE was computed on pooled data and SMALL and LARGE represent smaller and larger reference datasets, respectively. Each row of
the plots correspond to the best and worst performing runs. For each experiment, we ran the simulation 10 times with different random seeds.
From the 10 experimental results, we picked the best and worst results, labeled as “best” and “worst” run. The left plots correspond to clusters
labeled by digits, whereas the right plots correspond to clusters labeled by sites
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5.2.1 | ABIDE fMRI data

The layout of dSNE from the ABIDE dataset is shown in Figure 5. In

every experiment, a total of 10 local and one remote sites are

participating in the computation. The result from a centralized t-SNE

run shows 10 different clusters. For each of the three random seed

experiments of our decentralized simulation, we obtain 10 different

clusters as well. In the layout, the samples that belong to the same site

F IGURE 3 COIL-20 Experiment 1: reference data contains samples of all COIL-20 objects but is either in small or large amounts. In the
boxplots, tSNE was computed on pooled data and SMALL and LARGE represent smaller and larger reference datasets, respectively. Each row of
the plots correspond to the best and worst performing runs. The left plots correspond to clusters labeled by objects, whereas the right plots
correspond to clusters labeled by sites. The COIL-20 dataset consist of 20 different objects which is shown in the figure. In the layout, each point
represents an object from these 20 objects

F IGURE 4 COIL-20 Experiment 2: the reference dataset is missing one unique COIL-20 object that is present at one of the local sites. In the
boxplots, tSNE was computed on pooled data and SMALL and LARGE represent smaller and larger reference datasets, respectively. Each row of
the plots correspond to the best and worst performing runs. The left plots correspond to clusters labeled by objects, whereas the right plots
correspond to clusters labeled by sites
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are marked the same color. In Experiment 1, samples from site 1 and

4 are homogeneous. That is why they are grouped together in the

final embedding. In each of the experiments, we observe good separa-

tion among the clusters and consistent grouping of homogeneous

samples, which shows that dSNE produces stable embedding. The

experimental results show that when homogeneous samples are dis-

tributed in different sites, dSNE can embed and group them together

without the direct communication between the sites.

5.2.2 | sMRI data

Figure 6 depicts embeddings produced by dSNE on sMRI data in our

three experiments specified in section 4.1.4. In Experiment 2, we

obtain poor results, where all clusters are overlapped. There are two

possible reasons that may cause this type of result. (1) An unre-

presentative reference dataset predictably leads to such a layout.

(2) In both t-SNE and dSNE, the simulation begins with a random ini-

tialization of low-dimensional Y values. If the initialization is poor (gra-

dient descent may get stuck in a local minimum), the global minimum

can sometimes not be obtained. Thus, in this case, we may not get

good results. However, in Experiments 1 and 3, results closely resem-

ble those obtained by tSNE. Note that in all successful experiments

scans of children younger than 11 formed a distinct separate cluster.

Meanwhile the other age groups, although connected together in a

single contiguous cluster, are ordered according to the age. Although

the categories are discrete, it may be worth further investigation to

inspect whether the age transition is smooth. This is an example of

exploratory data analysis, where the structure of the resulting embed-

ding may reveal some inherent regularities in a dataset. The age

groups may not be as interesting, but serve as a clear demonstration

that it is possible to use dSNE for discovery of data properties not

already known to the researcher, similar to (Plis, Devon, Ruslan,

et al., 2014). The dSNE can be used as visual and thus quick, intuitive

and interpretable quality assurance, outlier detection, assessment of

compatibility of datasets, and even assessment of site effects.

5.2.3 | PING data

Figure 7 depicts the experimental results of the PING dataset. In this

plot, each point is colored by its respective site. For Experiments 1, 2,

and 3, we used five different sites and the reference data was formed

by taking samples from each of the sites. In Experiment 4, we used

three different sites and formed the reference samples by combining

the data from two different sources and marked them by the same

color. Among the 632 subjects with age group 3–20, we get four

major clusters. Like our previous experiments, here, we observe that

the homogeneous samples from the different sites are grouped

together. We also find that the number of clusters in the pooled sce-

nario of t-SNE is equivalent to the number of clusters in dSNE on

decentralized data.

F IGURE 5 Experiment for the QC metrics of the ABIDE dataset. (a) the tSNE layout of pooled data; (b–d) are the dSNE layouts for the three
different experiments. In each dSNE experiment, 10 local and a coordinator sites participate in the computation. Similar to tSNE, in the
decentralized setup, we get 10 clusters, where each site is marked by unique color
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5.2.4 | fBIRN and BSNIP data

Figure 8 depicts the results of the fBIRN and BSNIP experiments. In

the first column, we present the t-SNE layout, where the top and bot-

tom plots correspond to fBIRN and BSNIP, respectively. We obtain

relatively well separated groups (HC and SZ) for fBIRN but not for

BSNIP. In the second column, we present the t-SNE layout of com-

bined datasets (fBIRN and BSNIP), where the top and bottom figures

are colored by groups and sites, respectively. We ran t-SNE on the

combined datasets, but for the plots, we only show fBIRN subjects.

This is because our objective is to see how subjects from the same

group of the fBIRN dataset from different sites embed together in

lower dimensional space. In the third column, we present the dSNE

layout of the combined datasets, where the top and bottom figures

are colored by groups and sites, respectively. Again, we only plotted

fBIRN after running dSNE on the combined datasets. From the layout

of both t-SNE and dSNE on the combined datasets, we notice that

subjects from the HC group are densely clustered in both plots. We

obtain less dense clusters for the SZ group, but get embeddings that

are similar in both t-SNE and dSNE plots. However, in the dSNE lay-

out, we get more overlaps between clusters compared to t-SNE. We

believe this is a reasonable tradeoff, as there is no direct communica-

tion between the private local sites.

It is also worth noting that during plotting, some points can

be embedded in a very small dense region. To picture this better,

we plotted the embeddings colored by sites. To our knowledge,

we did not see any evidence of bias in which data are grouped

by sites.

5.2.5 | MRN fMRI data

With the MRN data, we demonstrate how we can perform quality

control using t-SNE and dSNE visualizations. Figure 9 depicts the

experimental results of MRN fMRI data. In this figure, we observe

four distinct clusters for both t-SNE on pooled data and dSNE on

decentralized data. Having the same number of clusters in these cases

highlight the potential of performing decentralized visualization with

dSNE. Significantly, we can also observe the poor quality scan samples

marked by the red cluster in the layout. The size of the red clusters in

both plots are small and separated from the other samples. This shows

that these samples are “outliers” from the other samples in the

dataset. The main goal of our distributed low-dimensional embedding

technique is to measure the quality control of data. From this experi-

ment, we observe that our algorithm can successfully separate the

poor quality scans from the whole dataset.

F IGURE 6 Experiment for the QC metrics of the sMRI dataset. (a) t-SNE layout of pooled data. (b–d) are the dSNE layouts for the three
different experiments. In all of the experiments, there are four total classes corresponding to an age group each and each class is marked by a
unique color. The sMRI dataset consists of brain scans from different age group people and one of the brain scans is shown in the figure. These
scans are preprocessed before entering the dSNE algorithm. In the layout, each point represents a single individual

F IGURE 7 Experiment for QC metrics of the PING dataset. (a) The tSNE layout of the pooled data. In all of the columns, the top figure
presents the best performing run, while the lower one represents the worst performing run. (b–e) are the dSNE layouts for four different dSNE
experiments. In all of the dSNE experiments, we get four clusters, just like the t-SNE case. The PING dataset consist of brain imaging data of
children and adolescents and one of the scans is shown in the figure. These scan data are preprocessed first and give input to our algorithm. In
the layout, each point represents a single individual
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5.3 | Comparison between dSNE and DP-dSNE

Lastly, we make a comparison between t-SNE, dSNE, and DP-dSNE

on the MNIST and PING datasets. Figure 10 depicts the experimental

results of DP-dSNE after 1,000 iterations. In this figure, the left, mid-

dle, and right columns correspond to centralized t-SNE, dSNE and DP-

dSNE, respectively. For all experiments and in all plots, we see four

different clusters corresponding to each class. Each cluster is distinct

and well-separated among the other clusters. This proves to show the

potential of our DP-dSNE algorithm, in which we can provide high

utility while providing privacy of sensitive datasets in distributed

locations.

F IGURE 8 Experiment for the QC metrics of fBIRN and BSNIP datasets. (a) Top and bottom plots represent the t-SNE layout of fBIRN and
BSNIP, respectively. (b) Top and bottom plots represent t-SNE layouts of combined (fBIRN+BSNIP) datasets but colored by groups and sites,
respectively. (c) Top and bottom plots represent dSNE layouts of combined (fBIRN + BSNIP) datasets but colored by groups and sites,
respectively. The fBIRN and BSNIP are the brain imaging data of healthy control and Schizophrenia. From these data intrinsic connectivity
networks (ICNs) were extracted and used as input to our algorithm. One of the spatial maps of ICNs is shown in the figure

F IGURE 9 Experiment for the QC metrics of the MRN fMRI dataset. (a, b) The layouts colored by Scanners for t-SNE and dSNE, respectively.
In both experiments, we get four distinct clusters. Here, we can identify poor quality scan samples marked by the red cluster. In this experiment,
three local and one remote sites participated in the computation. In the layout, each point represents a brain scan of an individual
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Figure 11 shows a plot of ϵ for a fixed δ for the PING dataset as

we increase the number of iterations for convergence. We fix δ to be

a value δ� 1
N, where N denotes the number of samples used in the

computation. Again, since each site has disjoint data samples from the

other sites, we only observe bmax of the first site to compute ϵ. We

also compare the (ϵ, δ) pairs of the RDP analysis compared to the

strong composition (Cynthia, Rothblum Guy, & Salil, 2010). Both the

moments accountant and the RDP method are shown to give tighter,

stronger privacy bounds (Ilya, 2017; Martin et al., 2016), showing the

benefits of defining the guarantees in terms of RDP. After 1,000 itera-

tions, for the PING dataset, given δ = 10�5 and σ2 = 0.001, we obtain

(1.39, 10�5)-DP using the moments accountant and RDP method and

(5.85, 10�5)-DP using strong composition. These (ϵ, δ) pairs are similar

for the MNIST dataset.

6 | DISCUSSION

The current practice of data sharing and pooling face great challenges

as privacy concerns such as subject de-identification becomes more

apparent. Previous studies have showed that in some cases it is possi-

ble to identify specific subjects from a dataset consisting of patients

with rare diseases (Latanya, 2013; Latanya, Merce, & Michael, 2015).

The inability to combine datasets from different research groups and

data sites can be devastating, as individual sites rarely contain enough

data to answer the questions of foremost importance in biomedical

research. There have been many notable methods that address the

problem of data scarcity at individual sites in decentralized settings.

For example, Virtual Pooling and Analysis of Research Data (ViPAR)

(Carter Kim et al., 2015) is a framework proposed in which a secure

and trusted coordinator node (or server) synchronizes with the remote

F IGURE 10 Experiment for DP-dSNE of MNIST and PING dataset with σ2 = 0.001. (a–c) The t-SNE, dSNE, and DP-dSNE layout for the
MNIST dataset; (d–f) the t-SNE, dSNE, and DP-dSNE output for the PING dataset, respectively. We observe that DP-dSNE gives overall close
results to dSNE and centralized t-SNE. In the MNIST layout, each class is marked by a unique color and in PING layout, each site is marked by a
unique color

F IGURE 11 Plot of the number of iterations (J) versus the total ϵ
given δ = 10�5 and σ2 = 0.001. The RDP and moments accountant
gives smaller values of ϵ over the strong composition method
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sites involved in the computation. At each iteration, each remote site

sends data via an encrypted channel to the secure server. Data are

then stored in RAM on the ViPAR coordinator server, where the data

samples are analyzed and subsequently removed without ever being

permanently stored. However, this process still relies on sending data

outside of the original site. In addition, sending data via an encrypted

channel incurs severe bandwidth and traffic overhead that ultimately

increases computational load. Another promising approach is the

Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA)

consortium (Thompson Paul et al., 2014), which is a community

approach that requires the local sites to upload or email the summary

statistics of the data following implementation of shared analysis

scripts. ENIGMA uses both mega (if data pooling is possible) and

meta-analysis. In meta-analysis, each local site runs the same analysis

(e.g., regression) using the same measurements of the brain to aggre-

gate summary statistics from all of the sites. The ENIGMA model has

been widely embraced by the community. To run a meta-analysis, the

leading site has to coordinate with all of the local sites before starting

and after the completion of computation. Meanwhile, the ENIGMA

meta-analysis approach does not support multivariate or multi-shot

computation, that is, computing results in an iterative manner (Anand,

Sergey, Jessica, Mohammad, & Vince, 2014). This is key as close to

50% of the data in some work groups, based on internal polling, can-

not be centralized and thus much rely on meta-analysis. In addition, a

standard meta-analysis approach does not provide any formal guaran-

tees that it will prevent the re-identification of individuals. In many

machine learning problems, there are many cases in which statistics

exchange must be done in a multi-shot manner, as single-shot is not

enough to obtain an optimal solution (Saha et al., 2017).

Some recent research combining federated learning, differential

privacy and encrypted computing is described in a recent whitepaper

(Emma, 2019). The Intel corporation has started a collaboration with

the University of Pennsylvania and 19 other institutions to advance

real world medical research using federated learning. Their work

showed that a deep learning model trained by the traditional feder-

ated learning approach can reach up to 99% training accuracy (Sheller,

Anthony, Brandon, Jason, & Spyridon, 2018).

Several notable tools and algorithms were introduced to handle

federated computing efficiently. PySyft (OpenMined, 2019) is one of

OpenMined's Python code libraries that integrated cryptography and

distributed technology with PyTorch and Tensorflow. This was mainly

developed to train AI models in a secured way by ensuring patient pri-

vacy using distributed data. Our platform COINSTAC (Plis et al., 2016)

is another example of an open source platform addressing these tasks.

Researchers at Google Inc. introduced a model of federated learning

using distributed data of user's mobile devices (Brendan, Eider, Dan-

iel, & Agüera, 2016). In this model, a mobile device downloads and

trains the model by accessing the data of the user's device. It summa-

rizes the changes and sends them as an update to the cloud using

encrypted communication. Finally, the updates coming from all of the

devices are averaged in the cloud and improves the shared model.

Federated Averaging (FedAvg) is a computation technique intro-

duced in 2016 to fit a global model in the decentralized setting

(Brendan et al., 2016). In this model, the parameters are initialized on

the server and distributed to the local clients. After training the model

on each local dataset over multiple iterations, the trained parameters

are delivered to the server, which computes the average to send the

weights back to the local sites. We adopted a very similar approach to

Federated Averaging in dSNE (Saha et al., 2017) before proposing the

proxy data sharing technique (Yue et al., 2018). In dSNE, each local

site accesses a publicly available dataset and updates its model using

the combination of the shared data and its own local data. Similar to

the communication round in Zhao et al. (Yue et al., 2018), each site

runs the operations over a fixed number of iterations to reach the

optimal solution. We also applied the averaging technique in which

the local model is averaged after each iteration and transferred to by

the coordinator node.

None of these existing methods fully address how we can per-

form data assessment and quality control in a decentralized manner.

Data centers and institutions may not be willing or able to share their

data due to a need to preserve the privacy of their subjects, preclud-

ing analyses that pool the data to a single site. To address these

issues, we introduced a way to visualize federated datasets in a single

display: dSNE (Saha et al., 2017) and its differentially private counter-

part, DP-dSNE. In both algorithms, one coordinator node communi-

cates with all local sites during one computation period. Our multi-

shot approach follows from the averaging strategy similar to that of

(Anand et al., 2014). The performances of t-SNE and dSNE are pres-

ented in Figures 2–9. In the best case scenarios, dSNE almost repli-

cates t-SNE and shows great performance in terms of the comparison

metrics. We showed that the performance increases when the refer-

ence data contains a large amount of samples as shown in Figure 2 for

the MNIST dataset. We observe the similar type of behavior for the

COIL-20 dataset, shown in Figures 3 and 4. Our results in the influ-

ence of large reference samples reflect the results also shown in djICA

(Baker, Silva, Calhoun, Sarwate, & Plis, 2015).

In Figures 5–9, we were also able to observe significant results

for six different biomedical datasets (ABIDE, sMRI, PING, fBIRN,

BSNIP, and MRN). Data assessment and quality control plays a vital

role during data acquisition from multiple data sources, especially to

keep consistency or adjust parameters across various studies. We

designed 4.1.7 to check the effectiveness of our algorithm in

detecting outliers in multisite consortia. In Experiment 4.1.7, we col-

lected 705 samples from Boulder site, where 120 of the samples were

acquired from the second 3T dataset that was from a specific study

with a very different acquisition protocol. Most importantly, these

120 samples were examples of a poor quality scan. In Figure 9, we see

that these specific samples are clustered together (marked by red

color) as outliers in both t-SNE and dSNE plots. Our results are similar

to one of our earlier works, which used t-SNE to detect outliers of the

same MRN dataset (Panta Sandeep et al., 2016).

In Figures 10 and 11, we can see the performance of DP-dSNE

with a noise variance of σ2 = 0.001 on the MNIST and PING datasets.

From Figure 10, we see that DP-dSNE gives very similar results com-

pared to t-SNE and dSNE. We implemented DP-dSNE as dSNE does

not provide any formal privacy guarantees. Even though the data
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samples in each local site never leaves the sites, sending the gradient

values from each local site could potentially leak privacy. For datasets

that are sensitive and have stricter protocols, we propose that DP-

dSNE can provide utility similar to that of dSNE with strong privacy

guarantees.

Lastly, we also implemented single-shot dSNE, but the results

were not as promising as multi-shot dSNE (dSNE), as shown in 14. In

single-shot dSNE, there is no way for the local sites to communicate

iteratively. Additionally, a major problem of averaging arises when dif-

ferent sites are widely varied in terms of size and population (Plis

et al., 2016). This problem is analogous to the size of the reference

dataset in multi-shot dSNE. The reference dataset should provide var-

iability and be large in size, in which otherwise, there is a high chance

of not obtaining the optimal embedding. To obtain an optimal embed-

ding, the algorithm should be run multiple times with a different

initialization.

The Collaborative Informatics and Neuroimaging Suite Toolkit for

Anonymous Computation (COINSTAC7) (Harshvardhan, Ross, Javier,

et al., 2020; Plis et al., 2016), a dynamic and decentralized platform,

was introduced to address the difficulty of data sharing. This platform

gives scope to perform distributed computation by using the com-

monly used algorithm in privacy-preserving mode. Our dSNE algo-

rithm is currently deployed within the COINSTAC framework.8

Figure 12 shows the different computation phases of dSNE experi-

ment in COINSTAC using MNIST dataset. In this experiment, three

local and one remote site participate in the computation, where the

remote site contains 200 samples of each digit (0 to 9) and each local

site contains 20 samples of each digit. The results shown in Figure 12

demonstrate the robust capability of the COINSTAC framework.

Future work consists of running simulations using all of the datasets

used in this paper. This serves to demonstrate that COINSTAC

ensures the real time applicability of our algorithm in the biomedical

domain.

In our algorithm, the shared dataset can be provided by the mas-

ter node, to be distributed across the participants. A number of multi-

center neuroimaging datasets, currently are publicly available data and

can be utilized to enable dSNE. There are many options providing data

which can be of use for this including: OpenNEURO,9 Human

F IGURE 12 An run time demo of dSNE algorithm in coinstac simulator. (a–c) The computation phase of dSNE at the beginning, middle, and
at the end of the simulation
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Connectome Project,10 COINS,11 NITRC, various datasets available

through DataLad12 (Halchenko, Kyle, Benjamin, et al., 2021) or kaggle

competitions, and many more. We provide an extended list in the

Appendix A.

Throughout this paper, we empirically compared our algorithm

with t-SNE on different datasets. In terms of computational complex-

ity, dSNE also outperforms the t-SNE algorithm. In dSNE, recall that

one needs to compute the pairwise distance between all co-located

samples. This amounts to m reference samples and k local samples. In

this case, each site creates (m + k) � (m + k) matrices to compute the

pairwise affinities. If the data were pooled, this pairwise matrix would

necessarily be (m + sk) � (m + sk), for s sites. Note that this is signifi-

cantly larger in comparison with the parallel decentralized creation of

s (m + k) � (m + k) matrices. As our algorithm is an iterative approach,

and we do not consider any random subsets of samples in each itera-

tion, our algorithm does not allow stochastic gradient descent (SGD).

The computational and the memory complexity of dSNE are

O s mþkð Þ2
� �

. In dSNE, to obtain the optimal results, it may need to

run the same experiment several times. In dSNE, the simulation begins

based on the randomly initialized low-dimensional Y values. If the ini-

tialization is happens to be poor, it may face some local minimas dur-

ing the gradient descent computation. In that case, the global minima

may not be obtained and the simulation should be ran again to get the

optimal solution.

7 | CONCLUSIONS

In this paper, we have proposed two algorithms: decentralized stochas-

tic neighbor embedding (dSNE) and differentially private decentralized

stochastic neighbor embedding (DP-dSNE). Our dSNE algorithm

enables the embedding of high-dimensional private neuroimaging data

spread over multiple sites into low-dimensional space for visualization.

This visualization allows us to perform quality control of poor data sam-

ples and also helps learn a global interrelation structure among brain

volumes or feature vectors. Throughout the dSNE computation, no

data samples leave their respective local sites, and only minimal gradi-

ent information from the embedding space is transferred across the

sites. The clusters in the output embeddings are formed by samples

belonging to classes, possibly present across many locations. Of course,

the algorithm is neither explicitly aware nor requires the prior existence

of any classes. The main idea of this iterative method is to share only

the parts related to the publicly available reference dataset. As our

results show, this is enough to co-orient classes that are spread across

multiple locations. Extensive validation of eight datasets (two toy and

six multisite neuroimaging) demonstrate the utility of our approaches.

Our results showed that although multi-shot dSNE is robust to various

conditions and settings (e.g., changes in the number of sites, and rare or

missing data), and highest performance is achieved when the reference

dataset is dense. Even though the data samples never leave the local

sites in dSNE, there is still room for a potential privacy leak, as we are

sending the gradients over to a coordinator node. DP-dSNE tackles this

by introducing formal privacy guarantees within the gradients. Our

results show that both dSNE and DP-dSNE provide good utility for

decentralized visualization while preserving privacy of the local sam-

ples. The implementation and integration of the algorithm with an exis-

ting neuroimaging platform for federated neuroimaging COINSTAC

provides our methods as ready to use tools.

For future work, we believe that an alternative solution to our

decentralized setting can be to use an average of the gradients

weighted by the quality of the respective local t-SNE embeddings.

However, it is not immediately clear how one should approach this.

Using clustering measures on location specific data to weigh each

Y may bias the results toward good local groupings over poor ones.

Our novel metrics are also not quite able to convey each site's contri-

bution to give it proper weight. In most general settings, we do not

know a priori what type of data samples each site contains, as each

local site has private data. Given these difficulties, we leave the prob-

lem for future work, noting that it could be an exciting research direc-

tion. Finally, we conclude with that we believe dSNE is a valuable

quality control tool for virtual consortia when working with private

data in decentralized settings.
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ENDNOTES
1 https://www.kaggle.com/c/digit-recognizer
2 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
3 http://fcon_1000.projects.nitrc.org/indi/abide/
4 http://pingstudy.ucsd.edu/Data.php
5 https://coins.trendscenter.org/
6 The full list is available here: https://github.com/preprocessed-

connectomes-project/quality-assessment-protocol/tree/coordinator/

normative_data
7 https://coinstac.org/
8 The code is available at: https://github.com/trendscenter/coinstac-

dsne-multishot
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https://github.com/trendscenter/coinstac-dsne-multishot
https://github.com/trendscenter/coinstac-dsne-multishot


9 https://openneuro.org
10 http://www.humanconnectomeproject.org/
11 http://coins.trendscenter.org
12 http://www.datalad.org/
13 https://www.kaggle.com/c/mlsp-2014-mri/data
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APPENDIX A: PUBLIC SHARED DATA

OpenNEURO is one of the data sources to access the public data and

utilize it for our experiments. For the sMRI dataset, we have filtered

based on the MRI scans of human subjects (no of subjects ≥100) and

used the same type of preprocessing measurements that we have

used for our dataset. Here are some of the versions which can be

used for our experiments:

• https://openneuro.org/datasets/ds000243/versions/00001

• https://openneuro.org/datasets/ds003643/versions/1.0.4

• https://openneuro.org/datasets/ds003481/versions/1.0.3

• https://openneuro.org/datasets/ds003949/versions/1.0.0

• https://openneuro.org/datasets/ds000158/versions/1.0.0

• https://openneuro.org/datasets/ds003097/versions/1.2.1

• https://openneuro.org/datasets/ds002790/versions/2.0.0

For the fMRI dataset, we have filtered based on the resting state

data of human subjects(no of subjects ≥100) and used the same type

of preprocessing measurements that we have used for our dataset.

Here are some of the versions which can be used for our

experiments:
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• https://openneuro.org/datasets/ds000243/versions/00001

• https://openneuro.org/datasets/ds003346/versions/1.1.2

• https://openneuro.org/datasets/ds003481/versions/1.0.3

• https://openneuro.org/datasets/ds002843/versions/1.0.1

Some public MRI datasets for the healthy controls and

Schizophrenia patients are available in the Kaggle site.13 In the

repository, two modalities of MRI (functional and structural) are

available. From this resource, both functional networks connectiv-

ity values, and source based morphometry (SBM) features can be

utilized.

The resting state fMRI data of healthy controls can be accessed

from the Human Connectome Project repository.

APPENDIX B: MRN fMRI DATA

In this experiment, we check the scenario when the shared dataset

only contains poor-quality scans. We have run an experiment on the

MRN dataset to test this special case. In our experiment, there are a

total three local and a remote site participating in the computation.

We place 125 poor-quality fMRI samples to the remote site and each

local site contains 200 good fMRI scans. Additionally, we ran a t-SNE

experiment on the accumulated data for comparison. We represent

our t-SNE and dSNE plot in Figure 13. We observe that our algorithm

shows robust behavior even when all the shared samples are bad

scans. This suggests the main benefit of the shared data is to serve as

a common reference for the sites, rather than as a source of high qual-

ity data (Figure 14).

APPENDIX C: SINGLE-SHOT dSNE

For single shot dSNE (Algorithm 8), we first pass the reference data

from centralized site C to each local site.

Now each local site has data consisting of two portions: (1) its

local dataset, for which we need to preserve privacy, and (2) the

F IGURE 13 Experiment for outlier detection of the MRN fMRI dataset. In this experiment, the shared sample only contains the bad scans. In
both t-SNE and dSNE, we can successfully identify poor quality scans which is marked by the red color. In this experiment, three local and one
remote sites participated in the computation. In the layout, each point represents a brain scan of an individual

Algorithm 8 SingleshotDSNE

Input:

Objective parameters: ρ (perplexity)

Optimization parameters: T, η, α

Shared data: Xs¼ xs1,x
s
2…x

s
Ns

h i
,xsi �ℝn

Data at site p8p: Xp¼ xp1,x
p
2…xpNp

h i
,xpi �ℝn

Output: Y¼ y1,y2,…,yNf g,yi �ℝm,m� n,N¼P
p
NpþNs

Ys tSNE(Xs, ρ, T, η, α) ▷At the coordinator node

for p = 0 to P do

Y!p
s

Run tSNE on [Xp, Xs] ▷At local site p

At each iteration only update Yp ▷At local site p

end for

Y [] ▷At the coordinator

for p = 0 to P do ▷At the coordinator

Y p
p

Y [Y, Yp]

end for

Y [Y, Ys]
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shared reference dataset. Each local site runs the t-SNE algorithm on

this combined data (local and reference) and produces an embedding

into a low-dimensional space. However, while computing each itera-

tion of tSNE, a local site computes gradient based on combined data,

but it only updates the embedding vectors y for the local dataset. The

embedding for the shared data has been precomputed at the coordi-

nator node and shared with each local site. Similar to the landmark

points approach (Vin & Joshua, 2004), our method uses reference

points to tie together data from multiple sites. In practice, the samples

in the shared dataset are not controlled by the researchers using our

method, and it is hard to assess the usefulness of each sample in the

shared data in advance. In the end, each local site obtains an embed-

ding of its data and the embedding of the shared dataset. Since the

embedding points of the shared dataset do not change, all local

embeddings are easily combined by aligning the points representing

the shared data.

F IGURE 14 Single-shot dSNE layout of MNIST data (Saha et al., 2017). Single-shot was run for the experiment of 1, 3 and 4 of MNIST
dataset. For all experiments, we are able to embed and group same digits from different sites with-out passing any site info to others. Here every
digit is marked by a unique color. Centralized is the original tSNE solution for locally grouped data. Digits are correctly grouped into clusters but
these clusters tend to heavily overlapped
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