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Abstract: In this work, we study the Hawking temperature of the global monopole spacetime (non-
spherical symmetrical black hole) based on the topological method proposed by Robson, Villari,
and Biancalana (RVB). By connecting the Hawking temperature with the topological properties of
black holes, the Hawking temperature of the global monopole spacetime can be obtained by the
RVB method. We also discuss the Hawking temperature in massive gravity, and find that the effect
of the mass term cannot be ignored in the calculation of the Hawking temperature; the corrected
Hawking temperature in massive gravity can be derived by adding an integral constant, which can
be determined by the standard definition.
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1. Introduction

The discovery of gravitational waves provides solid evidence for the study of black
holes [1–5]. Black hole spacetimes are very special, and the topological properties can
be studied by the topological invariant Euler characteristic χ [6–9]. Black holes have
some important features, which are easier to study by calculating the Euler characteris-
tic. For example, black hole entropy has been discussed previously [9,10]; by using the
Aharonov–Bohm effect, Padmanabhan emphasized the importance of the topological prop-
erty of horizon temperatures [11]. Recently, Robson, Villari, and Biancalana [12] proposed a
powerful method to study the topology of the Hawking temperature of black hole systems
in two dimensions. The Hawking temperature of black holes in nontrivial metrics with
different number of Killing horizons can be easily calculated by using topology method.
This method has been effectively used to calculate the Hawking temperature of several
four-dimensional black hole systems [13–16], which are well verified by the accuracy of
the method.

In previous papers, the RVB method was only applied to spherical symmetrical black
holes, for example, the Schwarzschild black hole, the Kerr black hole, the R-N metric in
two dimensions [12], the Schwarzschild–de Sitter black hole [13], the anti-de Sitter black
hole [14], the Schwarzschild-like black hole [15], and the BTZ black hole [16]. So, it would be
interesting to consider the black hole which is not spherical symmetrical, and use the global
monopole black hole as an example [17,18], which has deficit angle, and consequently,
the spherical symmetry is broken. So, we consider whether the RVB method is applicable
to the calculation of lower-dimensional (two-dimensional) global monopole black holes.
It is also very useful for topologically understanding gravitational interaction in two-
dimensional spacetime. After the calculation, we find that the Hawking temperature of
the global monopole black hole in general relativity is easily obtained by the RVB method.
The constant η also has an impact on the Hawking temperature, if the symmetry breaking
scale η increases, the temperature decreases. We also discuss the Hawking temperature in
massive gravity by the RVB method, and find that the temperature loses the information of
the mass term; therefore, if we add an integral constant, which can be determined by the
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Hawking temperature obtained by the standard definition, then we will obtain the exact
Hawking temperature for the massive global monopole black hole.

The structure of the paper is as follows. In Section 2, we introduce the RVB method,
a topological formula for the Hawking temperature. In Section 3, we obtain the Hawking
temperature of the global monopole black hole in general relativity by the RVB method.
In Section 4, the Hawking temperature of the global monopole black hole in massive gravity
is studied by the RVB method. Finally, Section 5 offers a brief conclusion of this paper.

2. RVB Method for the Hawking Temperature

Due to the diversity of black hole systems, stationary black holes and rotating black
holes have simple metrics, so the temperature can be easily derived. However, for many
special black holes, the temperature is difficult to calculate because of the complex coordi-
nate system. Therefore, the RVB method relates the Hawking temperature of a black hole to
the Euler characteristic χ; this is extremely useful in calculating the Hawking temperature
in any coordinate system.

According to references [12,13], the Hawking temperature of a two-dimensional black
hole can be found by the following topological formula:

TH =
h̄c

4πχkB
∑j≤χ

∫
rHj

√
| g |Rdr, (1)

where h̄ is the Planck constant, kB is the Boltzmann constant, c is the speed of light, g is
the determinant of two-dimensional Euclidean metric, and rHj is the location of jth Killing
horizon. In this paper, we set that h̄ = 1, c = 1, and kB = 1. R is the Ricci scalar and
depends on the spatial coordinate r; χ is the Euler characteristic, indicating the number of
Killing horizons in the Euclidean geometry; and the symbol ∑j≤χ denotes a sum over all
the Killing horizons.

The Euler characteristic χ is an important topological invariant, which describes in-
formation about the manifold structure and plays an important role as the link between
geometry and topology. Here, the black hole spacetime with event horizon can be in-
terpreted as a compact manifold. In n (even)-dimensions, the Euler characteristic χ of a
geometry can be defined as [19]

χ =
2

area(Sn)

∫
Mn

√
| g |dnxG, (2)

where area(Sn) is the surface area of a n-dimensional sphere, Mn is a compact manifold.
The density G in the Riemann coordinates can be defined as

G =
1

2n/2n!g
εi1···in εj1···jn Ri1i2 j1 j2 Ri3i4 j3 j4 . . . Rin−i in jn−1 jn . (3)

where εi1···in is the Levi-Civita symbol, and Rµνρτ is the Riemann tensor. In two dimensions,
the density becomes G = R1212

g = R
2 . In Ref. [12], the Euler characteristic is only calculated

at the Killing horizon in the black hole.
In two dimensions for χ = 1, the expression of the Euler characteristic becomes

1
4πTH

∫
rH

√
| g |Rdr = 1, (4)

which is expressed in (1) when the black hole has one Killing horizon.

3. RVB Method for the Hawking Temperature

Next, we will apply the topological formula, the RVB method, to study the Hawking
temperature of the global monopole black hole. This is a non-spherical symmetrical
black hole in four-dimensional spacetime, which has different topology from the spherical
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symmetrical spacetime, and the spherical symmetry is broken by a deficit angle. The global
monopole black hole’s metric is [17,18]

ds2 = − f (r)dt2 + h(r)dr2 + r2dθ2 + r2 sin2 θdϕ2, (5)

where
f (r) = h(r)−1 = 1− 8πGη2 − 2MG

r
, (6)

where M is the mass of the black hole, G is the Newtonian gravitational constant, and η
is the symmetry-breaking scale. Because the metric (5) shows a space with a deficit angle,
the area of a sphere of radius r is not 4πr2 , but 4π(1− 8πGη2)r2 [18].

Due to definition, the Killing horizon does not involve the angular degree of freedoms,
so we reduce the angular degree of freedoms of the spacetime. In Euclidean coordinate
system, the two-dimensional line element of the global monopole black hole via the Wick
rotation is t = iτ is [20]

ds2 = f (r)dτ2 +
dr2

f (r)
, (7)

Therefore, the Ricci scalar from (7) is

R = − d2

dr2 f (r) = −4GM
r3 . (8)

For a global monopole black hole, Equation (7) will diverge when f (r) = 0. Then,
considering f (r) = 0, we derive the outer horizon rH = 2MG

1−8πGη2 (the Killing horizon).

If η2 = 1
8πG , r is a singular point and has no physical meaning, then we find that r → ∞ at

the point with η2 → 1
8πG , which means that the whole space is within the event horizon

of the black hole. The metric returns to the Schwarzschild black hole via η2 = 0 , so the
symmetry breaking scale satisfy 0 ≤ η2 < 1

8πG . There is only one horizon, the Euler
characteristic is also satisfies χ = 1. Therefore, the global monopole black hole temperature
is found by using Formula (1)

TH =
1

4πχ

∫
rH

√
| g |Rdr =

(1− 8πGη2)
2

8πMG
. (9)

Using the RVB method, the Hawking temperature is inversely proportional to the
mass of the global monopole black hole, while the constant η also has an impact on the
Hawking temperature, if the constant η increases, then the temperature decreases.

4. Hawking Temperature of the Global Monopole Black Hole in Massive Gravity

In the calculation of the Hawking temperature, we also apply the RVB method in
massive gravity. First, let us start with a brief introduction to the global monopole black
hole in massive gravity. The three dimensional action of massive gravity with a U(1) gauge
field is expressed by the following formula [21,22]:

S = − 1
16π

∫
d3x
√
−g

[
R− 2Λ + L(F) + M̃2

4

∑
i=1

ciUi(g, f )

]
, (10)

where L(F) is the Lagrangian function of the vector field, M̃ is the mass parameter, ci
are some constants, and Λ = − 1

l2 is a negative cosmological constant. In this section,
the effects of cosmic constants and Lagrangian are not considered, so we set L(F) and Λ
both as 0. The symmetric polynomials of the eigenvalues computed by the d× d matrix
Ku

v =
√

guα fαv is U(i), which can be expressed as follows
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U1 = [K],
U2 = [K]2 −

[
K2],

U3 = [K]3 − 3[K]
[
K2]+ 2

[
K3],

U4 = [K]4 − 6
[
K2][K]2 + 8

[
K3][K] + 3

[
K2]2 − 6

[
K4].

(11)

where [K] = Ku
u and (

√
A)u

v(
√

A)v
λ = Au

λ. The metric follows the formula fuv = diag(0, 0, a2hij),
with a is being a positive constant, hij is the parameter for the space.

In massive gravity [22], there is an extra term in Formula (6),

f (r) = 1− 8πGη2 − 2MG
r

+ M̃2cc1r, (12)

When f (r) = 0, the global monopole black hole has two horizons

r± =

(
8πGη2 − 1

)
±
√
(1− 8πGη2)

2 + 8MGM̃2cc1

2M̃2cc1
, (13)

Only r+ (the Killing horizon) is considered in this section.
The Ricci scalar of the global monopole black hole is

R = − d2

dr2 f (r) = −4GM
r3 . (14)

This result shows that the Ricci scalar is equal to (8), which probably because the extra
mass term in (12) does not have any contribution on the calculation of the Ricci scalar R.
Then, by using the RVB method in (1), the calculated Hawking temperature of the global
monopole black hole in massive gravity is expressed as

TH =
GM

2πr2
+

, (15)

This is exactly the same as the temperature expression given in Section 3. However,
by using the standard definition of [23], the Hawking temperature of the global monopole
black hole in massive gravity is

T̃H =
f ′(rH)

4π
=

GM
2πr2

+

+
M̃2cc1

4π
. (16)

Comparing (15) and (16), we find that the Hawking temperature of the massive global
monopole black hole calculated by the RVB method is different from that obtained by the
standard definition. It seems to mean that the RVB method is not apply to the massive
global monopole black hole. However, we should notice that the topological Formula (1) is
actually an indefinite integral, because the indefinite integral has an integral constant, so the
integral constant can be determined by the standard definition of the Hawking temperature,
and we will obtain the exact Hawking temperature for the massive global monopole black
hole. It means the influence of the mass term on temperature can not be ignored, and the
temperature corrected by the standard definition [23] will be higher. Therefore, when the
RVB method is used to calculate the Hawking temperature of a monopole black hole in
massive gravity, it is necessary to correct the integral constant by the standard definition.

5. Summary and Conclusions

In this work, we studied the Hawking temperature of the monopole black hole, which
is a non-spherical symmetrical black hole in four-dimensional spacetime, by using the
Euler characteristic in topological formula Equation (1). The Hawking temperature is easily
obtained by the RVB method, in the calculation of the Hawking temperature, Formula (9),
and the integral of the temperature, Formula (9), where r = rH contains an integral constant,
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and the integral constant is 0. The temperature expression consistent with the method in
quantum field theory of curved spacetime (the standard method mentioned in the paper).
The result shows that the method is applicable to the global monopole black hole. However,
when the RVB method is used to calculate the temperature in massive gravity, the result is
not ideal. We find that we can obtain the same result as the standard method only when
the integral constant is taken as a specific value [23].
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