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Abstract

Motivation: Imaging mass spectrometry (imaging MS) is a prominent technique for capturing distributions of
molecules in tissue sections. Various computational methods for imaging MS rely on quantifying spatial correlations
between ion images, referred to as co-localization. However, no comprehensive evaluation of co-localization meas-
ures has ever been performed; this leads to arbitrary choices and hinders method development.

Results: We present ColocML, a machine learning approach addressing this gap. With the help of 42 imaging
MS experts from nine laboratories, we created a gold standard of 2210 pairs of ion images ranked by their co-
localization. We evaluated existing co-localization measures and developed novel measures using term frequency–
inverse document frequency and deep neural networks. The semi-supervised deep learning Pi model and the cosine
score applied after median thresholding performed the best (Spearman 0.797 and 0.794 with expert rankings, re-
spectively). We illustrate these measures by inferring co-localization properties of 10 273 molecules from 3685 public
METASPACE datasets.

Availability and implementation: https://github.com/metaspace2020/coloc.

Contact: theodore.alexandrov@embl.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metabolites and lipids play key roles in fuelling and making up cells,
ultimately determining their types and states. Concentrations of
metabolites and lipids are carefully regulated to maintain homeosta-
sis in tissues, organs and organisms, and are profoundly and some-
times irreversibly altered in disease. Capturing spatial distributions
of molecules in tissue sections is a prerequisite for any hypothesis-
driven or discovery-oriented investigation of biology and medicine
on the levels of tissues and the organism. In the past two decades, a
window of opportunity has been opened by the development and
further maturation of imaging mass spectrometry (imaging MS), a
powerful and versatile technology for spatial molecular analysis
(Buchberger et al., 2018; Doerr, 2018; Dreisewerd and Yew, 2017)
with a particular interest in clinical (Vaysse et al., 2017) and
pharmaceutical applications (Schulz et al., 2019). For a tissue sec-
tion, imaging MS generates a hyperspectral image encompassing
thousands to millions of ion images, each image representing the

distribution of a particular molecule or several molecules in the sec-
tion. Rapid development and growing popularity of imaging MS, as
well as the high dimensionality and sheer size of generated data,
measuring up to hundreds of gigabytes for a tissue section, have
stimulated the development of computational methods and software
(Alexandrov, 2012). Various methods have been developed for low-
dimensional data representation (based on PCA, NMF, t-SNE, bi-
clustering), finding spatial regions of interest with spatial segmenta-
tion, search for markers associated with a region of interest, and, re-
cently, for metabolite annotation (Palmer et al., 2017). Many of
these methods use some measure of spatial similarity between ion
images, often referred to as spatial co-localization. Various measures
for quantifying co-localization have been proposed, including the
Pearson correlation, cosine score, Euclidean L2-measures
(Alexandrov, 2012; Alexandrov et al., 2010; McCombie et al.,
2005; McDonnell et al., 2008) sometimes applied to transformed
images, e.g. after hotspot removal or log-transformation (Watrous
et al., 2011). Recently, new measures adopted from other fields have
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been proposed, including the structural similarity index (SSIM) and
hypergeometric similarity measure (Aaron et al., 2018; Ekelöf et al.,
2018; Kaddi et al., 2011). However, despite the ubiquity of using
spatial co-localization in imaging MS and a variety of measures pro-
posed, no rigorous and comprehensive evaluation of co-localization
measures has ever been performed.

This leads to arbitrary and often ad hoc choice of a co-
localization measure in every particular study, laboratory or soft-
ware package. Moreover, it hinders the progress of imaging MS
methods since new co-localization measures are faced with scepti-
cism without objective criteria to demonstrate their advantages.
This gap has persisted for over a decade due to the lack of ground
truth data that would allow one to evaluate a measure objectively.
Obtaining ground truth data is challenging because it requires a
comprehensive inventory of which molecules are represented in
imaging MS data and which of them are co-localized. This is not
possible for tissues and hardly possible even for authentic standards
due to our limited understanding of ionization of complex mixtures.

Here, we are addressing this apparent gap by presenting
ColocML, a machine learning approach to quantify co-localization
between ion images. First, we present a gold standard set of pairs of
ion images ranked by imaging MS experts by the perceived co-
localization. This effort was enabled by METASPACE, the open
knowledge base of spatial metabolomes (Alexandrov et al., 2019),
through being able to select a large number of public representative
datasets, employ modern web-based technologies for user-friendly
and facilitated image ranking, engage a large number of experts and
consolidate their rankings into a high-quality gold standard set.
Second, using the gold standard set of pairs of images manually
ranked by their co-localization, we have evaluated a variety of
co-localization measures, including the cosine score, Pearson correl-
ation and SSIM. Moreover, we propose several novel measures for
co-localization, e.g. using term frequency–inverse document fre-
quency (tf–idf) adopted from natural language processing as well as
approaches based on deep learning.

We found the semi-supervised deep learning-based Pi model as
well as the cosine score applied after median thresholding to be
the most optimal spatial co-localization measures for imaging MS.
We propose to use them in data analysis methods relying on
co-localization. Our work provides a gold standard set [available at
GitHub (https://github.com/metaspace2020/coloc)] which can be
used for evaluating future measures, and illustrates how using open-
access data, web technologies, community engagement and deep
learning open novel avenues to addressing long-standing challenges
in imaging MS.

2 Materials and methods

2.1 Experiment design to collect expert knowledge
In artificial intelligence and computer vision, a gold standard set is a
collection of images manually tagged or ranked by experts called
rankers. Having a gold standard set enables training and evaluation
of machine learning models and algorithms. However, creating an
unbiased, representative and high-quality gold standard set is a sub-
stantial challenge on its own. To the best of our knowledge, there
exists no gold standard set of co-localized images for imaging MS.
We aimed at creating a gold standard set that would quantify the
perceived by experts degree of co-localization for different ions. We
designed the gold standard set to consist of target-comparison sets
where each set includes one target ion and 10 comparison ions
ranked according to their co-localization with the target ion.

To create a gold standard set of co-localized ion images, we
selected public datasets from METASPACE with the aim to have a
manageable number of diverse yet representative high-quality data-
sets from different laboratories. First, we selected laboratories with
at least three active contributors of public data, nine laboratories in
total. For every laboratory, we selected active contributors to
METASPACE, 42 rankers in total. We aimed at asking each ranker
to rank up to 20 sets and at every set to be ranked by three rankers.
For each laboratory, we randomly selected round (20 � N_TL � 2/3)

public datasets submitted by this laboratory to METASPACE, where
N_TL is the number of rankers from a given laboratory.

From each dataset, we randomly selected 1 target ion and 10
comparison ions constituting a target-comparison set. We then used
the RankColoc web app (described later) to go through the target-
comparison sets and exclude noisy images or images with only a few
pixels. For each laboratory, we aimed at obtaining round (20 �
N_TL/3) high-quality sets, although it was not always possible due
to the quality of the datasets. This allowed us to have the same
target-comparison set ranked by three rankers to later estimate the
between-rankers agreement and to obtain average ranks.

2.2 Pilot study
Before creating the gold standard set, we ran a pilot study to investi-
gate the difficulty of ranking ion images in the target-comparison
sets according to their co-localization, as well as to learn potential
pitfalls and obstacles of the ranking process. The pilot study was ba-
sically a full study including dataset selection, web app implementa-
tion, rankers recruitment, gold standard set creation and agreement
evaluation, but performed in a smaller format with five rankers
only.

2.3 Web app for manual ranking of ion images
The RankColoc web app (https://github.com/metaspace2020/coloc/
tree/master/RankColoc) was developed with the aim to facilitate
image ranking as well as help inspect ranked sets. For a public
dataset in METASPACE, the web app downloads ion images from
METASPACE using the GraphQL API (https://github.com/meta
space2020/metaspace/tree/master/metaspace/python-client), and shows
a target and 10 comparison ion images. The web app helps a ranker
rank each comparison image from 0 to 9 by dragging and dropping it
into 1 of the 10 rank boxes or leave it unranked. Several images can
be assigned the same rank. The web app page includes instructions for
rankers. For each ranker, we assigned a collection of target-
comparison sets and generated unique URLs containing the sets and
the ranker ID. Ranking results were stored in real time, associated
with the ranker ID, and could be opened by either the same ranker or
a curator. Figure 1 shows screenshots of RankColoc web app with
examples of the ranked sets. Supplementary Video S1 illustrates the
ranking process.

2.4 Evaluating obtained rankings
We assessed the complexity of the task and reproducibility of the
rankers’ judgements by calculating pairwise correlations between
the rankers, i.e. correlations between their ranks of comparison ion
images in the same sets. The images left unranked (i.e. perceived by
rankers as completely not co-localized with the target ion image)
were assigned the rank 10. We computed average Spearman and
Kendall ranker-pairwise rank correlation for each laboratory, rank-
er and set.

2.5 Creating the gold standard set
To ensure the high quality of the resulting gold standard set, we
have excluded (i) sets for which the average Spearman pairwise cor-
relation between rankers was <0.4, and (ii) rankers whose average
Spearman correlation with other rankers was <0.4. After some
rankers were excluded, some sets ended up with just one ranking.
We excluded those sets as well. The resulting gold standard set con-
tains pairs of ion images (target image and a comparison image)
with each pair assigned an average rank across three rankers. The
ranks range from 0, representing the highest co-localization, to 10,
representing the lowest or no co-localization.

2.6 Co-localization measures that require no learning
Our implementation of the co-localization measures is available at
the GitHub repository (https://github.com/metaspace2020/coloc/
tree/master/measures).
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2.6.1 Correlation and cosine-based measures

First, we considered the commonly used co-localization measures:

Pearson correlation, Spearman correlation and cosine similarity
applied to flattened ion images, i.e. 1D vectors of pixel intensities.

2.6.2 SSIM measure

Following (Ekelöf et al., 2018), we considered the SSIM (Wang
et al., 2004) with the Gaussian weights.

2.6.3 tf–idf-Based measure

We developed a measure based on the tf–idf concept from the field

of natural language processing (Leskovec et al., 2014). Using

flattened ion images, we calculated the tf–idf value for each pixel–
ion pair to quantify how important a pixel p is for the particular ion
i with respect to all ions in the dataset D:

tf � idfðp; i;DÞ ¼ tfðp; iÞ � idfðp;DÞ;
tfðp; iÞ ¼ intðp; iÞ=

X

p02PD

intðp0; iÞ

idfðp;DÞ ¼ logðjIDj=jfi 2 ID : intðp; iÞ > 0gjÞ;

where PD is the set of all pixels in D, ID is the set of all ions in D,
and intðp; iÞ is the intensity of i in p. We then created tf–idf vectors
of the same dimensionality as the intensity vectors and quantified

Fig. 1. Screenshots of the RankColoc web app showing two target-comparison sets ranked by experts. (a) MALDI-imaging dataset from a wheat seed section, submitted to

METASPACE by Dhaka Bhandari, Justus Liebig University Giessen. (b) MALDI-imaging dataset from a rat brain tissue section, submitted to METASPACE by Berin

Boughton, University of Melbourne (METASPACE URLs, for example datasets: https://metaspace2020.eu/annotations?ds¼2018-06-28_09h17m56s, https://metaspace2020.

eu/annotations?ds¼2016-12-01_18h38m52s)

ColocML 3217

https://metaspace2020.eu/annotations?ds=2018-06-28_09h17m56s
https://metaspace2020.eu/annotations?ds=2018-06-28_09h17m56s
https://metaspace2020.eu/annotations?ds=2016-12-01_18h38m52s
https://metaspace2020.eu/annotations?ds=2016-12-01_18h38m52s
https://metaspace2020.eu/annotations?ds=2016-12-01_18h38m52s


co-localization of ion images as the cosine similarity between the
corresponding tf–idf vectors.

2.6.4 Image transformations

For all considered ion intensity-based measures, we applied the
following transformations to the ion image prior to calculating
co-localization: (i) hotspot removal, namely reducing intensities of
pixels with intensities >0.99 quantile by replacing them with the
0.99 quantile value; (ii) denoising by applying the median filter
(Huang et al., 1979) with a square window of size ranging from 1
(no filter applied) to 5 with step 1; (iii) applying quantile threshold-
ing, namely setting to zero those pixel intensities which are below a
given quantile value, for quantiles ranging from 0 to 0.9 with step
0.05. Evaluation whether using a transformation is beneficial as
well as optimizing the size of the median filter and the quantile value
was performed using the 5-fold cross-validation for each measure.
Measures with the best performing filters were then applied to the
entire gold standard set.

2.7 Co-localization measures based on deep learning
Our implementation of the co-localization measures is available
at the GitHub repository (https://github.com/metaspace2020/coloc/
tree/master/measures).

With the advent of deep learning, models based on neural
networks have become the method of choice for processing unstruc-
tured data such as images. Therefore, in our study we have devel-
oped several methods exploiting current state-of-the-art deep
learning approaches that would learn ion co-localization from the
gold standard set.

2.7.1 Xception-based model

This model, illustrated in Figure 2, is based on the well-known
Xception convolutional architecture designed to extract informative
features from images (Chollet, 2017). We introduced the following
modifications. First, the input has two channels corresponding to
the target and comparison ion images. The two channels pass
through the Xception architecture without the final classification
layer, which in our case is replaced with a regression output. The
Xception-based model is supervised, and its target variable is the
rank as specified in the gold standard set, with the mean squared
error (MSE) loss function.

2.7.2 Mu model

The Mu model is a variation of the Xception-based model with the
difference that the top layers are replaced with two 2048-dimension-
al outputs followed by a discriminator. The mu model encodes a
pair of ion images into two 2048-dimensional representations, com-
puted image similarity as the Pearson correlation coefficient between
the representations, and then regresses the similarity score onto the
rank target with the MSE loss.

2.7.3 Unsupervised UMAP

We developed a model based on the uniform manifold approximation
and projection (UMAP), a recently developed non-linear dimensional-
ity reduction technique with broad applications in biology (McInnes
et al., 2018). In this model, we applied UMAP to embed flattened ion
images (i.e. 1D vectors of pixel intensities) into 20D space using the
‘cosine’ distance metric. After the unsupervised embedding model
defined the distance between ion images, we calculated the Pearson
correlation coefficient between the corresponding embedded vectors
to rank comparison images with respect to the target image. This
model is unsupervised and does not use the gold standard set.

2.7.4 UMAP1GBT model

Since in our case supervision is actually possible, we extended the
UMAP model with a supervised model on top. Namely, we used gra-
dient boosted trees (GBT), a state-of-the-art regression model (Chen
and Guestrin, 2016), feeding UMAP 20D features as input and
regressing them onto rank targets from the gold standard set with
the MSE loss function.

2.7.5 Pi model

The Pi model is based on the recently developed approach of temporal
ensembling for semi-supervised learning (Laine and Aila, 2016). This
approach uses an ensemble of network outputs from different training
epochs as quasi-targets for training on unlabelled samples, which has
been shown to significantly improve the final model quality. In our
case, the Pi model follows the general architecture of the Xception-
based model, but the last layers are replaced with two heads for two
loss components: (i) supervised loss as in the Xception-based model,
the MSE between the network prediction and the rank and (ii) un-
supervised loss intended to stabilize the network prediction; we define
it as the squared error between network predictions on a pair of ion
images and the same pair of ion images subjected to various image
augmentations (intensities and geometric transformations).

The unsupervised loss component has allowed us to use �40 000
unlabelled ion images from 3685 public METASPACE datasets,
gathering �56 000 unlabelled pairs from them for training in add-
ition to the labelled gold standard set.

2.8 Evaluation of the co-localization measures
For each set, we calculate Spearman and Kendall correlation coeffi-
cients separately for each target-comparison set and report the mean
and median values over all sets.

3 Results

3.1 The co-localization gold standard set
We have initially selected 239 datasets from METASPACE with 304
target-comparison sets of ion images for 42 rankers from 9 laborato-
ries (Table 1).

3.2 Pilot study
The pilot study was crucial to inform us about the complexity and
subjectivity of the task and to design the final version of the web
app and the study accordingly. In particular, we learned that rank-
ing comparison images was more natural for the rankers than order-
ing them because this allowed the rankers to assign the same rank to
several comparison images. Selecting high-quality datasets and skip-
ping noisy ion images and images with just a few non-zero pixels
was crucial for obtaining reproducible rankings. Some rankers pre-
ferred to leave non-co-localized images unranked and we have
implemented this option for the final study.

3.3 Agreement between experts
Table 1 shows the average pairwise ranker correlation values
for each laboratory that represent agreement between rankers.
Note that the agreement values cannot and shall not be compared
across different laboratories because every laboratory ranked imagesFig. 2. Architecture of the Xception-based deep learning model
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from different METASPACE datasets. For example, ranking images
with a simple and clear spatial structure led to higher agreement val-
ues. The mean correlation across all sets was 0.700 (Spearman) and
0.629 (Kendall). After excluding sets and rankers with low agree-
ment, the mean agreements for the final version of the gold standard
set is 0.791 (Spearman) and 0.711 (Kendall).

3.4 The gold standard set
The final version of the gold standard set includes 234 sets with 2210
ion image pairs from 182 public imaging datasets from METASPACE
ranked by 38 rankers from 9 laboratories, available at https://github.
com/metaspace2020/coloc/tree/master/GS. The datasets represented
human (37%), mouse (21%), pig (7%), rat (6%) and other organisms;
brain (27%), kidney (11%), skin (9%), seed (4%) and other organs;
MALDI (84%) and DESI (16%) ionization; DHB (44%), DAN
(17%), DHA (6%), BPYN (5%) and other MALDI matrices;
Orbitrap (69%) and FTICR (31%) mass analysers; positive (68%)
and negative (32%) polarity. For every target-comparison pair of ion
images, average rank across three rankers has been assigned. The
ranks range from 0, representing the highest co-localization, to 10,
representing the lowest or no co-localization.

3.5 Evaluation of co-localization measures that require

no learning
Table 2 shows the performance of co-localization measures requir-
ing no learning, measured using the gold standard set as Spearman

and Kendall rank correlation with the expert rankings. For each
measure, we show its best performance and optimal image trans-
formation parameters. The best performing measure is the cosine
similarity with quantile threshold 0.5, without hotspot removal and
with median filter with window size 3. The second best measure is
the Pearson correlation measure with no image transformation
applied. The SSIM measure recently proposed in the context of
imaging MS (Ekelöf et al., 2018) was outperformed by other
measures.

Table 3 shows the effect of using different types of image trans-
formation on the performance of the cosine measure. Surprisingly,
applying hotspot removal did not improve the performance.
Denoising images by using the moving median filter improved the
performance only marginally (Spearman correlation from 0.792 to
0.794), whereas using quantile thresholding led to a larger improve-
ment (Spearman correlation from 0.779 to 0.794). However, taken
into account the SD values of the mean estimates, this improvement
cannot be claimed to be significant.

3.6 Evaluation of co-localization measures based on

deep learning
Table 4 shows the performance of co-localization measures based
on deep learning models. The Pi model achieved the best perform-
ance, with a slight improvement over cosine similarity and similar to
the human-to-human agreement between the experts in our study
(mean Spearman of 0.791; see Table 1). This is no surprise since
the Pi model is a state-of-the-art semi-supervised model that makes

Table 1. Information about the co-localization gold standard set created from public METASPACE datasets contributed by nine laboratories

with target-comparison sets ranked manually by 42 experts from these laboratories

Laboratory Number

of rankers

Number

of datasets

Number

of sets

Average pairwise agreement

Spearman Kendall

Mean Med Mean Med

University of Copenhagen 8 66 78 0.534 0.730 0.489 0.620

EMBL 8 33 53 0.763 0.804 0.666 0.710

University of Melbourne 6 29 40 0.806 0.836 0.732 0.742

JLU Giessen 5 29 33 0.612 0.688 0.545 0.597

IBMP 3 20 20 0.638 0.681 0.550 0.604

PNNL 3 20 20 0.686 0.687 0.596 0.609

MPI Bremen 3 19 20 0.843 0.925 0.787 0.879

UT Austin 3 16 20 0.808 0.866 0.745 0.770

M4I 3 7 20 0.730 0.680 0.660 0.608

Total 42 239 304 0.700 0.773 0.629 0.666

Final version after filtering out rankers and sets 38 182 234 0.791 0.800 0.711 0.708

Note: The bold highlighted row corresponds to the best results.

Table 2. Performance of the co-localization measures requiring no learning

Co-localization measure Correlation with the expert rankings in the gold standard set Optimal parameters of image transformations

Spearman Kendall

Mean Med Mean SD Mean Med Mean SD Quant value Hotspot remov. Med win size

Cosine 0.794 0.849 0.012 0.682 0.720 0.014 0.5 No 3

tf–idf-cosine 0.769 0.825 0.012 0.653 0.689 0.013 0.65 No 0

Spearman 0.737 0.783 0.011 0.620 0.647 0.013 0.7 No 0

Pearson 0.788 0.838 0.014 0.674 0.719 0.013 0 No 0

SSIM 0.559 0.623 0.015 0.581 0.488 0.016 0 No 0

Note: The values of the Spearman and Kendall correlation coefficients to the gold standard are shown, together with the optimal parameters for image transfor-

mations. ‘Mean’ and ‘Med’ stand for the mean and median of the correlation values across the gold standard. ‘Mean SD’ is the standard deviation of the mean

correlation value over 100 bootstrapped samples from the gold standard. The best performance is achieved by the cosine measure. The bold highlighted row cor-

responds to the best results.
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use of both labelled data from the gold standard set and unlabelled
data from METASPACE.

3.7 Inferring molecular relationships by mining public

METASPACE data
We have applied the best derived co-localization measures to illustrate
how they can be used on a large scale to mine data from the public
knowledge base METASPACE. More specifically, we aimed to infer
co-localization relationships between all molecules represented in pub-
lic METASPACE annotations. For this, we downloaded ion images
for all annotations from 3685 public datasets in METASPACE using
its API (https://github.com/metaspace2020/metaspace/tree/master/meta
space/python-client), calculated co-localizations between all ion
images within a dataset using either the cosine score after median (0.5
quantile) thresholding or deep learning Pi model, the best performing
methods in their respective classes, and averaged co-localization across
all datasets. Finally, we visualized all 10 273 resulting molecular for-
mulas in a 2D space using UMAP with the average co-localization
used as the pre-computed distance. The annotations that are more co-
localized on average are shown closer to each other (Fig. 3).

To investigate whether the inferred co-localization properties are
associated with chemical properties of the molecules, we highlighted
glycerolipids, an important class of lipids which are known to be
easily detectable by imaging MS (Fig. 3a). Note that the assignment
of a molecular annotation (formula) to a molecular class was per-
formed accounting for potential ambiguity, with unambiguously
assigned annotations shown in green and ambiguously assigned
annotations shown in red (Fig. 3). One can see that glycerolipids in-
deed form dense clusters that indicates their high average co-
localization. A subclass of glycerolipids, triradylcglycerols (with the
classes names as in HDMB) represent the majority of the

glycerolipids in METASPACE and form the densest clusters
(Fig. 3b). Sparser representation of glycerolipids in the negative po-
larity data (Fig. 3c) illustrates the common knowledge of the posi-
tive mode being the preferred way of ionization for this class of
lipids. Using another co-localization measure (deep learning-based
Pi model instead of the cosine) also confirms the findings but shows
a visible difference in data organization. This reflects the robust cap-
acity of both measures to capture chemically associated co-
localization and also shows the differences between them, which can
be potentially used in the future to further improve the results.

Another class of lipids, glycerophospholipids, represents a large
part of molecules in METASPACE, clearly forming a cluster in the
UMAP chemical space (Fig. 3e). Performing examination in a way
similar to Figure 3a–d, one can see that the molecular subclass of
glycerophospholipids, glycerophosphoethanolamines, represents the
core of the cluster of co-localized glycerophospholipids (Fig. 3f).
Opposite to glycerolipids, glycerophospholipids are known to be
ionizable in both positive and negative modes, and this is reflected
in their strong presence as well as clustered appearance on
Figure 3g. Examining deep learning Pi score-based mapping
(Fig. 3h), one can see that despite dense spacing, there is clearly less
separation visible to the class of glycerolipids (Fig. 3h versus d) com-
pared to the cosine score-based UMAP visualization (Fig. 3g versus
a), which makes cosine score-based results easier for interpretation.

4 Discussion

4.1 Other approaches to obtain gold standard data
In addition to the approach presented in this manuscript, we have
also considered creating gold standard data either by simulating it
or by authentic standards or mixtures of standards. However, our

Table 3. The effect of using different types of image transformations onto the performance of the cosine-based measure

Image transformation applied before

calculating cosine similarity

Correlation with the expert rankings in the gold standard set Optimal parameters of image

transformations
Spearman Kendall

Mean Med Mean SD Mean Med Mean SD Quant value Hotspot

remov.

Med win

size

Quantile thresholding,

hotspot removal, denoising

0.794 0.849 0.012 0.682 0.720 0.014 0.5 No 3

Quantile thresholding,

hotspot removal (no denoising)

0.792 0.844 0.012 0.681 0.720 0.012 0.5 No —

Hotspot removal, denoising

(no quantile thresholding)

0.779 0.842 0.012 0.665 0.719 0.013 — No 3

Note: The optimal parameters for image transformations are shown. ‘Mean’ and ‘Med’ stand for the mean and median of the correlation values across the gold

standard. ‘Mean SD’ is the standard deviation of the mean correlation value over 100 bootstrapped samples from the gold standard. The bold highlighted row

corresponds to the best results.

Table 4. The performance of deep learning-based models measured as Spearman and Kendall correlations with expert rankings in the gold

standard set

Image transformation applied before

calculating cosine similarity

Correlation with the expert rankings in the gold standard set

Spearman Kendall

Mean Med Mean SD Mean Med Mean SD

Xception model 0.777 0.820 0.011 0.682 0.716 0.011

Pi model 0.797 0.847 0.011 0.712 0.752 0.011

Unsupervised UMAP 0.761 0.827 0.012 0.656 0.686 0.015

UMAPþGBT 0.758 0.845 0.016 0.672 0.741 0.016

Mu model 0.725 0.804 0.016 0.638 0.705 0.016

Note: ‘Mean’ and ‘Med’ stand for the mean and median of the correlation values across the gold standard. ‘Mean SD’ is the standard deviation of the mean cor-

relation value over 100 bootstrapped samples from the gold standard. The best performance is achieved by the semi-supervised Pi model that makes use of both

labelled and unlabelled data. The bold highlighted row corresponds to the best results.
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pilot experiments indicated that neither of these approaches would
be adequate for evaluating co-localization due to being over-
simplistic as well as not representing complex spatial patterns, noise
and background adequately enough. Simulating imaging MS data is

by itself an unsolved challenge and proposed methods are rather
limited and did not gain recognition. Spotting authentic standards,
first, would hardly represent the variety of technologies, spatial
resolutions and types of tissues that we can get access to through

Fig. 3. Visualization of co-localization molecular relationships as learned from METASPACE. Dots representing annotations (each corresponding to 1 of 10 273 unique mo-

lecular formulas) are mapped based on their average co-localization across 3685 public METASPACE datasets. For a molecular class, the green colour represents unambiguous

assignment when all isomers belong to the class whereas the red colour represents ambiguous assignment when some isotopes belong to another class. (Color version of this fig-

ure is available at Bioinformatics online.)
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METASPACE. Second, experimental data from spotted authentic
standards would provide only a limited insight into which ions
should be co-localized because of in-source fragmentation and clus-
ters formation which potentially can lead to co-detections of ions
even from different standards. For example, adenosine could be
detected from both spotted ADP and ATP as an in-source fragment
and this represents only one known example out of various possible
in-source fragments.

4.2 Gold standard
Creating a high-quality gold standard set of expert-ranked pairs of
target-comparison images was possibly the most challenging part of
the study. Not only it required scientific formulation of the co-
localization problem and development of an experiment design able
to capture the perceived extent of co-localization from the experts,
but it was also the most time-consuming part of our study to organize
the whole ranking experiment by selecting datasets, recruiting almost
50 experts, communicating with them, reminding them to complete
the task, and when necessary coming back to them with requests for
corrections. Altogether it required 95 emails solely for communicating
with the rankers. Despite having expertise in performing crowdsourc-
ing studies in imaging MS (Ovchinnikova et al., 2019; Palmer et al.,
2015) and overwhelmingly positive support of METASPACE users in
performing the ranking, running this study would not be possible
without access to diverse public data in METASPACE and without
using modern web technologies employed for the RankColoc web
app that both critically facilitated the process. The achieved average
pairwise correlation between the rankers (mean Spearman 0.791) con-
firms a strong inter-ranker agreement. This indicates that there is a
consensus between experts with respect to perceived co-localization
and, importantly, that this consensus was successfully captured in the
gold standard set, thus validating our efforts.

Performing the pilot study was essential to avoid pitfalls and re-
fine the experimental design and the web app for more objective
ranking before engaging a large number of experts. Nevertheless,
after performing the complete study, we see opportunities for next-
level improvement. For example, in the spirit of active learning, we
could choose comparison ions not randomly but those ions where
our models are most uncertain about their ranking.

Figure 4 shows the statistics for the properties of the
METASPACE datasets selected for the gold standard. When select-
ing them, we mainly were driven by the requirement of having at
least three rankers from every laboratory. Thus, big laboratories
with high numbers of active METASPACE received more represen-
tation in the gold standard set. This also led to some bias towards
the types of samples and the mass spectrometry used. However,
comparing the properties of the datasets in the gold standard to the
overall METASPACE (Alexandrov et al., 2019), we see that in gen-
eral the gold standard is relatively representative. We have evaluated
whether there is a significant bias due to overrepresentation of brain
tissue datasets in the gold standard. For this, we 10 times randomly
sub-sampled one-third of all brain datasets in the gold standard. The
calculated the averaged mean Spearman for the best cosine measure
was 0.787 which is lower than for the full gold standard (0.794) but
the difference is not significant. This indicates that the effect of this
particular bias is present but not significant.

Taking into account the efforts necessary for producing such a gold
standard set, we do not expect it to be repeated on a larger scale in the
near future. However, we are considering to implement an online
approach where a target-comparison set or a reduced version of it will
be occasionally shown to METASPACE users. This approach would
provide a continuous population of the gold standard set. However,
it should be carefully designed to ensure the quality and check for
consistency, since the ranking task will be split into small subtasks and
performed over a period of time by a larger diverse crowd of rankers.

Fig. 4. Histograms of the properties of the public METASPACE datasets selected for the gold standard
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4.3 Co-localization measures
We hope that our results, comparing a variety of deep learning
models, and this discussion will be helpful for future deep learning
applications in imaging MS. In Supplementary Figure S1 and Tables
S1 and S2, we show values for all developed methods for an example
target-comparison set.

Interestingly, the unsupervised model UMAP performed on par
with the supervised UMAPþGBT model, namely its own version
enhanced with supervision through GBT. This may indicate that the
structural properties of co-localization are relatively evident in the
data.

At the same time, the achieved performance for both the best
deep learning model (mean Spearman 0.797 for the Pi model) and
the cosine measure (mean Spearman 0.794) are close to the average
pairwise agreement between the rankers (mean Spearman 0.791)
that indicates that we achieved close to theoretically best perform-
ance. This would also explain only a slight improvement when using
an advanced deep learning-based methods compared to the cosine
similarity.

The slight positive difference of the best performance compared
to the average pairwise agreement between rankers (0.797 or 0.794
versus 0.791) does not necessarily indicate an overfitting but can be
due to the averaging of rankings in the produced gold standard set,
thus introducing positive effects of averaging compared to the values
used for the rankers agreement calculation.

We would like to note other specifics of the considered problem
which potentially do not allow to capitalize on the full potential of
the deep learning methods: ion images from the same dataset have
the same size and structure and can be compared pixel-by-pixel after
flattening. Ion images also do not undergo changes in the view angle
or brightness or other non-linear deformations that would apply to,
e.g. photos used in computer vision where deep learning significant-
ly benefits from its capacity to extract abstract visual features thus
allowing comparison of different images showing the same object.
Here, future efforts can be focused on developing next-level methods
for spatial association between molecules that would consider ‘mo-
lecular microenvironment’ rather than ‘tissue section’ context.

The results potentially indicate a bottleneck in the size of the
gold standard set (2340 pairs of ranked images), since the best per-
formance was achieved by a semi-supervised model which, besides
the gold standard set, used all public METASPACE data for deriving
a representation of ion images.

It was somewhat surprising to obtain the best performance for
the cosine measure applied after the median thresholding which, for
an ion image, sets all pixel intensities smaller than the median inten-
sity to zero thus neglecting half of the pixels. Note that the cosine
measure applied after the median thresholding considers only the
areas where both images have high-intensity pixels (with intensities
above the median value). Furthermore, zeroing half of the pixels
provides an efficient denoising by substantially reducing the values
of the cosine measure between noisy images. Compared to two simi-
larly looking images, cosine distance between two random (noisy)
images is reduced more after median thresholding due to the smaller
overlap in the sets of non-zero pixels. Taking these considerations
into account, we speculate that the cosine measure combined
with the median thresholding achieves high performance because it
corresponds to the perception of rankers which make their judge-
ment about the similarity of images based on high-intensity areas
of images. Continuing this line of discussion, let us bring attention
to the second best performing measure which was the Pearson cor-
relation without any image transformation applied. Since Pearson
correlation is not recommended for highly skewed distributions
whereas the intensities in imaging MS are Poisson distributed
(Alexandrov et al., 2010), we evaluated whether the log-
transformation of pixel intensities would improve the performance.
Interestingly, it was not the case and the mean Spearman with the
expert rankings after log-transformation was 0.742 that is lower
than without any transformation (0.788). Potentially, this reflects
the same assumption we made about rankers perception, as using
the Pearson correlation for highly skewed data without log-
transformation makes it biased towards high-intensity pixels.

Comparing the best co-localization measures (deep learning Pi
model and cosine similarity after median thresholding), we investi-
gated how well they correspond to expert ranking for each
target-comparison pair from the gold standard. Figure 5 shows
that there is no visible difference between these two measures:
for 50% of all target-comparison sets both measures achieve high
performance (Spearman correlation with the expert ranking is
>0.8). Despite the fact that error analysis of low-valued sets has
not revealed any factors that would allow us to improve the meas-
ures, one can potentially combine the considered measures and
thus achieve a better performance with an ensemble ranking.
Interestingly, Figure 4 highlights that the target-comparison pairs
for which both measures performed well have also visibly high val-
ues of the rankers agreement. This provides another confirmation
that the developed co-localization measures reproduce the perceived
co-localization when experts themselves agree on it.

4.4 Applications
A wide coverage of organisms, organs, ionization types, MALDI
matrices and mass analysers represented in the imaging MS datasets
used in the gold standard set ensures broad applicability for the find-
ings and measures developed in this study. We expect key applica-
tions of the developed and evaluated co-localization methods to
be in the search for molecular biomarkers associated with either a
particular molecule or a region of interest. They should also improve
distance-based methods for data analysis, e.g. representation of the
full dataset using clustering of ion images (Alexandrov et al., 2013).
Moreover, we expect this work to provide a scientifically rigorous
justification for using these measures in systems biology approaches
aimed at uncovering molecular relationships between molecules by
assuming the tissue representing cells of different phenotypes. Here,
cutting-edge methods relying on distance or similarity measures,
such as UMAP demonstrated in this paper, can replace more con-
ventional methods such as PCA, NMF or t-SNE.
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