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Introduction
Since the original proposal of the lasso by Tibshirani,1 
penalized regression methods for variable selection in high-
 dimensional settings have attracted considerable attention in 
modern statistical research. These methods have been exten-
sively studied in theory and widely applied in practice. Most 
of the methods focus on selecting individual explanatory vari-
ables (or predictors). In many settings, however, predictors 
possess a group structure. Incorporating this grouping infor-
mation into the modeling process has the potential to improve 
both the interpretability and the accuracy of the model.

Consider first the linear regression problem with 
J nonoverlapping groups,
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=
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j
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where y is an n × 1 response vector, ε ∼ Nn(0, σ 2I), Xj is an 
n × Kj matrix corresponding to the jth group, Kj is the number 
of elements in group j, and β  j is the associated Kj × 1 coeffi-
cient vector. In equation (1), we take y to be centered, thereby 
eliminating the need for an intercept. To perform variable 
selection at the group level, Yuan and Lin2 proposed the group 
lasso estimator, defined as the value β minimizing
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where ||⋅|| is the Euclidean (l2) norm and L(β | y, X) is the 
loss function. For linear regression, the loss function is simply 
the residual sum of squares, that is, ||y − Xβ||2/2n. For other 
models, it can be any term that quantifies the fit of the model; 
for example, Meier et al.3 extended the group lasso selection 
to logistic regression by using the negative log-likelihood as 
the loss function. The second term in equation (2) is called 
the group lasso penalty, and it leads to variable selection at the 
group level. That is, the coefficient estimates of the variables 
in the jth group will be all nonzero if group j is selected and 
all zero otherwise.

However, an obvious limitation of the group lasso is that 
it assumes that the groups do not overlap. This introduces a 
barrier to its application for many problems where variables 
may be included in more than one group. The application we 
focus on in this study is the analysis of gene expression pro-
files, where individual genes can be grouped into pathways 
in which the collective action of several genes is required for 
the cell to carry out a complicated function. These pathways 
generally overlap with each other as one gene can play a role 
in multiple pathways. Here, Xj represents the expression data 
for all genes in the jth pathway, Kj is the number of genes in 
that pathway, J is the number of pathways, and y is a vector 
of phenotypes or clinical responses that we are interested in 
explaining or predicting using the gene expression data.

Within the hypothesis-testing framework, a number of 
pathway-based approaches have been proposed for analyzing 
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gene expression data under the premise that weak expres-
sion changes in individual genes are coordinated and can be 
combined in groups to produce stronger signals.4 Hence, by 
incorporating prior pathway information, these approaches 
aim to identify differentially expressed pathways, instead of 
individual genes. Compared to traditional single-gene tests, 
pathway-based tests often lead to higher statistical power and 
better biological interpretation. Among the pathway-testing 
approaches, gene set enrichment analysis (GSEA)5,6 has been 
widely used. However, the hypothesis-testing framework has 
certain limitations for pathway analysis, such as the inability 
to account for the effect of multiple pathways simultaneously, 
and it is not well suited to using gene expression and pathway 
data to predict biological outcomes.7

On the other hand, pathway-based approaches have been 
largely absent from regression methods due to the challenges 
of dealing with overlapping pathways in regression models. 
Limited attempts have been made to build pathway-based 
regression models. Wei and Li8 proposed a nonparametric 
pathway-based regression using gradient decent boosting. 
Liu et al.9 developed a semiparametric regression frame-
work to model the pathway effects using least-squares kernel 
machines. However, the former is a “black box” approach, and 
its results are difficult to interpret in terms of how pathways 
are related to the outcome, while the latter approach only 
works for estimating the effect of a single pathway and cannot 
model multiple pathways simultaneously.

In this study, we formulate the overlapping group logistic 
regression model based on the latent group lasso approach,10 
making it applicable to perform pathway selection under the 
general linear modeling framework. This approach natu-
rally preserves the straightforward interpretation of regres-
sion coefficients and offers the ability to scale up to model 
hundreds of overlapping pathways simultaneously in high-
dimensional settings.

We also conduct a systematic comparison of this over-
lapping group lasso (OGLasso) approach with both the 
ordinary lasso and GSEA via both simulation and real-data 
studies. Our aim is to demonstrate the fundamental differ-
ences between hypothesis-testing approaches and regression 
models with respect to their implications for pathway selec-
tion. Thus, although a variety of extensions and refinements 
of GSEA have been proposed, such as GSEAlm,11 ROAST,12 
and npGSEA,13 we restrict our attention here to GSEA, the 
most well-known and widely used method in this group.

Finally, we provide a publicly available implementation 
of the OGLasso method described in this study through the 
R package grpregOverlap. This package serves as an extension 
of the R package grpreg, which provides a variety of functions 
for fitting penalized regression models involving grouped pre-
dictors but requires those groups to be nonoverlapping.

The rest of the study is organized as follows. In the 
“Methods” section, we review the OGLasso approach and 
construct the OGLasso model. In addition, we give a brief 

introduction to GSEA, along with some discussions. In the 
“Simulation studies” section, we first compare the ordinary 
lasso and OGLasso in terms of model accuracy with simu-
lated data. We then examine the group selection accuracy of 
OGLasso and GSEA under different simulation settings. In 
addition, we provide two real-data studies in the “Real-data 
studies” section. We conclude the study with final discussions 
in “Discussion” section.

Methods
overlapping group lasso. Suppose the p predictors 

{x1, x2, …, xp} are assigned into J possibly overlapping groups 
(ie, a given predictor xi may be included in more than one 
group). The group lasso estimator (2) does not necessarily select 
groups in this overlapping setting. For example, suppose p = 3 
and J = 2, with one covariate shared between the two groups: 
group “A” and group “B”, with group A truly related to the 
outcome. If group B is not selected, then all of its coefficients 
are zero, even though one coefficient also appears in group A. 
Thus, group A is only partially selected. This problem is greatly 
exacerbated as the groups grow in size and complexity and is 
described in greater detail in Jenatton et al.14

To select entire groups of covariates in the overlapping 
setting, Jacob et al.10 proposed the OGLasso, formulated as
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where { }γ j
j
J = 1 are J so-called latent coefficient vectors. 

The collection of latent vectors γ γ γ γi j j
p
j= ( )′1 2, , ,…  satis-

fies γ βj
j
J
=∑ 1

= , if xk does not belong to group j, with 
γ k

j ≠ 0 otherwise.
The idea of model (3) is to decompose the original coef-

ficient vector into a sum of group-specific latent effects. This 
decomposition allows us to apply the group lasso penalty to 
the latent vectors { }γ j

j
J
=1, which do not overlap, instead of 

the original, overlapping coefficients. Consequently, when a 
latent vector γ  j is selected, all covariates in group j will be 
selected, even if some members of the group are also involved 
in unselected groups.

It is worth clarifying the exact meaning of “latent” here. 
It is not the case that the grouping structure is unobservable – 
we are considering situations in which the grouping is known 
in advance. For example, much is already known about how 
genes are organized into pathways; we want to leverage this 
information to produce more accurate models.

Rather, what is latent is the decomposition of the effect 
of each feature into the groups it belongs to. For example, sup-
pose gene X belongs to pathways A and B. It may be that 
gene X’s effect on the response is mediated entirely through 
pathway A and that its membership in pathway B is irrelevant. 
This parsing of the effect of the genes into pathways is the 
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latent aspect of the problem that cannot be observed directly – 
we can only observe changes in the expression of gene X, not 
whether expression changed in order to produce an effect in 
pathway A or B.

Figure 1 illustrates the coefficient decomposition mecha-
nism described in equation (3). Suppose that there are four 
variables x1, x2, x3, x4 that are included in four groups, S1 = {x1, 
x2}, S2 = {x2, x3}, S3 = {x1, x3}, and S4 = {x3, x4}, where S j denote 
the set of variables in group j. Since x1 is in both groups 1 
and 3, β1 is thus decomposed into γ γ1

1
1
3+ . Likewise, β3 is 

decomposed into γ γ γ3
2

3
3

3
4+ + , and so on. Suppose group 1 is 

the sole truly nonzero group in this example. The OGLasso 
model can select γ 1, thereby indirectly selecting β1 and β2 and 
eliminating β3 and β4 since they do not appear in group 1. 
Note that the original group lasso cannot accomplish this – if 
group 3 is eliminated, then predictor 1 is eliminated as well 
since it belongs to group 3.

Based on the coefficient decomposition, model (3) can 
be transformed into a new minimization problem15 with 
respect to γ :

 
min ( ) ( ) .

γ
γ γ λ γQ L K j j

j

J
= +

=
∑  y,X

1

 (4)

Here, γ in principle consists of all elements of γ  j, 
although in practice one can leave off the zero elements as 
they have no effect on the objective function. The new design 
matrix X is constructed by duplicating the columns of over-
lapped variables in the raw design matrix X, where appropri-
ate, to match the elements of γ. The equivalence of the loss 
functions L(β |y, X) and L( )γ y,X  can be seen by observing 
that X X Xβ γ γ= =∑ j

j
 .

The implication of equation (4) is that the OGLasso 
problem is equivalent to a classical group lasso in an expanded, 
nonoverlapping space. This is of considerable practical conve-
nience, as it allows us to solve equation (4) using computation-
ally efficient algorithms that have previously been developed 
for the group lasso.16

overlapping group logistic regression. It is relatively 
straightforward to extend equation (4) to models other than 

linear regression; in this section, we describe its application 
to penalized logistic regression in the presence of overlap-
ping groups. Here, y is the response vector of binary entries, 
and the intercept β0 cannot be removed by centering y. For 
convenience, we assume that the first column of the design 
matrix X is the unpenalized column of 1s for the intercept β0 
and denote xi = (1, xi1, …, xip)′ for i = 1, …, n. Correspond-
ingly, we denote β = (β0, β1, …, βp )′. The logistic regression 
model is

 
Pr
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The corresponding loss function is the (scaled) negative 
log-likelihood function,

 
L

n
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We can then duplicate the columns of the overlapped 
covariates, expanding the design matrix to X as described pre-
viously, and construct the overlapping group logistic regres-
sion model in the same fashion as model (4), with

 
L

n
yi i i

i

n
γ γ γ ′ ′y,X x x  ( ) = ( ) − + ( )( ){ }

=
∑1

1
1

log exp ,  (6)

where xi
′ is the ith row of the expanded design matrix X, and 

the first element of γ is the unpenalized intercept β0.
Gene set enrichment analysis. Among the hypothesis-

testing approaches for pathway selection, GSEA stands out 
due to its relative simplicity and for preserving the gene–gene 
dependencies that occur in real biological data.17

The procedure of GSEA6 starts with ranking the p genes 
by the correlation, rj, between each gene and the phenotype. 
Then a test statistic, the enrichment score (ES), is calculated 
for each gene set by walking down the ranked gene list and 
accumulating the correlation information: increasing ES by 
  r ri j s j

α α/
∈∑  if gene i is included in gene set S; decreasing 

ES by 1/(p − |S|) otherwise. Here, α is a prespecified exponent 
parameter. When α = 1, ES corresponds to the normalized 
Kolmogorov–Smirnov statistic. Next, the significance level of 
the ES is assessed by a permutation test. Finally, the signifi-
cance of the gene sets is determined by controlling the false 
discovery rate (FDR).

Though widely used, GSEA also has several limitations. 
First, GSEA may be biased in favor of larger gene sets by sys-
tematically assigning those gene sets higher ES18; second, it 
implicitly assumes that genes within the same gene set show 
coordinated (ie, either all positive or all negative) associations 
with the phenotype, making it less likely to detect sets in 
which the genes are heterogeneous with respect to the direc-
tion of association with the phenotype.19figure 1. The coefficient decomposition of overlapping group lasso.
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There are inherent differences between GSEA and the 
proposed overlapping group logistic regression method in 
the sense that GSEA treats the phenotype as fixed and gene 
expression as random, while regression-based methods do the 
opposite. Thus, GSEA tends to be more appropriate in settings 
where the phenotype can be directly manipulated by the experi-
ment (eg, knockout mice), while regression is more appropri-
ate in observational settings (eg, predicting patient outcomes). 
Nevertheless, there are many situations in which either method 
could reasonably be used, and therefore, it is of interest to com-
pare the selection properties of the two approaches.

simulation studies
In all the simulation studies, we use the term “null group” to 
denote a group whose coefficients are all equal to zero in the 
true model and “true group” to denote a group with all non-
zero coefficients in the true model. In addition, we refer to 
||γ  j|| as the effect size of group j and γ k

j as the latent effect of 
covariate k in group j.

oGLasso versus ordinary lasso. We start by compar-
ing the OGLasso with the ordinary lasso in terms of esti-
mation and prediction accuracy. We use root mean squared 
error (RMSE) to measure estimation accuracy and misclas-
sification error (ME) to measure prediction accuracy, defined 
as follows:

RMSE ME
incorrectly classified

Sample size
= −( ) =

=
∑1 2

1p k k
k

p

β β ;
#

It should be noted that we compute ME based on a new 
response vector generated by the same design matrix for each 
replication. Specifically, given a design matrix X, two response 
vectors y and y* are simulated. The data {X, y} is used to fit the 
model, and its prediction accuracy is tested on data {X, y*}.

We consider two simulations with different settings 
described as follows.

Setting 1: Synthetic data. We begin with synthetic data 
where there are 15 groups of covariates. All covariate values are 
simulated independently from a standard Gaussian distribution. 
The group sizes and overlap structure are presented below.

ID:
Size

1 2

3

3 4 5 6 7 8 9 10 11 12 13 14 15
10 10 10 10 10 10 10 10 10 10 10

3 3 3

:
    

10 10 10 10

3

The number underneath the brace is the number of mem-
bers shared between those two groups. For example, group 1 
contains 10 members, as does group 2, but the two groups 
contain only 17 unique predictors, as three predictors are pres-
ent in both groups. As a result, the total dimension in this 
setting is p = 135. By design, groups 1, 4, 7, 10, and 13 are 
set to be true groups. The sample size is set to be n = 50 to be 
consistent with that in Setting 2 as below.

Setting 2: Real data. For this simulation, a real gene 
expression profile data set in the p53 study7 is used as the 
design matrix to mimic the complicated correlation and over-
lapping structures in real biomedical applications. This design 
matrix is fixed for each independent replication. Here, the 
sample size n = 50, the number of genes p = 4301, and the 
number of pathways (groups) is 308; a more detailed descrip-
tion of the study is given in the “Real-data studies” section. 
We chose five pathways, with sizes 15, 16, 20, 26, and 40, to 
represent the true groups in this simulation. The number of 
overlaps between the five pathways ranges from 0 to 9.

In both of the above-mentioned two settings, the true 
group effect sizes of each of the five true groups are set to be 
equal, and the latent effects are also set to be equal within each 
true group. In this way, the true coefficient vector is uniquely 
specified. Then given the design matrix, the responses are 
generated according to equation (5) for each independent rep-
lication. The true group effect size is varied from 1 to 5 to 
simulate different magnitudes of signals.

Figure 2 illustrates the estimation and prediction accuracy 
of the proposed grouped variable selection method, as compared 
to the ordinary lasso, for both settings. The top two panels show 
results for the synthetic data simulation, while the bottom two 
panels are for the real-data simulation. The left panels illustrate 
the median RMSE relative to ordinary lasso over 500 replica-
tions, while the right panels compare the methods in terms of 
ME. OGLasso consistently achieves a lower median RMSE 
than that of the lasso in both synthetic and real-data simula-
tions. As expected, the ME by both methods decreases as the 
coefficient magnitude increases. More interestingly, the ME 
by OGLasso can be substantially lower than that of ordinary 
lasso. In the synthetic data simulation, for example, the ME 
by OGLasso is 7% lower than that of ordinary lasso when the 
group effect size is 5. The two methods are more similar in terms 
of predictive accuracy on the real data, where the dimensional-
ity is much higher and correlation structure more complicated. 
Nevertheless, the prediction accuracy can still be improved by 
around 2% with OGLasso compared to ordinary lasso.

oGLasso versus GseA. In this section, we use simu-
lated data to compare the selection properties of the OGLasso 
against GSEA in a variety of different settings. Because 
OGLasso and GSEA do not estimate the same quantities and 
GSEA does not produce predictions, the only way to compare 
them is with respect to selection accuracy. To ensure a fair 
comparison, we use each method to select a fixed number of 
groups. We then evaluate the group selection accuracy by the 
true discovery rate (TDR):

 
TDR

of true groups selected

of groups selected
=

#

#
,

where the # of groups selected was fixed at 5 (ie, each 
method was used to identify the five most important- looking 
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groups). In each of the following simulations, the results 
are based on the sample size n = 100 and averaged over 
500 independent replications.

Setting 3: Unequal group size. First, we investigate the per-
formance of the two approaches when group sizes are unequal. 
In this simulation, the design matrix consists of 15 groups with 
all covariate values simulated independently from a standard 
Gaussian distribution. The group sizes and overlap structure 
are shown below.

ID:
Size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 3 3 6 6 6 9 9 9 15 15 15 24 24

1 2 3 5

:
   

88

24


The overlap here is designed to be one-third of the size 
of overlapped groups. As a result, the total dimension in this 
setting is p = 152. Moreover, groups 1, 4, 7, 10, and 13 are set 
to be true groups with ||γ  j|| = 5, and the others are null groups 
with j = 0. The latent effects are again set to be equal within 
each true group.

Table 1 summarizes the mean TDR and size of selected 
groups for the OGLasso and GSEA over 500 replications. 
The two methods are comparable in terms of TDR, while the 
average size of selected groups from GSEA is slightly larger.

The proportion of each group selected is depicted in 
Figure 3. OGLasso tends to favor groups with smaller size, 

while GSEA has roughly an equal probability of selecting 
a true group regardless of its size. This is understandable, 
as regression- based methods have a built-in mechanism for 
encouraging parsimony, unlike GSEA. Whether this prefer-
ence for smaller groups is desirable depends on the application 
and the scientific goals of the study.

Setting 4: Heterogeneous gene effects. Previous studies have 
shown that GSEA is less likely to detect sets of genes contain-
ing both positive and negative associations with the pheno-
type.19 This is because, by pooling together correlations, GSEA 
assumes that the genes in a set have a coordinated effect – that 
is, that they all act in the same direction. In this simulation, 
we examine this aspect of GSEA further and demonstrate 
that the exhibition of heterogeneous effects among genes in a 
set deteriorates the statistical power of GSEA.

We employ the same configuration as in Setting 1 of the 
“OGLasso versus ordinary lasso” section for the design matrix 
(except that the sample size here is n = 100) but specify the 
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figure 2. Accuracy of OGLasso and ordinary lasso with respect to the magnitude of the group effect size. Top two panels summarize results for the 
synthetic data simulation, while bottom two panels are for the real-data simulation.  
notes: Left panels: Median RMSE relative to ordinary lasso over 500 replications. Right panels: Median ME over 500 replications.

table 1. The mean (standard error) of TDR and average size of 
selected groups of OGLasso and GSEA over 500 replications.

mEthOd tdR AvERAGE SizE

oGLasso 0.77 (0.01) 8.8 (0.1)

Gsea 0.79 (0.01) 11.0 (0.1)
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true coefficient values in a different manner. Specifically, we 
draw the true latent coefficients γ k

j for each true group from 
a Unif(µ − σ, µ + σ) distribution. Here, σ is a parameter that 
controls the degree of heterogeneity (or variability) of the gene 
effects. The larger σ is, the more heterogeneous the effects are. 
In this simulation, we vary σ to examine the effect of hetero-
geneity on the TDR of each method.

On a technical note, it must be pointed out that varying 
σ will also change the group effect, ||γ  j||. To suppress this 
possibly confounding effect, we adjust µ along with σ so that 
the (root mean square) group effect size remains constant. 

Specifically, choosing µ σ= −5
2

1
3

2  results in a constant 

E || ||γ j 2 5( ) =  for all values of σ.

Figure 4 compares OGLasso and GSEA in terms of 
TDR as a function of σ. OGLasso is essentially unaffected 
by heterogeneity: it detects approximately four of the five true 
groups regardless of the magnitude of heterogeneity. In con-
trast, the TDR of GSEA decreases as σ increases. This effect 
is apparent even when all genes in a group have a consistent 
direction, although the effect is much more significant for 
σ . 1.37, at which point it is possible for genes within a true 
group to have opposite directions.

Setting 5: Correlation among genes. In this simulation, we 
assess how correlation among genes affects group selection. 
We use the same settings for the groups and overlap struc-
ture as in Setting 1, where p = 135. The true coefficients are 
fixed so that the group effect ||γ  j|| = 5 for each true group 
and that all latent effects γ k

j within a true group j are equal. 

In this setting, covariates are no longer independent but are 
instead simulated from a multivariate Gaussian distribution 
with mean 0 and variance Ω. We impose a block-diagonal 
covariance structure with five compound-symmetric blocks, 
as shown below:

Ω =

∑

∑

∑

∑

∑
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1

1
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Figure 5 compares OGLasso and GSEA in terms of 
TDR as a function of pairwise correlation ρ. As expected, 
TDR of both methods decreases as the correlation among 
genes increases. However, GSEA is much more strongly 
affected by correlation than the OGLasso. For example, as 
ρ increases from 0 to 0.1, the TDR of GSEA drops from 
around 0.8 to 0.45. This ability – to adjust for correlation 
between pathways – is one of the primary potential advan-
tages of a regression-based approach over a hypothesis-
testing approach, which is limited to considering a single 
pathway at a time.

real-data studies
In this section, we analyze the data from two gene expres-
sion studies reported in Subramanian et al.6, one involving the 
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mutational status of p53 in cell lines and the other involving 
the prognosis of lung cancer patients.

The p53 study aims to identify pathways that correlated 
with the mutational status of the gene p53, which regulates 
gene expression in response to various signals of cellular 
stress. The p53 data20 consist of 50 cell lines, 17 of which are 
classified as normal and 33 of which carry mutations in the 
p53 gene. To be consistent with the analysis in Subramanian 
et al.7, 308 gene sets that have size between 15 and 500 are 
included in our analysis. These gene sets contain a total of 
4301 genes.

The lung cancer data21 contains gene expression profiles 
in 86 tumor samples, of which 24 are classified as “poor” out-
come and the remaining as “good” outcome. The data sets are 
preprocessed in the same fashion as in the p53 study, resulting 
in 258 gene sets that contain a total of 3256 genes. Compared 
to the p53 data, the lung cancer data show much weaker sig-
nals: no individual gene is found to be significant in a conven-
tional single-gene analysis.

We first compare the OGLasso to the ordinary lasso in 
terms of prediction accuracy. For each method, 10-fold cross-
validation was used to choose the regularization parameter λ.
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figure 4. Comparison of OGLasso and GSEA in terms of TDR as a function of heterogeneity parameter σ. the blue dotted line indicates σ = 1.37, after 
which negative coefficients can occur by design. The mean values over 500 replications are displayed.
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Indeed, as shown in Table 2, the incorporation of pathway 
information into the regression model produces more accurate 
predictions in both studies. In the p53 study, where the signals 
are relatively strong, the ME of the ordinary lasso is 8% lower 
than that of the intercept-only model. However, the OGLasso 
can further lower the error by an additional 6%. In the lung 
cancer study, due to a small signal-to-noise ratio, the ordinary 
lasso performed even worse than the intercept-only model. 
However, the OGLasso was able to improve on the predic-
tions of the intercept-only model, albeit only slightly.

We now turn to comparing the pathways selected by 
OGLasso and GSEA. Again, 10-fold cross-validation is used 
to select A for OGLasso, while a FDR cutoff of 0.25 was used 
to select pathways with GSEA. Table 3 lists the number of 
pathways, the number of total genes, and the number of unique 
genes in those selected pathways by OGLasso and GSEA. In 
both studies, GSEA selects more pathways than OGLasso, 
especially in the lung cancer study (21 vs. 3). Moreover, in 
agreement with our earlier simulation results, GSEA selects 
substantially larger pathways than OGlasso. For example, in 
the lung cancer study, the average pathway size for GSEA is 
820/21 = 39 genes, while the average size for OGLasso is only 
51/3 = 17 genes.

Table 4 presents a summary of pathway selection results 
in the p53 study that sheds light on the nature of the pathways 
selected by each approach; an equivalent table for the lung can-
cer study is included in the Supplementary Table 1. Naturally, 
both approaches identify the “p53 Pathway” as being associ-
ated with p53 mutation status. However, GSEA also selects 
pathways “radiation_sensitivity”, which shares nine genes with 
“p53 Pathway”, “p53hypoxiaPathway” (seven shared genes), 
and “P53_UP” (five shared genes). From a regression perspec-
tive, these four pathways are largely redundant, and the three 
unselected pathways carry no additional useful information 
beyond that already contained in the p53 pathway. On the 
other hand, OGLasso selects one pathway, “cklPathway”, not 

table 2. Real-data studies: 10-fold cross-validated ME for different 
models. “Baseline” is the intercept-only model.

mEthOd p53 StudY LunG CAnCER StudY

Baseline 0.34 0.28

Lasso 0.26 0.30

oGLasso 0.20 0.27

table 3. Real-data studies: number of selected pathways (# pathways), number of total genes (# total genes), and number of unique genes (# 
unique genes) in selected pathways by OGLasso and GSEA.

p53 StudY LunG CAnCER StudY

mEthOd # PAthwAYS # tOtAL GEnES # uniquE GEnES # PAthwAYS # tOtAL GEnES # uniquE GEnES

oGLasso 3 46 44 3 51 50

Gsea 6 139 105 21 820 629

table 4. the p53 study: pathways selected by oGLasso and Gsea 
with FDR # 0.25.

PAthwAY LAbEL SizE fdR q vALuE GSEA OGLASSO

hsp27 pathway 15 ,0.001  

p53hypoxia pathway 20 ,0.001  –

p53 pathway 16 ,0.001  

radiation sensitivity 26 0.078  –

p53 UP 40 0.013  –

rasPathway 22 0.171  –

ck1Pathway 15 0.500 – 
 

identified by GSEA. Although the ckl pathway has a weaker 
marginal relationship with p53 mutation status than the hsp27 
and p53 pathways, the information it contains is largely inde-
pendent of the other pathways included in the model (no over-
laps with the hsp27 and p53 pathways), potentially shedding 
light on novel p53 relationships that would not be apparent 
from the GSEA approach.

The biological interpretations of the pathways selected 
in the lung cancer study are less clear due to the weaker sig-
nals and more complicated biological outcome. Nevertheless, 
there are some interesting similarities and differences here as 
well. Of the three gene sets selected by OGLasso, one path-
way (ceramide) is also selected by GSEA. The other two gene 
sets, although not selected by GSEA, contain a fair amount 
of overlap with GSEA-selected sets. For example, OGLasso 
selects the Fas pathway, while GSEA selects the p53 pathway. 
However, both pathways are involved in apoptosis, and six 
genes are shared between the two pathways. The simulation 
studies of the “OGLasso versus GSEA” section suggest that 
differences in the size, heterogeneity, or correlation patterns 
of these pathways provide an explanation for why OGLasso 
prefers the Fas pathway to the p53 pathway.

discussion
Pathway-based approaches for analyzing gene expression 
data have become increasingly popular in recent years. 
Most methods have approached the problem from a mul-
tiple hypotheses testing perspective. However, the latent 
group lasso approach proposed by Jacob et al.10 allows the 
incorporation of pathway information into regression mod-
els as well.
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Regression models offer two distinct advantages in this 
setting. First, they provide a direct method for using the 
entirety of the pathway information to predict biological 
responses. Second, they make no assumptions about the dis-
tribution of the expression data itself. For this reason, the 
methods we develop here can be applied to any gene expres-
sion study, regardless of the technology used for quantification 
(qPCR, microarrays, RNA-Seq, etc.).

In this study, we present evidence that the incorpora-
tion of pathway information can substantially improve the 
accuracy of gene expression classifiers. Furthermore, we 
provide open-source software, publicly available at cran.r-
project.org, for fitting the OGLasso models described 
in this study. By retaining the underlying framework of 
regression modeling, this approach can be applied to both 
continuous and binary outcomes, and it is straightforward 
to extend the idea to Cox proportional hazards models for 
time-to-event outcomes.

Finally, this study provides, to our knowledge, the only 
systematic comparison of OGLasso methods with the GSEA 
approach. There is a fundamental difference between the two 
methods: GSEA carries out independent tests of each gene 
set, while the OGLasso is a regression method that consid-
ers the effect of all pathways simultaneously. We show that, 
while there is broad agreement between the two, substantial 
differences between the approaches may arise with respect 
to pathway size, heterogeneity of gene effects, and correla-
tions between gene sets. These factors, along with the goals 
and design of the study, should be carefully considered when 
deciding upon an approach to data analysis.
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