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Abstract. Advances in species distribution modeling continue to be driven by a need to
predict species responses to environmental change coupled with increasing data availability.
Recent work has focused on development of methods that integrate multiple streams of data to
model species distributions. Combining sources of information increases spatial coverage and
can improve accuracy in estimates of species distributions. However, when fusing multiple
streams of data, the temporal and spatial resolutions of data sources may be mismatched. This
occurs when data sources have fluctuating geographic coverage, varying spatial scales and reso-
lutions, and differing sources of bias and sparsity. It is well documented in the spatial statistics
literature that ignoring the misalignment of different data sources will result in bias in both the
point estimates and uncertainty. This will ultimately lead to inaccurate predictions of species
distributions. Here, we examine the issue of misaligned data as it relates specifically to inte-
grated species distribution models. We then provide a general solution that builds off work in
the statistical literature for the change-of-support problem. Specifically, we leverage spatial
correlation and repeat observations at multiple scales to make statistically valid predictions at
the ecologically relevant scale of inference. An added feature of the approach is that addressing
differences in spatial resolution between data sets can allow for the evaluation and calibration
of lesser-quality sources in many instances. Using both simulations and data examples, we
highlight the utility of this modeling approach and the consequences of not reconciling
misaligned spatial data. We conclude with a brief discussion of the upcoming challenges and
obstacles for species distribution modeling via data fusion.
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INTRODUCTION

Determining how species respond to changing envi-
ronmental conditions is fundamental to sound man-
agement and species conservation (Yoccoz et al. 2001).

Accomplishing this requires leveraging empirical evi-
dence to inform and ultimately validate decision making.
This need for data-driven decision making has motivated
significant advances in the ability to collect and store
spatially and temporally referenced data. At the same
time there has been an influx in the development and
application of methods that integrate multiple streams

of data. These new data-integration approaches seek to
exhaust all available data sources to model species distri-
butions while explicitly accounting for differences among
data types (Dorazio 2014, Fithian et al. 2015, Giraud
et al. 2016, Pacifici et al. 2017, Coron et al. 2018). The
advantages of combining multiple data sources in inte-
grated species distribution models (ISDMs) include
increased spatial coverage, bias reduction and overall
improvement in estimator accuracy (Dorazio 2014,
Fithian et al. 2015, Giraud et al. 2016, Pacifici et al.
2017). Several authors have put forth different
approaches for integrating different data sources, typi-
cally when one source is collected through standardized
surveys and the other source is not (Fletcher et al. 2019,
Miller et al. 2019). As a result, we now have a range of
methods that leverage information across different data
types (Dorazio 2014, Pacifici et al. 2017, Zipkin et al.
2017), among multiple species (Giraud et al. 2016,
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Thorson et al. 2016, 2017), and among neighboring
locations by incorporating spatial correlation (Thorson
et al. 2017). As data becomes more available and easier
to access the propensity to combine data will only
increase, as will the demand to apply it rigorously to
inform decision making.
In light of the increased interest in ISDMs, it is essen-

tial to explore the implications that come with combin-
ing different data sources. As with all species
distribution modeling the goal is to correlate observa-
tions of individual species with environmental layers that
are driving the observed patterns of occurrence. In some
cases, the focus will be on large geographic areas or on
species that are difficult to sample. Alternative data
sources can fill in gaps that might occur in data collec-
tion and improve inference (Pacifici et al. 2017, Fletcher
et al. 2019, Miller et al. 2019). Integrated species distri-
bution models can increase precision and reduce bias in
certain settings (Pacifici et al. 2017) and are flexible
enough to incorporate a wide range of auxiliary data
sources (Fletcher et al. 2019, Miller et al. 2019). Despite
this, two major problems need to be addressed when fus-
ing multiple streams of data. The first problem is to
ensure that the ISDM rigorously combines each data
source so that relevant and valid statistical inference is
possible. The second is to reconcile spatial and temporal
observations properly when they are collected at multi-
ple differing spatial and temporal resolutions. The first
problem has already received significant attention
(Fletcher et al. 2019, Miller et al. 2019). The result is a
range of flexible approaches that have been developed to
integrate multiple data sources rigorously (Pacifici et al.
2017, Fletcher et al. 2019). The second problem, how-
ever, has not been formally addressed for ISDMs in the
ecological literature. This stands in contrast to signifi-
cant coverage given to the topic in the spatial statistics
literature, where it is often referenced as the general
change of support (COS) problem (Mugglin et al. 2000,
Gelfand et al. 2001, Gotway and Young 2002, 2007,
Wikle and Berliner 2005, Young and Gotway 2007, Ber-
rocal et al. 2010a,b, Ren and Banerjee 2013, Reich et al.
2014, Parker et al. 2015, Kim and Berliner 2016).
Before exploring the challenges of combining data

sources and COS we first need to understand COS as it
relates to a single data source. Here, we briefly describe
three general COS problems. We encourage the reader to
explore the topic more thoroughly (Gelfand et al. 2001,
Gotway and Young 2002); Journal of the Royal Statisti-
cal Society, Series A, Volume 164 Issue 1 is dedicated to
the topic. Generally, COS arises from three causes: (1)
spatial or temporal misalignment, (2) modifiable areal
unit problem (MAUP), and (3) the ecological fallacy
problem. It is important to recognize that the effect of
COS can exist in relation to either the response variable
(e.g., counts, occurrences), the covariates driving the
response (e.g., landcover, elevation), or both.
First, data may be “misaligned” either spatially or

temporally (Mugglin et al. 2000, Cressie and Wikle

2015) meaning that data may come from different classi-
fications or partitions of parcels of land or from differ-
ent years or seasons. Take for example the case where a
predictor variable (e.g., elevation) is measured at one
spatial scale (e.g., county) and another variable (e.g.,
human population density) is measured at a different
spatial scale (e.g., zip code). Our interest may be in using
both covariates to explain variation, in say, abundance.
However, the misalignment of the covariate information
needs to be reconciled to make proper inference (Mug-
glin et al. 2000). The same will hold for temporal mis-
match wherein one covariate may be measured at a
different temporal resolution (e.g., annually) than a sec-
ond covariate (e.g., daily) and the differences must be
recognized (Cressie and Wikle 2015). The problem of
misalignment also occurs when the response variable
(e.g., counts, presence/absence data) is mismatched with
the covariate information either spatially (e.g., counts
occur at different spatial scale than covariate) or tempo-
rally (e.g., covariate information, say land cover, comes
from different year than counts were collected).
The second problem classified under COS is referred to

as the modifiable areal unit problem (MAUP) in the geog-
raphy and statistics literature (Gotway and Young 2002).
Modifiable areal unit problem is essentially two separate
problems: spatial aggregation and the grouping effect. Spa-
tial aggregation is the process of grouping data into
increasingly larger geographic units. This might occur
when covariate information is aggregated or grouped to a
larger scale to match another covariate or response vari-
able (Latimer et al. 2006) or response variables (e.g.,
counts) are summarized at increasingly larger geographic
scales (e.g., collected at point, summarized to county level).
Spatial aggregation will change inferences for estimated
parameters. The second problem of MAUP, the grouping
effect, occurs when there are differences in the size, shape,
or formation of the geographic units (Gotway and Young
2002). Grouping effects have been studied extensively in
ecology for some time (Turner 1989, Levin 1992).
A third challenge, “ecological fallacy,” is often listed

separately from MAUP, but also can be considered a spe-
cial case of MAUP. Ecological fallacy deals with the case
where the underlying individual response to a covariate
differs from the response estimated from grouping the
individuals (Gotway and Young 2002, Bradley et al.
2016, 2017). The result is that conclusions based on an
analysis using fine-resolution data differ from analyses
that are conducted using an aggregate or summary of the
fine-resolution data (Gotway and Young 2002). “Down-
scaling” is often used to address this problem in the envi-
ronmental and remote sensing fields (Bradley et al. 2017).
Often the most difficult piece is identifying which vari-
ables are responsible for significantly altering the results
when data are scaled up or aggregated from individual
level to group level (Gotway and Young 2002).
In all three cases, notable bias can occur if it is not

properly handled, and choosing different scales to con-
duct the analysis results in different magnitudes of error

Article e02709; page 2 KRISHNA PACIFICI ET AL. Ecology, Vol. 100, No. 6



(Bradley et al. 2017). Bias can occur not only in estimat-
ing the mean and variance of parameters of interest, but
extends to any statistic that is estimated at multiple
scales (Waller and Gotway 2004, Bradley et al. 2017).
The consequences of ignoring COS are hard to predict,
and they can result in severe biases.
Although the statistical literature is rich with exam-

ples of COS (Gotway and Young 2002) it generally
remains unaddressed in species distribution modeling.
Several authors note that COS occurs when species pres-
ence/absence data that are referenced to point locations
and environmental data used to predict occurrence are
typically referenced to grid cells (Latimer et al. 2006,
Finley et al. 2014). Another example is when location
errors arising from georeferenced covariate information
that is summarized or aggregated to a grid cell (Hefley
et al. 2017). (Latimer et al. 2006) describe a solution as
either working at the scale of the responses by assigning
the environmental data to that level or alternatively
working at the grid cell level by scaling up the response
data to match the environmental data. However, this
leads to a loss of information from rescaling to match
either the level of the response or the level of the envi-
ronmental data. Ideally we want a method to account
for and circumvent the loss of information due to aggre-
gating data formally, and to recognize the variation
within and between the aggregated units. The frequency
with which COS will occur and associated issues

becomes greater when multiple sources of data are com-
bined, as now both the covariate information and auxil-
iary response data can be from mismatched scales.
The nuances of each type of COS warrants careful

consideration of the appropriate solution. A wide range
of methods exist (Gotway and Young 2002), with the
general goal being to make spatial predictions or esti-
mate variables (covariates or responses) on regions over
which they were not measured (Mugglin et al. 2000,
Gotway and Young 2002). As (Cressie and Wikle 2015)
recommend, the only logical solution is to build models
at different scales and evaluate the differences in infer-
ence when doing so, ideally first building the model at
the finest scale and then aggregating or scaling up to fit
additional models. We will apply this general philosophy
to COS with multiple data sources as well.
Here we lay out a framework for accommodating

COS when combining multiple sources of data in
ISDMs. First we describe the theoretical underpinnings
of COS in the context of ISDMs, then develop COS
extensions to a suite of data fusion models that vary in
the level of shared information between data sources
(Pacifici et al. 2017). We explore the properties of these
models via simulation and apply these methods to our
motivating data set on Black-throated Blue Warblers
(Setophaga caerulescens; BTBW) in Pennsylvania, USA
(Fig. 1). Our overall objectives are twofold: (1) introduce
the concept of COS and demonstrate its relevancy to

FIG. 1. Motivating data sets: Black-throated Blue Warbler in Pennsylvania, USA. Example of combining two data sources col-
lected at different spatial scales used in integrated species distribution modeling. The first data source is collected at fine-resolution
surveys (Breeding Bird Atlas [BBA]), and the second data source (eBird) is summarized at a coarser resolution. [Color figure can be
viewed at wileyonlinelibrary.com]
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ISDMs, and (2) identify specific situations when COS
most matters and provide recommendations for how it
should be handled.

CHANGE OF SUPPORT FOR INTEGRATED SPECIES DISTRIBU-

TION MODELS

We will use a case study of BTBW in Pennsylvania,
USA to demonstrate the challenges of accounting for
COS in ISDMs (Fig. 1). Here two different data sources
provide useful, yet different information about the distri-
bution of BTBW. The first data source is collected at
finer-resolution standardized surveys across the state
(Breeding Bird Atlas point counts), and the second data
source (eBird) has been summarized at a coarser resolu-
tion to account for data that are not collected at a single
point location. Combining these data create a conflict
in spatial resolution and necessitates a method that
addresses the misalignment. This requires being able to
reconcile the misalignment between the two data sources
and the differing spatial scales to make inferences about
the underlying distribution of BTBW.

Modeling framework

We envision two general approaches to handle misalign-
ment to accommodate COS. The first naive method is a
two-stage approach (we formally define this approach below
as the “Covariate” model). The first step consists of imput-
ing the second data source in the spatial locations where the
response of the first data source is observed. The prediction
could be done in any number of ways depending on the
characteristics of the second data source (e.g., presence only,
presence–absence, counts) and could be accomplished using
any number of appropriate species distribution modeling
techniques (Guillera-Arroita et al. 2015). The second step
uses those predicted values as known constants and linear
predictors in an ISDM (Dorazio 2014, Fithian et al. 2015,
Fletcher et al. 2016, 2019, Pacifici et al. 2017, Miller et al.
2019). However, this approach does not account for uncer-
tainty in the predictions from the second data source during
the first step and can result in potentially biased inference.
The second general approach, and the one we will focus on
here, is a joint-modeling strategy. In this case, both sources
of data are modeled simultaneously. As a result, uncertainty
is properly accounted for and propagated through to the
predictions of the joint response. Below we describe the
framework for joint modeling of ISDMs to account for
spatial misalignment.
Species distributions can generally be thought of as a

continuous point process that describes the distribution
of individuals across a species’ range. The local intensity
of the process (i.e., the local probability an individual
occurs at any point in space) determines the density of
animals across space. Building a statistical model for the
distribution requires carefully aggregating the intensity
function for a point process to the scale of the data. As
with any probability density function of a continuous

random variable, the probability of an observation at
any single spatial location is zero. As a result, non zero
probabilities arise only when considering the number of
observations in a spatial region. Therefore, some mini-
mum form of aggregation is required. For example, if a
camera trap is placed at location s0 and animals that
pass within distance r from the camera are recorded,
then the region of the survey, B, is the circle with center
s0 and radius r and the expected number of observations
in B is ~kðBÞ, which increases with r. Given that all obser-
vations are made with reference to an area, it is generally
difficult to estimate the function kðsÞ for all s without
simplifying assumptions about its smoothness.
Following much of the literature on species distribu-

tion models (SDMs), we specify our model for individ-
ual spatial locations (i.e., latitude/longitude) s 2 R2

using an inhomogeneous Poisson process (IPP; Warton
et al. 2010, Dorazio 2014, Fithian et al. 2015). An IPP is
simply a point process where the intensity (i.e., local den-
sity of individuals) varies across space. Let kðsÞ be the
intensity of an inhomogeneous Poisson process so that
the number of individuals in an arbitrary region B fol-
lows a Poisson distribution with mean

~k Bð Þ ¼
Z
B
k sð Þds: (1)

The log-intensity process can be regressed onto covari-
ates via the model log½kðsÞ� ¼ XðsÞTbþ hðsÞ where XðsÞ
is a vector of spatial covariates, b are the corresponding
effects and hðsÞ is the residual spatial process. Several
models for the spatial intensity function have been pro-
posed and we discuss three in Appendix S1.

DATA FUSION MODELS WITH COS

As we noted previously, the focus of our paper is to
integrate multiple data sources collected at different spa-
tial resolutions. Assume that data source k is available
for mk regions Gk1; . . .;Gkmk. Consistent with our moti-
vating data example with BTBW in Pennsylvania, we
address the case where there are two data sources and
(1) the first data source Y1j is the number of the Nj sam-
pling occasions in region G1j for which the species was
observed, so that Y1j 2 f0; 1; . . .;Njg; and (2) that the
second data source Y2j is the total number of individuals
observed in grid cell G2l , so that Y2l 2 f0; 1; 2; . . .g. The
approaches below are easily generalized to other cases.
In our analyses we will treat the first data source as the
“gold standard.” The data are collected using a system-
atic sampling design where effort and location are well
defined and offer a benchmark for our data integration
model. The second data source contains auxiliary data
for which we have less confidence and this is reflected in
how we formulate models in some cases (Pacifici et al.
2017). We describe the methods below in the context of
the discretized model that assumes the true intensity is
constant with each fine-resolution grid cell B1; . . .;Bn
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described above. For our motivating example this model
is amenable to implementation in standard software
(e.g., OpenBUGS, see available code in Data S1). How-
ever, we emphasize that other approaches can also be
used in the data-fusion models developed in this section.
Here we lay out three approaches for data fusion that

vary in the degree of influence and reliance on the auxil-
iary data source (Pacifici et al. 2017) and extend each to
allow for COS.

Covariate model

The simplest approach is to use the second data source
or a summary of the second data source as a covariate in
the model for the first data source (i.e., ad-hoc two-stage
approach described above). Note that technically there is
no modification for COS; instead information from the
response is scaled up or matched to the covariate scale
and therefore the misalignment is reconciled. We continue
to include this model because it is a simple and effective
way to address spatial misalignment. In this case, infor-
mation from the auxiliary data only informs the species
distribution model to the extent it can predict data from
the second. The model for the first data source is

Y1j jZj ; p�Binomial Nj ; pZj
� �

; (2)

where Zj is the binary indicator that cell G1j is occupied
and p 2 ½0; 1� is the probability of detection given that
the cell is occupied. If the number of individuals in
region j follows a Poisson distribution with mean ~kðG1jÞ
defined as in Appendix S1: Eq. S2 then the probability
that the number of individuals is zero, i.e., that Zj ¼ 0, is
exp½�~kðG1jÞ�. Therefore the probability that G1j is occu-
pied given k ¼ ðk1; . . .; knÞ is

Prob Zj ¼ 1jk� � ¼ 1� exp �~k G1j
� �h i

: (3)

We use a spatial log-Gaussian model for the intensity
function; therefore each fine-resolution cell Bi is

log kið Þ ¼ XT
i bþ hi; (4)

where Xi is the vector of covariates, b is the correspond-
ing vector of regression coefficients, and hi is a spatial
random effect. By including a summary of the auxiliary
data in the covariate vector we use information in both
data sources. For example, if fine-resolution cell i falls in
coarse resolution cell G2l , then we will use logðY2lÞ as an
element of Xi. As a result, the coarse-resolution covari-
ate might prove useful for capturing large-scale spatial
patterns, but cannot resolve fine-scale variation. (Pacifici
et al. 2017) show this is a useful model when belief in the
second data source is low or uncertain as nothing is
assumed about the auxiliary data source.
We chose to estimate the vector of spatial random

effects h ¼ ðh1; . . .; hnÞT using a conditional autoregressive

prior (CAR; Banerjee et al. 2014), but note that any
model for a continuous spatial process could be used
with a few modifications. However, we chose to use the
CAR model because of its easy implementation in avail-
able software (e.g., BUGS). The CAR model can be
motivated using the full conditional specification of hi
given the value of the process at all other cells,

hijhk; for all k 6¼ i�Normal q�hi;r2=mi
� �

;

where �hi is the mean of h at the mi cells adjacent to cell i
and the two spatial dependence parameters q 2 ð0; 1Þ
and r2 [ 0 determine the strength of spatial dependence
and conditional variance, respectively. These full condi-
tional distributions lead to the joint multivariate normal
distribution

h�Normal 0;r2 M� qAð Þ�1
h i

; (5)

where M is the diagonal matrix with ith diagonal ele-
ment equal to mi and A is the adjacency matrix with
ði; kÞ element equals one if cells i and k are adjacent and
zero otherwise. We denote this as h�CARðq;r;AÞ.

Shared model

An alternative to the simple naive approach is to treat
both data sources as outcomes of the same underlying
distribution and relate them directly to the shared under-
lying inhomogeneous point process. In this case there is
a single underlying species distribution, but each data
source is allowed to have its own model that describes
the observation process (i.e., the probability of collecting
a given observation conditional on the true number of
individuals within a given location). All outcomes are
taken to be conditionally independent given the intensi-
ties. The joint model is

Y1j jZ1j ; p�Binomial Nj ; pZj
� �

; with

Prob Zj ¼ 1jk� � ¼ 1� exp �~k G1j
� �h i

; ð6Þ

Y2l jk; a; b�Poisson aþ b~k G2lð Þ
h i

;

where a[ 0 and b[ 0 are additive and multiplicative
bias terms, respectively and represent the degree of relat-
edness between the two data sources (e.g., when b ¼ 0
the second data source is completely uninformative).
The intensity surface k is modeled as in (4) except with-
out Y2l as an element of Xi. This is the typical joint-like-
lihood approach found in many applications of
integrated population models and ISDMs (Dorazio
2014, Fletcher et al. 2016, 2019, Zipkin et al. 2017). It
assumes that the secondary data source is of high quality
and/or information is available to model the sources of
bias and variability (e.g., false positives, variable sam-
pling effort).
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Correlation model

A second alternative to fully modeling the joint likeli-
hood is to specify separate, but correlated, underlying
processes for the two data sources. The idea here is to
estimate two separate species distributions, one with
each data set, while allowing the two distributions to be
correlated. If they are perfectly correlated, information
is completely shared across the two distribution models.
If the correlation is <1, then information is shared in
proportion to the strength of correlation. This allows us
to relax the reliance on the auxiliary data source neces-
sary for joint-likelihood approaches while still permit-
ting information to be shared between the sources of
data (Pacifici et al. 2017). Let kkðsÞ be the Poisson intensity
function for data source k 2 f1; 2g and ~kkðGÞ ¼

R
G kkðsÞds

be the aggregated intensity for process k. As with the
shared model, the data are conditionally independent
given the Poisson intensities,

Y1j jZ1j ; p�Binomial Nj ; pZj
� �

; with

Prob Zj ¼ 1jk1
� � ¼ 1� exp �~k1 G1j

� �h i
; ð7Þ

Y2l jk2 �Poisson ~k2 G2lð Þ
h i

:

Both processes are defined on the same fine grid n grid
cells, with

log kkið Þ ¼ XT
i bk þ hki; (8)

where Xi is the vector of covariates; bk is the correspond-
ing vector of regression coefficients for data type k; and
hki is a spatial random effect. The spatial random effects
hi ¼ ðh1i; h2iÞT are modeled using a multivariate CAR
model (Banerjee et al. 2014), defined by its full condi-
tional distributions

hijhi0 ; for all i0 6¼ i�Normal q�hi;R=mi
� �

;

where �hi ¼ ð�h1i; �h2iÞT is the mean of h at the mi cells
adjacent to cell i; q 2 ð0; 1Þ controls the strength of spa-
tial dependence; and the 2� 2 covariance matrix R con-
trols the dependence between h1i and h2i. This model
allows for the processes underlying two data sources to
be correlated. Thus each data source informs predictions
from the other, but in an indirect manner. As a result,
there is a reduced burden for the auxiliary data being of
equally reliable to the first data source.

SIMULATION STUDY: AGGREGATING SPATIAL COVARIATES

WITH A SINGLE DATA SOURCE

Now that we have formally defined COS in ISDMs we
want to explore one of the most common challenges that
researchers first face when fitting SDMs: how to use spa-
tial covariates that have been collected at different spa-
tial scales. Below we describe a brief simulation study to

evaluate the effect of aggregating spatial covariates with
a single data source. In this simulation the true intensity
surface is generated on a 20� 20 fine grid of n ¼ 400
grid cells B1; . . .;Bn. Data are generated on grid cells
G1; . . .;Gm, where each cell contains regular grid of k2 of
the n fine-resolution cells, with Sj denoting the indices of
the fine-resolution cells in Gj so that Gj ¼

S
i2Sj

Bi (e.g.,
Appendix S1: Fig. S1a for k ¼ 3). We first simulate the
spatial random effects h ¼ ðh1; . . .; hnÞ�CARð0:99; 1;AÞ
and covariate X ¼ ðX1; . . .;XnÞT �CARðq; 1;AÞ. The
true intensity is then set to logðkiÞ ¼ b1 þ Xib2 þ hi
with b1 ¼ 0 and b2 ¼ 1. The data for Gj is then gener-
ated as Yj �Binomialð5; pZjÞ where ProbðZj ¼ 1Þ ¼ 1�
expð�P

i2Sj
kiÞ with detection probability p ¼ 0:5. Data

are simulated with aggregation level either k ¼ 2 or
k ¼ 3 spatial correlation of the covariate equal either
q ¼ 0:50 or q ¼ 0:99. For all combinations of these set-
tings we simulate 500 data sets.
For each simulated data set we fit two models. The

first model (“naive”) ignores COS and fits a standard
spatial occupancy model using m observations where the
log intensity in cell Gj is b1 þ ~Xjb2 þ cj, where ~Xj is the
average of Xi over Gj and the m spatial effects c1; . . .; cm
follow a CAR prior defined via the adjacency matrix of
G1; . . .;Gm. The second model (“COS”) is the COS model
used to generate the data wherein we account for COS
by modeling the process at the same fine resolution that
we generated the data (instead of using the average as in
the naive model). Both models assume priors b1;b2�
Normalð0;10Þ, r2�InvGammað0:1;0:1Þ, q�Betað10;1Þ
and p�Uniformð0;1Þ. Models are fit in OpenBUGS
using 10,000 MCMC samples after a burn-in period of
2,500 iterations (see Data S1 for code). For each model
and each data set we compute the posterior distribution
of the slope b2, and present the bias and mean square
error of the posterior mean and empirical coverage of
90% intervals averaged over the 500 data sets in Table 1.
The naive method that ignores COS is positively

biased in all cases. The bias and MSE are the largest in

TABLE 1. Simulation study results: Single data source with
spatially aggregated covariate: Here we are exploring the
consequences of rescaling a covariate with a single data
source. The data generation depends on the dimension of the
aggregate cells (k) and the CAR spatial dependence of the
covariate process (q); the two methods are the naive method
that models the process only at the course resolution and the
change of the support (COS) method that models the process
on the fine resolution. Methods are compared using Bias,
mean squared error (MSE) and coverage of 90% intervals for
the covariate effect parameter, b2.

Settings Bias MSE Coverage

k q Naive COS Naive COS Naive COS

2 0.50 0.69 0.14 1.57 0.58 0.89 0.88
0.99 1.02 0.25 1.80 0.39 0.79 0.86

3 0.50 0.34 0.09 1.77 1.27 0.94 0.92
0.99 1.07 0.41 2.11 0.76 0.84 0.85
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the cases with a highly correlated covariate process
(q ¼ 0:99). Although the COS method does not com-
pletely eliminate the bias, it is greatly reduced especially
in the cases with spatial correlation therefore highlight-
ing the need to account for COS even with mismatched
covariate and response data.

SIMULATION STUDY: ISDMS WITH AND WITHOUT COS

To evaluate the newly developed COS ISDMs fully,
we conduct a simulation study to determine the condi-
tions in which fusing data sources with different spatial
resolutions improves estimates, and compare the effi-
ciency of various ways to account for the COS. We gen-
erated data from the shared model on a 20 9 20
rectangular grid. The data are originally generated on
the same grid as the true process; i.e., Bi ¼ G1i ¼ G2i.
The observed data in cell i is a function of the latent spa-
tial process ki. The true binary occupancy status is gen-
erated as ProbðZi ¼ 1jkiÞ ¼ 1� expð�kiÞ. The fine-scale
data are then sampled as

Yi1jZi�Binomial N;pZið Þ and Yi2jki; �Poisson Ekið Þ;
(9)

where N = 5, the detection probability p is either 0.2 or
0.5 and E ¼ 10 is the offset for the second data source.
The latent intensities ki are simulated as logðkiÞ ¼ Si,
where ðSi; . . .;SnÞ is generated from the CAR model
(with rook neighbors) with mean zero, variance parame-
ter r2 ¼ 1, spatial dependence parameter q set to either
0.50 or 0.99. The first data source, Y1i, is observed for
all n ¼ 400 grid cells; the second data source, Y2i, is only
observed as aggregated counts over k � k (k is either 2
or 4) rectangular grids, denoted �Y 2j for coarse-resolu-
tion grid cell j ¼ 1; . . .; n=k2. Appendix S1: Fig. S1 plots
one realization with p ¼ 0:2, q ¼ 0:99, and k ¼ 4.
For each combination of k, q, and p we generate 100

data sets and fit the following models:

• Single: The second data source is ignored
• Covariate: The covariate model with logð �Y 2j þ 1Þ is
used as a covariate

• Shared: The joint model for �Y 2j and Y1i

• Correlation: The correlation model for �Y 2j and Y1i

• Shared—no COS: �Y 2j is assumed to represent one
central fine scale grid cell and the data are analyzed
using the shared method without COS (Appendix S1:
Fig. S1d)

• Correlation—no COS: �Y 2j is assumed to represent
one central fine-scale grid cell and the data are ana-
lyzed using the correlation method without COS
(Appendix S1: Fig. S1d)

Each model is fit using OpenBUGS with three chains
each with 20,000 iterations and the first 5,000 iterations
discarded as burn-in (see Data S1 for code). We used
uninformative priors for all parameters and evaluated

convergence using the Gelman–Rubin statistic and
examining trace plots.
For each method and each data set we compute the

posterior probability that the fine-resolution cells are
occupied, denoted �Zi, and the declaration that the
cell is occupied, denoted Ẑi ¼ 1 if �Zi � 0:5 and
Ẑi ¼ 0 if �Zi\0:5. Methods are evaluated using the
Brier Score (BS) which is a proper score function to
evaluate predictive performance for binary outcomes
(Gneiting and Raftery 2007, Pacifici et al. 2016; lower
is better) and classification accuracy (CA) averaged
over cells,

BS ¼ 1
n

Xn
i¼1

Zi � �Zið Þ2 and

CA ¼ 1
n

Xn
i¼1

ZiẐi þ 1� Zið Þ 1� Ẑi
� �

;

(10)

where Zi is the true occupancy status generated from the
CAR model. Table 2 reports the median Brier score and
classification accuracy across the 100 data sets for each
method and each simulation scenario.
Including the second data source only shows substan-

tial improvement compared to the single-data-source
model when the grid cells are small (k ¼ 2) and detection
is low (p ¼ 0:2). With large grid cells the aggregated data
are too coarse to provide useful spatial information, and
with high detection the first data sources provide suffi-
cient information to produce precise maps, because we
included data from all cells within the area for this data
source. Strong spatial correlation improves classification
accuracy for all methods, but the second data source
provides roughly the same increase in precision regard-
less of the spatial correlation.
Focusing on the two cases with k ¼ 2 and p ¼ 0:2

where including the second data source is useful, the
results are fairly robust to the COS method. The two
simplest COS methods are the covariate model and the
naive methods that include the aggregated data as a data
point without accounting for COS. These two simple
models perform comparably to the more sophisticated
shared and correlation models. The average run times
for these methods (Table 2c) are approximately 50% less
than the full correlation model. In summary, these two
methods provide simple and effective means of accom-
modating COS in ISDMs.

CASE STUDY: BLACK-THROATED BLUE WARBLERS IN PENN-

SYLVANIA

We next apply the data fusion models with and with-
out COS on a data set for BTBW in Pennsylvania, USA.
Our goal is to examine the real-world consequences of
ignoring COS and to make recommendations for model-
ing. We have two data sets collected from two different
sources. We further subsample these data at different
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spatial scales (i.e., observations are assigned to cells of
increasing sizes) to understand the utility of incorporat-
ing COS into ISDMs.
The first data set we use includes point count survey

data collected as part of the second Pennsylvania Breed-
ing Bird Atlas (BBA data; Wilson et al. 2012). During a
5-yr period from 2005 to 2009, 33,846 point count sur-
veys were conducted across the state of Pennsylvania.
An even distribution of points was achieved by ran-
domly selecting eight roadside locations within each
standard 1/24-degree latitude by 1/16-degree longitude
blocks used for the atlas (Grid 1; Table 3). Point counts
occurred during morning hours in the peak breeding
season (last week of May through the end of June).
Observers recorded singing males of all species during a
6 min 15 s survey. Observations were divided into five
75-s intervals and whether the bird was located less than
or greater than 150 m from the observer. In our analysis
we used all observations of singing male BTBW. We
excluded observations >150 m from the observer.
Our second data set consists of eBird observations

(Sullivan et al. 2009). We filtered eBird records to only
include observations during the same 5-yr period (2005–
2009) and only included records during the breeding
season (late May–July). Records that did not include
measures of survey effort were excluded. A subset of the
BBA data was entered into the eBird database. To avoid
duplication these records were also removed for analysis.

A total of 4,937 checklists were included in our analyses.
eBird data were summarized at three different resolu-
tions, not including the original scale of the BBA data
(Grid 1; Table 3).
Preliminary analyses found that percent forest cover

has a positive relationship with the occurrence of Black-
throated Blue Warbler. We therefore include this covari-
ate in all of the models to understand the consequences
of spatial misalignment on the ability to estimate the
covariate effects. In addition we summarize the second
data source (eBird) in two different ways, first we take
the sum of the eBird counts for a particular grid size and
average it across all of the BBA cells at Grid 1 within the

TABLE 2. Simulation study results: accounting for change of support (COS) in integrated species distribution models (ISDMs).
Here we are interested in evaluating the consequences of ignoring COS in fitting ISDMs. The data generation depends on the
dimension of the aggregate cells (k), the detection probability (p), and the Multivariate Conditional Autoregressive (MCAR)
model dependence parameter ðqÞ; the five methods are the model that uses only one source of data (“Single”), the three change-
of-support methods (“Shared,” “Correlation,” and “Covariate”), and the data fusion methods that ignore change of support
(“Shared—no COS” and “Correlation—no COS”). The Brier score and classification accuracy are the median of 100 simulated
datasets for each scenario.

Scenario

Settings Change of support No COS

k p q Single Shared Correlation Covariate Shared Correlation

(a) Brier score
2 0.2 0.50 0.141 0.126 0.135 0.132 0.133 0.137
2 0.2 0.99 0.117 0.101 0.110 0.102 0.108 0.117
2 0.5 0.50 0.018 0.018 0.018 0.018 0.019 0.018
2 0.5 0.99 0.017 0.016 0.016 0.016 0.017 0.017
4 0.2 0.50 0.138 0.135 0.139 0.138 0.137 0.143
4 0.2 0.99 0.118 0.110 0.116 0.112 0.112 0.119
4 0.5 0.50 0.018 0.018 0.018 0.018 0.018 0.018
4 0.5 0.99 0.017 0.016 0.017 0.016 0.017 0.017

(b) Classification accuracy
2 0.2 0.50 0.775 0.802 0.794 0.789 0.791 0.786
2 0.2 0.99 0.820 0.852 0.833 0.848 0.840 0.823
2 0.5 0.50 0.981 0.981 0.981 0.981 0.980 0.981
2 0.5 0.99 0.982 0.982 0.982 0.981 0.980 0.981
4 0.2 0.50 0.777 0.784 0.786 0.780 0.781 0.780
4 0.2 0.99 0.821 0.836 0.824 0.831 0.834 0.820
4 0.5 0.50 0.981 0.981 0.981 0.981 0.981 0.981
4 0.5 0.99 0.982 0.982 0.982 0.981 0.981 0.981

(c) CPU times (min)
2 0.2 0.50 2.57 2.75 4.54 2.56 2.54 4.27

TABLE 3. Spatial Resolutions for change of support (COS).
We evaluated four different spatial resolutions to explore the
consequences of spatial misalignment in integrated species
distribution models (ISDMs). Two different data sources
were used, which came from different spatial resolutions.
Breeding Bird Atlas data came from the finest resolution
(Grid 1), and eBird data were summarized for each of the
other resolutions. We used these mismatches in scale to
highlight the utility of accommodating COS in ISDMs.

Spatial resolution Grid size (degrees) Grid size (km2)

Grid 1 1/24 9 1/16 24.3
Grid 2 1/12 9 1/8 97.5
Grid 3 1/3 9 1/2 1,553.6
Grid 4 2/3 9 1 6,230.5
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larger grid (denoted by “Avg” following the model
name). Second, we explore the effects of an ad hoc
approach wherein we reconcile the misalignment by
matching the grids for all of the data (referenced by
“Scaled” following the model name). That is, we scale up
the BBA data to match the eBird grid. This is to mimic
the case where nothing is known about the location
of the finer-resolution data and instead scale it up to
match the second data source.
To evaluate the effects of ignoring vs. accommodating

COS fully, we fit the data fusion models described in the
Data Fusion Models with COS section with and without
COS to 20% of the BBA data and compare the results
with a model fit to all of the BBA data. The full BBA
data set (33,846 points across Pennsylvania) has excel-
lent geographic coverage, and by subsetting this data set
we were able to explore the contrast in performance
among the approaches.

CASE STUDY RESULTS

Overall models ignoring COS perform poorly com-
pared to models incorporating COS. Fig. 2 shows the
estimated occupancy probability across data fusion
models and whether COS was incorporated. All of the
models incorporating COS had smaller credible intervals
and were centered around the value estimated by the full
BBA data set. Models ignoring COS and using both

data sources equally (Shared) resulted in most estimates
that are much higher than the full data set, although this
is not the case when the covariate is aggregated up to
match the eBird grid size (models with “Scaled” after
name). The covariate model using the averaged covariate
across all of the finer-resolution cells (models with
“Avg” after name) performs well compared to more
complex models (shared and correlation).
Individual site-level estimates of w show similar

results. Appendix S1: Fig. S2 plots the estimates when
both data sources are at grid level 1. Models that do not
account for COS tend to oversmooth the estimated
occurrence probabilities compared to the full data set.
This becomes more pronounced as the degree of spatial
misalignment increases (Fig. 3). Again the covariate
model performs competitively with the more complex
shared COS model and outperforms the models ignoring
COS.
We can compare the performance of the two models

using different approaches to summarizing the second
data source in the covariate model. Fig. 4 shows the per-
formance at grid level 2 and Appendix S1: Fig. S4 depicts
the performance at grid level 4. Here we can see how the
second approach (scaling up the first data source to
match the second) clearly averages over the spatial varia-
tion at a finer scale and oversmooths the predictions.
Fig. 5 shows the differences in estimated effects of per-

cent forest cover when ignoring COS vs. accommodating

FIG. 2. Estimates of total occupancy probabilities from integrated species distribution models (ISDMs) incorporating change
of support (COS) vs. ignoring COS at four different spatial resolutions. The second data source is aggregated at different spatial
scales (Grids 1–4) to mimic different degrees of spatial misalignment. The solid red line represents the point estimate of occupancy
probability from the full, primary data source (Breeding Bird Atlas [BBA]) with uncertainty (95% CI: dotted red line). “Avg” and
“Scaled” in model names (y axis) refer to the method used to summarize the second data source (see case study description for com-
plete details). COS models are separated from No COS models by a horizontal dashed line. [Color figure can be viewed at wileyon
linelibrary.com]
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it for data fusion models. The full data set (denoted by
“Single”) shows a positive relationship with per cent for-
est cover and occurrence probabilities. This relationship
is not as clear with the data fusion models, although this
is probably due to the reduction in data (full data set vs.
20% of the data being used for all of the data fusion
models). Overall, the models incorporating COS tend to
perform less variably and have reduced uncertainty esti-
mates. It is also important to note as the degree of
misalignment increases the amount of uncertainty
increases as well. Models using the second data source
summarized at Grids 3 and 4 have highly variable and

uncertain estimates relative to models using the second
data source summarized at Grids 1 and 2. This pattern is
especially pronounced for the models ignoring COS.

DISCUSSION

We present the first comprehensive treatment of spa-
tial misalignment for ISDMs in the ecological literature.
Within the spatial statistics literature, it is well known
that spatial alignment matters when making predictions
(Gelfand et al. 2001, Gotway and Young 2002). Thus it
is not surprising that our results show that COS matters

FIG. 3. Occupancy estimates from the single, covariate, shared—No change of support (COS), and shared COS models with
eBird summarized at coarsest resolution (grid size = 6,231 sq km): The plot in the upper left panel shows the distribution of occu-
pancy for the full, primary data source (Breeding Bird Atlas [BBA]). Clockwise, the plot in the upper right panel shows the results
from the covariate model, shared COS, and shared—no COS in bottom left. [Color figure can be viewed at wileyonlinelibrary.com]
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and when unaddressed leads to biased parameter esti-
mates when combining data sources to build ISDMs.
Data integration methods have shown both utility and
future promise to improve our inferences about species
distributions as well as population and community
dynamics (Zipkin and Saunders 2018, Fletcher et al.
2019, Miller et al. 2019). Although much of the current
effort has focused on the development of estimators for
different data types, (Dorazio 2014, Fletcher et al. 2016,
Pacifici et al. 2017), a parallel effort is needed to deal
with scale and alignment in building models.

Our results highlight cases where not accounting for
COS may be especially prone to introduce bias and
reduce accuracy in results. We found bias and misclassi-
fication errors to be greatest when spatial correlation
was high and when detection was low. Error due to COS
was also greater when the relationship between distribu-
tion and the environment is defined by small-scale pro-
cesses. For example, greater bias would be expected in
our estimated relationships for BTBW if abundance was
more correlated to local forest cover within 100 m of a
location rather than at the landscape scale measured

FIG. 4. Occupancy estimates from the covariate model with second data source summarized in two different ways at grid level 2
(98 sq km): The plot in the upper left panel shows the results from the covariate model (“Cov-Avg”) with the second data source
averaged across all smaller sites, with uncertainty on upper right panel. The lower left panel shows results from the covariate model
(“Cov-Scaled”) with the covariates summarized by scaling up the covariate values from the finer resolution to match the larger grid
size. [Color figure can be viewed at wileyonlinelibrary.com]
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when values are taken for whole grid cells. In general,
summarizing covariate information to match the grid
size of observations smooths over important spatial vari-
ation, and can result in a loss of power to detect relation-
ships and fine-scale trends. The likely result is that the
strength of ecological relationships are underestimated.
This is not a result unique to data integration methods,
but is the case any time we fit models at coarse scales
and ignore the COS issue.
We explored three general approaches to data integra-

tion, which we refer to as a shared, correlation, and
covariate models for integrating two data sources (Pacifici
et al. 2017). The covariate modeling approach provides a
simple and efficient method for dealing with COS when it
occurs between two data sets. By using data collected at a
coarser scale as a covariate, it is possible to estimate
the relationship of fine-level processes while sufficiently
accounting for information loss due to spatial misalign-
ment. The extent of the spatial misalignment will define
the extent to which the two data sets are correlated. As
demonstrated previously (Pacifici et al. 2017, Miller et al.
2019), the covariate approach also provides a flexible
method to deal with other observational errors, such as
misidentification and misspecification of locations.
What we refer to as a shared modeling approach or a

joint-likelihood approach leads to the greatest preserva-
tion of information when COS is accounted for while
combining data sources. Using a shared approach
requires that both data sets be of high quality and that

COS can accurately be modeled between the two data
sets. If this is the case, then information from both data
sets are placed on equal footing and are used to model a
shared (or joint) underlying process. In contrast, when it
is difficult to specify the COS, the covariate approach
performed relatively well, especially when the primary
data set can be specified at a fine scale.
Our results point to some recommendations for SDMs

in general, not just when data integration is used.
Misalignment between covariate resolution and the size
of the grid cell for which responses are modeled is not
unique to integrated methods (Latimer et al. 2006). One
insight from our specific results is that fine-scale rela-
tionships between covariate and species distribution are
more affected by ignoring misalignment than coarse-
scale relationships. This suggests that covariates such as
average climate, which tend to follow smoother gradi-
ents, especially in nonmountainous regions, should be
relatively robust to spatial misalignment. Alternatively,
estimating fine-scale habitat relationships, such as the
effect of forest cover in a fragmented landscape, will be
more sensitive to misalignment. In addition, many of the
data sets we use to predict species distributions such as
museum records, citizen science data, or even large-scale
designed surveys include large uncertainty about spatial
location of where records are located (Dickinson et al.
2010). Therefore, there is a need to understand better
how scale influences inferences made from all SDMs
(Steenweg et al. 2018).

FIG. 5. Estimated effect of % forest cover under data fusion models that incorporate or ignore spatial misalignment in inte-
grated species distribution models (ISDMs). The second data source is aggregated at different spatial scales (Grids 1–4) to mimic
different degrees of spatial misalignment. Single model is provided as a reference to the estimated effect using full Breeding Bird
Atlas (BBA) data set. “Avg” and “Scaled” in model names (y axis) refer to method used to summarize the second data source (see
case study description for complete details). Solid red vertical line placed at 0 provided to visualize significance of the effect of %
forest cover on occupancy probability. Dashed black horizontal lines used to separate models using one data source and change of
support (COS) and No COS models. [Color figure can be viewed at wileyonlinelibrary.com]
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COS model steps

We are unable to provide general recommendations
that are ubiquitous to fitting ISDMs. However, we pro-
vide five steps that we believe should be followed when
addressing COS in ISDMs.

1) Define the stochastic model for ecological process at
the finest scale or resolution.

2) Define support for observed data and determine the
desired scale for predictions, i.e. scale that conserva-
tion and management decisions will be made.

3) Identify best way to link data sources based on
underlying ecological process. Here a second data
source may provide a diversity of information includ-
ing sources of error or effort.

4) Develop joint model for data sources and the under-
lying ecological process and conduct inference.

5) Conduct model evaluation and check for sensitivity
(e.g., significant change in results when adding new
data sources) specifically when rescaling the data.

Temporal mismatch

Here we have purposely excluded a full evaluation of
temporal mismatch because we believe it deserves its
own treatment in a separate paper. However, we can pro-
vide a few insights into handling temporal mismatch
based on our experiences with ISDMs. The first question
an analyst must address is whether or not there is inter-
est in a static or dynamic model of species distribution.
This question dictates the types of data collected and the
temporal resolution necessary to assume that distribu-
tional patterns are changing through time. If the analyst
is interested in modeling distributional changes via
dynamic models, then the temporal resolution of the
data must represent the appropriate time scale to allow
changes in the distribution at an ecologically relevant
scale. When combining multiple sources of data this can
present challenges when opportunistic data potentially
arises from historic records (e.g., museum records), cre-
ating a gap in time. For example, it is common to use
presence-only data that may have originated decades ear-
lier than survey data. In this case the appropriate infer-
ence depends on the interpretation of “distribution” in
that a coarse time scale suggests a coarser definition of
distribution and is akin to results from redefining the
response of interest (Guillera-Arroita et al. 2015). We
believe that this definition can be relaxed when interest
involves a static distribution of species occurrence, but
this is still an important and active area of research to
understand fully the implications of temporal mismatch
when combining multiple sources of data.
Furthermore, to understand the implications of com-

bining different data sources fully, it is necessary to clas-
sify the use of auxiliary data by how it is used to inform
SDMs. Similar to integrated population models (IPMs),
wherein the goal is to include supplemental data sources

that inform specific vital rates that drive populations
(Zipkin and Saunders 2018), we can identify the compo-
nents of SDMs and how integrating new data improves
our understanding of distribution and distributional
changes in populations. Specifically, we are interested in
how additional data sources improve our understanding
of the drivers of distributions, and we do this by classify-
ing new sources of data into two categories, spatial and/or
temporal, wherein new information can be added. The
spatial category can be thought of as including addi-
tional observations (presences and/or absences) that modify
the geographic footprint of a species, provide information
about sampling effort or variation in sampling effort,
sources of bias or error (e.g., false positives or false nega-
tives) or that help reduce these sources of error, and
uncover or identify relationships with environmental
covariates or other species (especially at different spatial
scales). Adding temporal information includes observations
(presences and/or absences) that modify the geographic
range over a temporal scale (e.g., annual or seasonal varia-
tion) of interest, or improve our understanding of error
and/or sampling effort (similar to spatial), except that
which occurs over a temporal scale instead of spatial scale.
The classification of how additional datawill inform SDMs
is a critical step in fully understanding whether it is worth
using auxiliary information and how it will help.

FUTURE DIRECTIONS

As we move forward and the number of opportunities
to combine data sources increases we believe future
directions for research include the need to explore more
fully situations where spatial misalignment has the great-
est influence on SDMs. In addition, new applications
such as dynamic distribution models are also likely to be
affected by COS, specifically because the ability to esti-
mate changes in distribution are dependent on differenti-
ating when local changes did and did not occur, often at
a finer scale than the resolution of many data sets (Kery
et al. 2013, Zurell et al. 2016). Finally, spatial alignment
is not a problem unique to data integration for SDMs.
Other integrated models, such as IPMs, will benefit from
a better understanding of the effects of spatial misalign-
ment and accounting for COS (Schaub and Abadi 2011,
Zipkin et al. 2017).
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