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Abstract

During disease progression to AIDS, HIV-1 infected individuals become increasingly immunosuppressed and susceptible to
opportunistic infections. It has also been demonstrated that multiple subsets of dendritic cells (DC), including DC-SIGN(+)
cells, become significantly depleted in the blood and lymphoid tissues of AIDS patients, which may contribute to the failure
in initiating effective host immune responses. The mechanism for DC depletion, however, is unclear. It is also known that
vast quantities of viral envelope protein gp120 are shed from maturing HIV-1 virions and form circulating immune
complexes in the serum of HIV-1-infected individuals, but the pathological role of gp120 in HIV-1 pathogenesis remains
elusive. Here we describe a previously unrecognized mechanism of DC death in chronic HIV-1 infection, in which ligation of
DC-SIGN by gp120 sensitizes DC to undergo accelerated apoptosis in response to a variety of activation stimuli. The
cultured monocyte-derived DC and also freshly-isolated DC-SIGN(+) blood DC that were exposed to either cross-linked
recombinant gp120 or immune-complex gp120 in HIV(+) serum underwent considerable apoptosis after CD40 ligation or
exposure to bacterial lipopolysaccharide (LPS) or pro-inflammatory cytokines such as TNFa and IL-1b. Furthermore,
circulating DC-SIGN(+) DC that were isolated directly from HIV-1(+) individuals had actually been pre-sensitized by serum
gp120 for activation-induced exorbitant apoptosis. In all cases the DC apoptosis was substantially inhibited by DC-SIGN
blockade. Finally, we showed that accelerated DC apoptosis was a direct consequence of excessive activation of the pro-
apoptotic molecule ASK-1 and transfection of siRNA against ASK-1 significantly prevented the activation-induced excessive
DC death. Our study discloses a previously unknown mechanism of immune modulation by envelope protein gp120,
provides new insights into HIV immunopathogenesis, and suggests potential therapeutic approaches to prevent DC
depletion in chronic HIV infection.
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Introduction

HIV-1 envelope protein gp120 binds to CD4 and chemokine

receptors CCR5 or CXCR4 which are expressed by dendritic cells

(DC) and which facilitate viral entry into the cells [1]. HIV-1

gp120 is also readily shed from the maturing virions [2] and forms

immune complexes in the plasma of HIV-infected [HIV(+)]

individuals [3,4]; consequently only a tiny portion (,0.1%) of

circulating virions are actually infectious [5,6]. HIV-1 gp120

additionally binds to DC-specific ICAM-grabbing non-integrin

(DC-SIGN), initiating an intracellular signalling cascade that

promotes viral infection and dissemination to T cells [7,8]. A

subset of CD14(+)DC-SIGN(+) DC has been identified in blood,

which can bind HIV-1 and to transmit infectious virus to T cells

[9]. The virus then actively replicates in activated CD4 T cells,

which are chronically induced during HIV infection by various

mechanisms [10,11].

During progression to AIDS, HIV(+) individuals become

increasingly immunosuppressed and susceptible to opportunistic

infections and some cancers. This is accompanied by progressive

depletion of DC from different anatomical compartments, but the

reasons for this remain largely unknown. For example, it has been
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demonstrated that by in situ hybridization, DC-SIGN expression

was significantly reduced in the spleen of SIV-induced AIDS [12].

Furthermore, in late-stage HIV infection, a dramatic depletion of

lymph node myeloid DC (mDC) was also observed, with mDC 20-

fold less frequent in HIV(+) nodes than in control nodes [13].

Consistently, another report employed flow cytometry and

immunofluorescence study to show that the frequencies of lymph

node mDC were significantly decreased in a model of simian

AIDS [14], suggesting that mDC are lost from rather than being

recruited to lymphoid tissue in advanced SIV infection. In

addition, mDC from SIV-infected animals undergo spontaneous

cell death during culture [14], supporting the hypothesis that the

loss of mDC may be due to cell death. Moreover, DC that are

annexin V-positive could be identified in the lymph nodes of

monkeys with AIDS, indicating that the DC in the LN may be

undergoing apoptosis [14].

Under normal circumstances the life-span and availability of

DC in vivo is crucial for the induction and maintenance of effective

antigen-specific T cell immunity [15,16]. For example, the

magnitude and quality of the CD4 T cell response is proportional

to the number of antigen-bearing DC that reach the lymph nodes

[17]. Normally, migration of DC from peripheral non-lymphoid

sites into secondary lymphoid tissues is promoted by DC

maturation, the process by which the cells acquire enhanced

capacities for T cell activation and the regulation of immune

responses. In peripheral sites of infection and inflammation, DC

maturation can be induced by stimuli such as bacterial lipopoly-

saccharide (LPS) and the pro-inflammatory cytokines TNF-a and

IL-b. Within the lymphoid tissues, further DC activation can be

induced by activated T cells that upregulate CD40 ligand (CD40L)

which ligates CD40 on the DC [18]. DC then undergo apoptosis

in a tightly-regulated process. Accumulating evidences have

demonstrated that the balance between survival versus apoptosis

of DC is controlled by differential expression of anti- and pro-

apoptotic molecules that are induced during different cellular

responses. For example, the above maturation stimuli can activate

phosphatydylinositide 3-kinase (PI3K) which phosphorylates Akt

(p-Akt) [19] and this, in turn, increases expression of anti-apoptotic

proteins such as Bcl-2 and Bcl-xL [20,21]. It has been further

shown that binding of HIV-1 gp120 to DC-SIGN recruits effector

proteins to the DC-SIGN signalosome to phosphorylate and

activate Raf-1 (p-Raf) [22]. Raf-1 is anti-apoptotic and can in turn

antagonize the function of another MAPKKK, apoptosis signal

regulating kinase-1 (ASK-1) [23]. ASK-1 can also be activated (p-

ASK-1) by the above stimuli but is pro-apoptotic, at least in part

through its capacity to reduce expression of Bcl-2 and Bcl-xL [24–

26]. Because the regulation of DC survival in peripheral and

lymphoid tissues is crucial for the initiation and regulation of

immune responses [15], any reduction in DC numbers would

result in generalised immunosuppression and increased suscepti-

bility to opportunistic and other infections, as is observed during

disease progression to AIDS.

We previously reported that chemotaxis of monocyte-derived

DC (moDC) can be induced by M-tropic HIV-1 (R5 strains)

through binding of gp120 to CCR5 [27]. This finding may in part

explain the observation that during acute HIV-1 infection there is

rapid accumulation of DC-SIGN(+) cells within the lymphoid

tissues [12]. In contrast, as disease progresses chronically to AIDS,

circulating and lymphoid tissue-associated DC become progres-

sively depleted [28–33]. These include DC-SIGN(+) DC which are

markedly reduced in lymph nodes of AIDS patients [34] and in

spleens of non-human primates with SIV-induced AIDS [12].

Clinical observations indicate that the increase in serum HIV-1

viral loads correlates well with the decrease in numbers of DC in

HIV-1-infected individuals [29,34–37], suggesting that the virus

itself or viral products such as shed gp120 may directly impact on

DC survival.

Much work has focussed on the mechanisms of immune

subversion by infectious HIV-1 virions, but relatively scant

attention has been paid to potential immunomodulatory effects

of the vast amounts of gp120 immune complexes within the

circulation of HIV(+) individuals. We hypothesised that binding of

gp120 to DC-SIGN(+)DC may have an impact on their survival,

thus contributing to the cellular depletion observed in the settings

above. Here we show that DC which are exposed to HIV-1 gp120,

either in vitro or in vivo, undergo accelerated apoptosis when they

are exposed to multiple stimuli that normally induce DC

maturation. Crucially, we also demonstrate that binding of

gp120 to DC-SIGN results in excessive activation of p-ASK-1,

and that silencing of ASK-1 effectively reverses this process and

promotes DC survival.

Results

Cross-linked gp120 sensitizes cultured DC to undergo
CD40L- and DC-SIGN-dependent apoptosis

We first studied the survival of gp120-pulsed DC that were

exposed to activated CD4 T cells, mimicking the interactions that

typically occur within secondary lymphoid tissues. Monocyte-

derived DC (moDC) were treated with antibody cross-linked

recombinant gp120 (gp120-DC) and co-cultured for 3 d with

activated or naı̈ve CD4 T cells. The gp120-DC were readily

identifiable within these co-cultures as a distinct, large granular

CD3(2)/DC-SIGN(+) cell population (Fig. S1). Analysis of

Annexin-V (AV) and propidium iodide (PI) expression in this

population revealed that a very high proportion of the gp120-DC

underwent apoptosis following co-culture with activated, but not

naı̈ve, CD4 T cells (Fig. 1A, right upper vs lower panel). Treatment

of moDC with cross-linked gp120 clearly induced apoptosis in

both a dose-dependent (Fig. 1B) and time-dependent (Fig. 1C)

Author Summary

HIV-1 infected individuals become increasingly immuno-
compromised and susceptible to opportunistic infection
during disease progression, which is associated with
significant reduction of the dendritic cell number in the
peripheral blood or secondary lymphoid tissues. Because
dendritic cells are the most powerful antigen-presenting
cells, their survival is critical for host defence and
inadequate dendritic cell number will fail to induce
effective host immune responses. Here we describe a
mechanism that may at least partly explain why dendritic
cells become significantly depleted in chronic HIV-1
infection. We found that after binding of the HIV-1
envelope protein gp120 to the dendritic cell surface
protein DC-SIGN, the subsequent activation by CD40
ligation, or by exposure to bacterial product lipopolysac-
charide or pro-inflammatory cytokines such as TNF-a and
IL-1b, will lead to overexpression of pro-apoptotic mole-
cule ASK-1, resulting in excessive dendritic cell death. We
also confirmed that DC-SIGN(+) dendritic cells in the blood
of HIV-1 infected individuals have actually been pre-
sensitized by viral gp120, which exists in vast amount in
the blood, for activation-induced exorbitant death. Our
study thus reveals a previously unknown pathway for
dendritic cell depletion and provides clues for potential
therapeutic approaches to prevent DC depletion in chronic
HIV infection.

HIV gp120 Sensitizes DC for Excessive Apoptosis
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Figure 1. Cross-linked recombinant gp120 sensitizes moDC for CD40L-mediated apoptosis after co-culture with activated CD4 T
cells. (A) moDC were treated for 24 h with anti-His mAb alone (control DC, left panels) or with 25 nM gp120ADA cross-linked with anti-His mAb
(gp120-DC, right panels), and co-cultured with autologous activated (upper panels) or naı̈ve (lower panels) CD4 T cells for 3 d. The moDC (Fig. S1)
were analyzed for Annexin V (AV) and propidium iodide (PI) expression to assess the extent of apoptosis, as manifested by the percentage of the AV-
positive [AV(+)] cells. Data are representative of 5 experiments. (B) Apoptosis of moDC was analyzed after treatment with different concentrations of
cross-linked recombinant gp120ADA or gp120HXBc2 and co-culture with activated CD4 T cells for 3 d. DC treated with monomeric gp120 (not cross-
linked with anti-His or anti-FLAG mAb) were used as a control. Data represent mean 6 SD from 5 experiments; **p,0.01. The use of cross-linked
recombinant gp120BAL gave similar results (not shown). (C) Apoptosis of moDC was analyzed after treatment with the indicated cross-linked
recombinant gp120, or appropriate mAb controls, at the indicated time points after co-culture with activated CD4 T cells. Data represent mean 6 SD
from 5 experiments (data for anti-His and anti-FLAG controls were indistinguishable); *P,0.05 and **P,0.01 compared with control group (DC with
no gp120 pulse or DC plus anti-His/FLAG Ab). (D) moDC were respectively not treated (Control DC), or treated with gp120ADA cross-linked with
mouse IgG2a anti-His mAb (dimeric gp120-DC), or treated with cross-linked gp120ADA supplemented with isotype control mouse IgG (gp120-
DC+isotype IgG), and subsequently co-cultured with autologous activated CD4 T cells for 3 days before AV/PI staining. Data are representative of 3
experiments. (E) moDC were treated with cross-linked gp120ADA and co-cultured for 3 d with autologous activated or naı̈ve CD4 T cells, that had
been pre-treated without or with 10 mg/ml isotype control or anti-CD40L mAb, before cell viability analysis. Data are expressed as mean 6 SD from 5
experiments. **p,0.01.
doi:10.1371/journal.ppat.1003100.g001

HIV gp120 Sensitizes DC for Excessive Apoptosis
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manner. In our preliminary time-chase experiments, we followed

AV/PI reactivity till d4 and found that the AV reactivity of DC

reduced from d3 to d4, whereas that of PI increased over time,

indicating that as incubation time increases, some cells at early

apoptotic (AV+PI2) phase would become late apoptotic (AV+PI+)

cells. Nevertheless, the overall AV(+) cells (ie, AV+PI2 plus

AV+PI+ cells) remained relatively consistent between d3 and d4

(Figure S1). We therefore chose d3 as our observation time point

to compare the % of total AV(+) cells among various treatment

conditions. Furthermore, while the cross-linked gp120 prompted

DC for activated CD4 T cell-mediated apoptosis, treatment with

monomeric gp120 did not (Fig. 1D). The formation of dimeric

gp120 after cross-linking with anti-‘‘tag’’ (anti-His or anti-FLAG

Ab) has been confirmed by native non-reducing Western blot

analysis (Fig. S2).

During the cross-talk between DC and activated CD4 T cells,

CD40-CD40L interactions play crucial roles in both the regulation

of DC survival and immune responses. To examine the potential

involvement of CD40/CD40L interactions in the induction of

apoptosis of gp120-DC, activated CD4 T cells were pre-treated

with an antagonistic anti-CD40L mAb before co-culture with

gp120-DC. Pre-treatment significantly inhibited the apoptosis of

gp120-DC (Fig. 1E). Therefore, activated CD4 T cell-mediated

apoptosis of immune-complex gp120-primed DC is at least in part

CD40L-dependent.

HIV-1 gp120 binding to DC-SIGN sensitizes moDC for
apoptosis

As DC-SIGN is one of the major surface molecules for gp120

binding on moDC, we examined the role of DC-SIGN in the CD4

T cell-induced DC apoptosis by pre-treating DC with anti-DC-

SIGN mAbs (a mixture of clones 120612 and DC28). The

combination of anti-DC-SIGN mAbs used for these studies

substantially reduced the binding of gp120 to DC-SIGN and

inhibited HIV-1 uptake (Fig. S3) by the DC-SIGN-transfectants.

Indeed, DC-SIGN blockade could significantly prevent DC

apoptosis upon coculture with activated CD4 T cells (Fig. 2A &

B). Because apoptosis of gp120-primed DC can be CD40L-

dependent, we studied if exposure of gp120-DC to CD40L-

transfected L (CD40L Tf) would lead to the same outcome. We

analysed AV/PI expression of moDC (which expressed HLA-DR,

Fig. S4) after separation from the adherent CD40L transfectants

(which expressed high levels of CD40L and little HLA-DR, Fig.

S4). We found that exposure to CD40L Tf cells also induced

significant apoptosis of gp120-DC, compared with exposure to

mock L cell transfectants (Fig. 2C, top panels, and Fig. 2D), and

cell death was further confirmed by trypan blue staining; Fig. S5).

We next tried to delineate the role of other gp120-binding

receptors (apart from DC-SIGN) of moDC that might also be

responsible for CD40L-induced apoptosis. We first pre-treated

moDC with anti-CD4/chemokine receptor and anti-DC-SIGN

mAbs, as previously described [38], and pulsed DC with cross-

linked recombinant gp120 for coculture with CD40L Tf cells for 3

days. Results showed that in contrast to DC-SIGN blockade, pre-

treatment with a combination of anti-CD4/chemokine receptor

mAbs did not inhibit moDC apoptosis (Fig. 2C–D). Pre-treatment

of moDC with cross-linked ICAM-3, a physiological ligand for

DC-SIGN (Fig. S6) that does not prevent gp120 binding, was also

ineffective in preventing apoptosis (Fig. 2C–D). Control studies

demonstrated that pre-treatment with these antagonistic mAbs

alone did not sensitize moDC for CD40-mediated cell death (Fig.

S6). Taken together, we conclude that cross-linking of DC-SIGN,

but not CD4/chemokine receptors, by recombinant gp120

sensitizes DC for apoptosis after CD40 ligation.

As HIV-1 gp120 binding to moDC has been shown to be

exclusively carbohydrate-dependent [39], we also examined the

role of carbohydrates of gp120 and if other mannose C-type lectin

receptor (MCLRs), in addition to DC-SIGN, could also be

involved in gp120/CD40L-mediated death. We adopted two

approaches: removing the carbohydrate moieties of recombinant

gp120 by EndoH (endo-b-N-glucosaminidase) before cross-linking

with anti-‘‘tag’’ Abs, and pretreating DC with mannan to compete

off the gp120 binding. Because DC express abundant FcR [40]

and FcR cross-linking may induce apoptosis of certain cells

[41,42,43], we also investigated the effect of FcR blockade prior to

gp120 pulsing. After EndoH treatment, the deglycosylated

monomeric gp120 had reduced molecular weight (<80 kDa,

reduced from <120 kDa), and after cross-linking in dimeric form,

they indeed lost their binding capacity to moDC (Fig. S2).

Furthermore, the immune-complex EndoH-treated gp120 lost the

ability in sensitizing DC for apoptosis upon CD40 ligation (Fig. 2E,

upper row, and Fig. 2F). Pre-treatment of moDC with mannan

prior to gp120 pulsing also completely prevented the CD40L-

mediated apoptosis, which was more potent than mere DC-SIGN

blockade. Moreover, while FcR blockade itself did not induce

CD40L-mediated apoptosis of control DC (pulsed with anti-‘‘tag’’

Ab), it significantly promoted further the extent of CD40L-

mediated apoptosis of gp120-DC (Fig. 2E, lower row, and Fig. 2F).

Immune complexes of gp120 from the sera of HIV-
positive individuals can sensitise cultured dendritic cells
for apoptosis

To investigate whether sera from HIV-1-positive (+) individuals

can contain sufficient levels of gp120 immune complexes to

sensitize moDC for CD40L-mediated apoptosis, we next treated

moDC with HIV-1(+) sera containing high viral copy numbers

(.400,000/ml) (Table S1). In order to eliminate the effect of other

soluble immune factors, the sera were first centrifuged through

filters with a cut-off point of 100 kDa and the .100 kDa fractions

were collected and reconstituted to the original volume with fresh

medium before use, as described [27]. After 3 d co-culture with

autologous activated CD4 T cells, the HIV-1(+) sera-treated

moDC were identified as a smaller-sized population than the

control moDC, and they were CD3(2) (Fig. S7). These cells were

then subjected to TUNEL assays with flow cytometric analysis to

evaluate terminal deoxynucleotidyl transferase (TdT) expression as

a measure of apoptosis. This confirmed that HIV(+) serum-pulsed

moDC had undergone remarkable apoptosis (,50%, Fig. 3A), and

that this could be substantially inhibited by pre-treatment with

anti-DC-SIGN mAbs (Fig. 3A–B) or anti-CD40L mAbs (Fig. 3B).

Furthermore, excessive apoptosis of moDC was effectively

prevented after removal of gp120 from the HIV-1(+) sera by

immunoprecipitation (IP) (Fig. 3A–B), under conditions that also

depleted virions from cultures of live virus (Fig. S8). Similar results

were obtained following co-culture of HIV-1(+) serum-treated

moDC with CD40L Tf cells, and further confirmed that CD4 and

chemokine receptors were not involved in sensitization for

apoptosis (Fig. 3C–D). Therefore, HIV-1(+) sera may contain

sufficient levels of immune complexed and/or virion-bound gp120

to sensitize moDC for CD40/CD40L-mediated apoptosis.

We next investigated the relative contributions of circulating

gp120 and virions from HIV(+) serum in sensitizing DC for

apoptosis. First, we treated moDC with .100 kDa fractions of

sera containing either relatively low (,100,000/ml) or high

(.400,000/ml) viral copy numbers (Table S1). After co-culture

with CD40L Tf cells, the extent of DC apoptosis was significantly

higher in treatment with serum of relatively high HIV RNA viral

loads (Fig. 4A). We next further fractionated the .100 kDa serum

HIV gp120 Sensitizes DC for Excessive Apoptosis
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fractions into virion-free (100–1000 kDa) and virion-enriched

(.1000 kDa) portions. The moDC were then treated with these

respective fractions and co-cultured with CD40L Tf cells. We

detected slightly higher levels of apoptosis after treatment with the

virion-enriched portions than controls, but substantial levels of

apoptosis was observed after treatment with the virion-free (gp120-

enriched) portion (Fig. 4B–C). Hence gp120, circulating as

immune complexes in HIV(+) sera, plays a more significant role

than virus-bound gp120 in sensitizing DC for CD40/CD40L-

dependent apoptosis.

In separate experiments, we also examined the sensitizing

capacity of EndoH-treated gp120, pre-treatment with mannan, as

Figure 2. Cross-linked gp120 sensitizes DC through DC-SIGN and MCLRs for CD40L-mediated apoptosis. (A, B) moDC were pretreated
with anti-DC-SIGN mAbs or isotype control Ab before pulse with cross-linked gp120ADA and co-culture for 3 d with autologous activated CD4 T cells,
and subsequently subjected to cell viability assay. Data are representative of 3 experiments and are expressed as mean 6 SD from 3 experiments in B.
(C, D) moDC were treated with cross-linked recombinant gp120ADA with or without pre-treatment by soluble ICAM-3-Fc chimeric protein, anti-CD4
plus anti-CCR5 mAbs, or anti-DC-SIGN mAbs. Cells were subsequently co-cultured with mock- or CD40L-transfected (CD40L Tf) cells for 3 d. Data are
representative of 7 experiments in panel C and are expressed as mean 6 SD (n = 7) in D; ***p,0.005. (E, F) Recombinant gp120ADA were treated with
or without EndoH, and then cross-linked with anti-His Ab before use to pulse moDC. Prior to gp120 pulsing, moDC were pre-treated with or without
mannan or FcR blocking reagent, or anti-DC-SIGN mAbs for 30 minutes. After gp120 pulsing, DC were subsequently cocultured with CD40 Tf for 3
days. DC without any pre-treatment and only pulsed with anti-His Ab were used as a control (control DC). Data are representative of 3 experiments
and expressed as mean 6 SD from 3 experiments in F; *p,0.05, **p,0.01.
doi:10.1371/journal.ppat.1003100.g002

HIV gp120 Sensitizes DC for Excessive Apoptosis
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well as FcR blockade of DC for CD40L-mediated apoptosis.

Consistently as in the case of recombinant gp120 (Fig. 2E & F),

EndoH-treated HIV(+) serum had lost the capacity in priming DC

for CD40L-mediated apoptosis. Furthermore, compared with DC-

SIGN blockade, pre-treatment of DC with mannan (before pulse

by HIV(+) serum) further prevented DC apoptosis (down to

background levels). FcR blockade of DC prior to exposure to HIV

serum further increased the extent of DC death (Fig. S9).

Blood DC from healthy individuals can be sensitized for
apoptosis by gp120, and are pre-sensitized within the
circulation of HIV-1-positive individuals

To extend our studies beyond the use of in vitro-generated DC,

we next purified the DC-SIGN(+) subset of DC from peripheral

blood of normal individuals. Approximately 0.12–0.3% of

CD14(+) cells in blood expressed DC-SIGN (Fig. 5A; equivalent

to 0.01–0.03% of PBMCs), which also expressed CD40 and

CD11c (Fig. S10), consistent with a previous report [9]. After

priming by cross-linked gp120 and coculture with CD40L Tf cells,

these blood-derived DC also underwent excessive apoptosis, and

this was significantly reduced by prior blockade of DC-SIGN

(Fig. 5B). Hence this bona fide primary human blood DC subset can

be sensitized through gp120 ligation of DC-SIGN for CD40/

CD40L-dependent apoptosis.

Based on these and other findings above, we then hypothesized

that DC-SIGN(+) DC in the peripheral blood of HIV-1(+)

individuals would be excessively vulnerable to apoptosis due to

their continual exposure to high levels of immune-complex gp120

in the circulation. We therefore also isolated the DC-SIGN(+) DC

subset directly from the blood of HIV-1(+) individuals and found

that a substantial degree of apoptosis occurred after they were

cultured with CD40L Tf cells, whereas the same subset of DC

Figure 3. Sera from HIV-1(+) individuals can sensitize moDC for DC-SIGN dependent CD40L-mediated apoptosis. (A) moDC were
treated with HIV(+) serum before or after immunoprecipitation (IP) with anti-gp120 mAbs, or with or without anti-DC-SIGN or isotype control mAbs,
and subsequently co-cultured with autologous activated CD4 T cells. After 3 d, cells were harvested and subjected to TUNEL assays. Cell death was
assessed as the percentage of cells expressing terminal deoxynucleotidyl transferase (TdT). DC pulsed with HIV(+) serum without coculture with
activated CD4 T cells (top panel) were also used as a control. Data are representative of 4 experiments. (B) MoDCs were treated with anti-DC-SIGN
mAbs, isotype control Ab, or anti-CD40L mAb before pulse with HIV serum (before or after immunoprecipitation of gp120) and cocultured with
activated CD4 T cells. Data are expressed as mean 6 SD (n = 4); *p,0.05 and **p,0.01 compared with ‘HIV(+) serum-DC plus isotype Ab’. (C,D) moDC
were treated with normal AB serum or HIV-1(+) serum with viral RNA copies .400,000/ml (Table S1), with or without pre-treatment with anti-CD4
plus chemokine receptor or anti-DC-SIGN mAbs, or with gp120-depleted (immunoprecipitated, IP) HIV(+) serum, and co-cultured with CD40L Tf for
3 d. Data are representative of 4 experiments in panel C and individual datum with the mean is shown in panel D; {: P,0.001 between with and
without IP of gp120 from the HIV serum, **: P,0.01 between with and without pre-treatment with anti-DC-SIGN mAbs.
doi:10.1371/journal.ppat.1003100.g003

HIV gp120 Sensitizes DC for Excessive Apoptosis
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from HIV(2) individuals did not (Fig. 5C–D). We thus conclude

that DC-SIGN(+) DC from healthy human blood can be sensitized

for apoptosis after in vitro exposure to cross-linked gp120, and DC-

SIGN(+) in the circulation of HIV(+) individuals may have been

pre-sensitised in vivo by circulating immune complexes of gp120.

HIV-1 gp120 sensitizes cultured DC and blood DC for
apoptosis after exposure to LPS, TNF-a and IL-1b

We next studied the survival of gp120-primed DC after

exposure to typical stimuli that might be encountered at peripheral

sites of infection and inflammation, prior to DC migration to

lymphoid tissues. MoDC were treated with cross-linked recombi-

nant gp120 and subsequently cultured with 100 ng/ml LPS, TNF-

a or IL-1b for 3 d. Very considerable levels of apoptosis were

induced in gp120-primed DC after exposure to LPS, and this

could be significantly prevented by prior blockade of DC-SIGN

(Fig. 6A–B). Likewise, substantial levels of apoptosis were also

induced after exposure to TNF-a and IL-1b (Fig. 6C). Excessive

apoptosis was further induced when the cross-linked gp120 was

replaced by HIV-1(+) sera containing high viral loads (.400,000

RNA copies/ml) prior to LPS stimulation, but was prevented by

prior immunoprecipitation of gp120 from the sera and substan-

tially reduced by blockade of DC-SIGN, but not CD4/CCR5

(Fig. 6D).

To extrapolate our findings to the in vivo setting, DC-SIGN(+)

cells from the peripheral blood of HIV-1(+) or HIV-1(2)

individuals were isolated and exposed to 100 ng/ml LPS, TNFa
or IL-1b. While there was little apoptosis of blood DC from

HIV(2) individuals, blood DC-SIGN(+) DC from HIV(+)

individuals underwent substantial apoptosis, indicating that they

are pre-sensitized in vivo to die after contact with multiple stimuli

that otherwise induce DC maturation (Fig. 6E–F).

Figure 4. CD40L-mediated apoptosis of HIV(+) serum-pulsed DC is proportional to viral loads and predominantly induced by the
100–1000 kDa fraction. (A) moDC were treated with HIV-1(+) sera with viral copy numbers .400,000/ml or ,100,000/ml or normal AB serum
(control) and co-cultured with CD40L Tf cells for 3 d. Data are expressed as individual datum with the mean. N = 4 for each condition; *p,0.05 and
**p,0.01. (B, C) moDC were treated for 24 h with normal AB serum or with .1000 kDa or 100–1000 kDa fractions from HIV(+) serum and were co-
cultured with CD40L Tf for 3 d. Data are representative of 5 experiments in B and expressed as mean 6 SD in C; ** p,0.01.
doi:10.1371/journal.ppat.1003100.g004
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Binding of HIV-1 gp120 to DC-SIGN promotes ASK-1-
dependent apoptosis of human dendritic cells

To explore potential mechanisms by which gp120 ligation of DC-

SIGN sensitizes DC for apoptosis, we first noted that treatment of

moDC with cross-linked gp120 alone was able to modulate the

expression of key membrane molecules in a manner that is typically

associated with DC maturation (Fig. S11), as reported by others

[44]. Together with our earlier observations (Fig. 1C; cf. apoptosis of

gp120 at d2 vs. control DC at d4), this finding suggested that gp120

ligation of DC-SIGN greatly accelerates an apoptotic programme

that is normally induced following maturation.

We then studied components of the intracellular signalling

pathways that might be involved in gp120 sensitization of DC for

apoptosis. MoDC were treated with cross-linked gp120, or with

HIV(+) sera, and co-cultured with CD40L Tf cells or exposed to

LPS, TNFa or IL1b (as above). After 3 days, moDC were harvested

from the cultures and Western blot assays were performed to

analyze the expression of key molecules regulating the balance of

DC survival versus death. First, we noted a substantial reduction in

the expression levels of the anti-apoptotic molecules Bcl-2 (Fig. 7A),

and Bcl-xL (Fig. S12), after exposure of cross-linked gp120-DC

(Fig. 7A) or HIV(+) sera-treated moDC (Fig. S12) to the above

stimuli. Second, turning to upstream components that may lead to

these changes we found that p-Raf-1, which can be activated by the

DC-SIGN signalosome after gp120 binding, was increased as

expected but little further change occurred after exposure to the

various stimuli. In marked contrast, each of these stimuli resulted in

a marked reduction of p-Akt which is anti-apoptotic, but a very

substantial increase in p-ASK1 which is pro-apoptotic. Studying the

latter in more detail, we found the expression of p-ASK1 could be

reduced virtually to baseline levels (moDC with stimuli alone) by

DC-SIGN blockade (Fig. 7A, lower three panels).

The above observation indicates that gp120 ligation of DC-

SIGN, either directly or indirectly, leads to excessive ASK1

activation which promotes DC apoptosis. To confirm the role of

ASK1, we transfected moDC with ASK1-specific siRNA before

treatment with gp120 and exposure to different activation stimuli.

In all cases, silencing of ASK1 substantially prevented excessive

DC apoptosis in response to each of the activation factors (Fig. 7B).

Therefore, gp120 ligation of DC-SIGN accelerates an apoptotic

programme that normally accompanies DC maturation, and

which involves excessive ASK-1 activation that results in unusually

premature cell death.

Discussion

In chronically-infected HIV-1(+) individuals, multiple subsets of

DC in peripheral blood [29–31,36] and lymphoid tissues [12,34]

Figure 5. Freshly-isolated DC-SIGN(+) blood DC underwent DC-SIGN-dependent CD40L-mediated apoptosis and DC-SIGN(+) cells
from HIV-1-infected individuals are pre-sensitized for CD40L-mediated apoptosis. (A) PBMCs from normal HIV(2) individuals were
labelled with anti-CD14 plus either isotype control (left panel) or anti-DC-SIGN (right panel) mAbs and analysed by flow cytometry for cell isolation.
Data are representative of 4 experiments. (B) Purified CD14(+)DC-SIGN(+) cells were treated with anti-His mAb alone (Control) or anti-His cross-linked
recombinant gp120ADA, in the absence or presence of anti-DC-SIGN mAbs, and subsequently co-cultured with CD40L Tf for 3 d. The non-adherent DC
were then harvested and subjected to cell viability assay. Data are representative of 4 experiments. (C, D) freshly isolated DC-SIGN(+) cells from HIV(+)
and HIV(2) blood were cocultured with mock Tf or CD40L Tf for 3 days and subjected to cell viability assay. Data are representative of 4 experiments
in C and expressed as mean 6 SD in D. ***p,0.005.
doi:10.1371/journal.ppat.1003100.g005
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become progressively depleted during disease progression to

AIDS, and the reduction of DC number is proportional to the

viral RNA loads [29,35,37]. It is unlikely that direct infection and

killing of DC by HIV-1 can account for this substantial depletion,

given the remarkably low frequency of cells that are actually

infected. We present in this study a gp120-exerted mechanism that

Figure 6. Cross-linked recombinant gp120 or HIV(+) serum sensitizes moDC for apoptosis after activation by LPS, TNF-a or IL-1b,
and DC-SIGN(+) cells in HIV(+) blood are pre-sensitized for LPS/TNFa/IL-1b-induced apoptosis. (A,B) moDC were treated with gp120ADA

in the presence of isotype control or anti-DC-SIGN Abs and subsequently cultured in the absence or presence of 100 ng/ml LPS for 3 d. Data are
representative of 5 experiments in A and are expressed as mean 6 SD in B; **p,0.01, ***P,0.005. Similar findings were made after treatment with
gp120BAL or gp120HXBc2 (not shown). (C) moDC were treated with anti-His cross-linked recombinant gp120ADA (gp120-DC) or anti-His Ab alone
(Control DC), and cultured for 3 d in the absence (no activation) or presence of 100 ng/ml LPS, TNF-a or IL-1b. Data represent mean 6 SD from 4
experiments; **p,0.01 and ***p,0.005. (D) moDC were treated with normal AB serum or HIV-1(+) sera (viral RNA copies .400,000/ml; n = 4) before
or after gp120 immunoprecipitation (IP), with or without pre-pretreatment with anti-CD4 plus anti-CCR5, or anti-DC-SIGN mAbs and subsequently
exposed to 100 ng/ml LPS for 3 d; **P,0.01 and {P,0.001. (E,F) DC-SIGN(+) cells from HIV(+) and HIV(2) blood were cultured in the absence (‘No
stimuli’) or presence of 100 ng/ml of LPS, TNFa, or IL-1b for 3 d prior to analysis of cell viability. Data are representative of 4 experiments in E and
expressed as mean 6 SD (n = 4) in F. {P,0.001 between cells from HIV(+) blood and from HIV(2) blood.
doi:10.1371/journal.ppat.1003100.g006
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may account, at least in part, for the progressive depletion of

conventional DC subsets, as seen in chronic HIV infection. We

provide evidence that moDC can be sensitized by cross-linked

recombinant gp120 (Fig. 1 and 2), and HIV-1(+) sera (Fig. 3 and

4), to undergo greatly accelerated apoptosis in response to CD40

ligation, which typically occurs after DC migration into lymphoid

tissue. The extent of DC apoptosis was proportional to the

concentration of recombinant gp120 (Fig. 1B) and viral RNA

loads in the sera (Fig. 4A). These observations were reinforced by

the finding that CD14(+)DC-SIGN(+) DC, isolated directly from

the blood of healthy [HIV(2)] individuals, could also be sensitized

by gp120 for CD40L-induced cell death (Fig. 5). Immunoprecip-

itation of gp120 from HIV-1(+) sera substantially reduced the

extent of apoptosis, showing that either virion-bound gp120 and/

or gp120 in the circulating immune-complex form could sensitize

the cells (Fig. 3). When we further fractionated the HIV(+) sera, we

found that the 100–1000 kDa (virion-free) portion promoted

substantial levels of apoptosis after CD40 ligation, whereas

considerably lower levels were induced by the .1000 kDa

(virion-enriched) portion (Fig. 4B–C). Since the molecular weight

of IgG is ,150–170 kDa, circulating immune-complex gp120

would be contained in the virion-free fractions (100–1000 kDa).

Therefore, gp120 in immune complexes is primarily responsible

for sensitizing DC for apoptosis, and HIV(+) serum we tested

contains sufficient quantities of circulating gp120 in vivo to sensitize

DC-SIGN(+) DC for apoptosis. However, it remains to be studied

if the smaller amount of sensitization by the virion-rich fraction

might be induced by activities other than mere gp120/DC-SIGN

binding (e.g., events after viral entry). To evaluate our findings

further and more directly, we isolated CD14(+)DC-SIGN(+) DC

from the blood of HIV(+) individuals and found that they were

indeed ‘pre-sensitized’ for apoptosis on CD40 ligation (Fig. 5).

Moreover, both these blood DC from HIV(+) individuals and

moDC sensitized by recombinant or serum gp120 underwent

substantial apoptosis after exposure to bacterial LPS and the pro-

inflammatory cytokines TNF-a and IL-1b (Fig. 6), apart from

CD40 ligation.

Amongst HIV-1 encoded proteins, the envelope protein gp120

has two very unusual properties, even for a retroviral envelope

component: first, gp120 is only loosely attached to the virion and is

rapidly shed in large quantities into the circulation [3], and

second, liberated gp120 binds to and activates a very high

proportion of B cells [28,45], resulting in a massive overproduction

of anti-gp120 antibodies and the formation of increasing amounts

of immune complexes in the serum. Our findings now reveal that

through ligation of immune-complex gp120 to DC-SIGN and

mannose C-type lectin receptors (MCLRs), apoptosis of DC is

remarkably promoted when the cells encounter diverse maturation

stimuli that are otherwise prerequisites for the effective initiation

and regulation of many immune responses. The concentration of

‘‘free gp120’’ in the HIV(+) serum has been studied by many

groups, varying from ‘‘pM’’ to ‘‘nM’’ levels [3,4,46,47]. However,

most reports determining the free gp120 in HIV(+) serum

employed an antigen capture assay (eg, ELISA) without taking

into account the presence of anti-gp120 Ab in the serum, which

could significantly mask the detection of free gp120 and sometimes

completely abrogate the signals [4]. The levels of ‘‘free gp120’’

detected in previous reports, thus, may not represent those of

antibody-bound gp120. It has been demonstrated that anti-gp120

Abs are present in the HIV(+) serum at high enough concentra-

tions to bind most of gp120 [48] and the levels of anti-gp120 Abs

have been estimated to be in the micromolar range [49].

Therefore, for high affinity binding (Kd,10 nM between gp120

and anti-gp120 Ab), virtually all the gp120 in the HIV(+) serum

might have been occupied (saturated) by antibodies [48]. In a

recent report, it has been estimated that the gp120 levels could be

up to 5 mg/ml when concentrations of all forms (soluble and cell/

virion-bound) are added, in situations of high plasma viremia [47].

The concentration of the immune-complex gp120 we used in the

current study, therefore, is not incompatible with the in vivo

scenario. Furthermore, it is interesting to note that even in the

same experimental model, DC might have different reactivity over

AV or PI in the viability assay. Throughout the entire study,

around 50% of the donors had more exaggerated PI staining,

while the other had more prominent AV staining (for instance,

Fig. 5B vs 5C). It is likely that DC from different individuals may

have different responsiveness to activation signals such as CD40

ligation, a phenomenon of ‘‘donor-to-donor variation’’, which has

Figure 7. Activation of gp120-primed DC reduced the expression of Bcl2 and activated Akt, and the induction of cell apoptosis is
ASK1-dependent. (A) moDC treated with immune-complex gp120ADA were exposed to CL40L Tf or mock Tf, or LPS, TNFa, IL-1b for 3 d, and cellular
proteins of moDC (recovered from coculture) were extracted for Western blotting analysis. MoDC treated by anti-His Ab (used to cross-link
recombinant gp120ADA) were used as a control (control DC). *p-ASK1 represent results from untreated moDC (lane 1) and DC treated as indicated but
no gp120 pulsing (lanes 2–6), whereas #p-ASK-1 represents results from pre-treatment of anti-DC-SIGN mAbs. Data are representative of 3
experiments. (B) moDC were transfected with siRNA against human ASK1 or control siRNA (scrambled) before pulse with immune-complex gp120
and subsequent exposure to CD40L Tf, LPS, TNFa or IL-1b. Data are expressed as mean 6 SD from 3 experiments. **p,0.01.
doi:10.1371/journal.ppat.1003100.g007
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been recently reported for HIV gp120 binding to moDC to induce

IL-10 and impair IL-12 production [24]. Differential responsive-

ness to CD40 ligation in DC has also been reported that in mouse

DC which express CD40high could produce more IL-12 but less

IL-10 than those produced by the CD40low DC [50]. It deserves

further investigation to see if the expression levels of CD40 of

moDC correlate with the degree of CD40L-mediated apoptosis,

and if DC apoptosis may also be accompanied by IL-10

production [24].

In studies to identify the membrane receptor(s) on DC through

which cross-linked gp120 and HIV(+) sera can sensitize the cells,

we observed that apoptosis was considerably reduced after pre-

treatment with antagonistic mAbs specific for DC-SIGN, but not a

combination of CD4 and chemokine receptors CCR5 or CXCR4

(Fig. 2A–D, Fig. 3C–D, 5B and 6D). In contrast, pre-treatment of

DC with a cross-linked, Fc construct of ICAM-3, a physiological

ligand for DC-SIGN important for stabilizing the DC-naı̈ve T cell

immune synapse [51], was ineffective (Fig. 2C–D). This is in

accordance with previous reports that the binding site for ICAM-3

is distinct from that of gp120 [52], and that soluble ICAM-3 is not

able to compete efficiently with HIV-1 envelope protein or with

intact viruses for binding to DC-SIGN [53]. Notably, the

inhibition of apoptosis by DC-SIGN blockade was substantial

but incomplete, apparently reflecting the relative capacity of the

combination of mAbs to prevent binding of gp120 to DC-SIGN

(Fig. S3). Furthermore, other MCLRs in addition to DC-SIGN

that can bind gp120 [32] are also involved in DC apoptosis,

because pre-treatment of DC with mannan led to virtually

complete diminishment of the CD40L-mediated DC death, in

contrast to partial (albeit significant) inhibition by DC-SIGN

blockade (Fig. 2E–F). Moreover, we agree with a previous report

[39] and confirm that gp120 binding to moDC is exclusively

carbohydrate-dependent because the binding capacity of deglyco-

sylated gp120 (whose carbohydrate moieties were removed by

EndoH treatment) to moDC was completely lost (Fig. S2),

resulting in total abrogation of CD40L-mediated apoptosis of

gp120-DC (Fig. 2E & F). Similar effects were also demonstrated in

the use of HIV(+) serum (Fig. S9).

We also noted that sensitization of DC for apoptosis was only

achieved with cross-linked recombinant gp120, and presumably

gp120 immune complexes in HIV(+) sera, but not with gp120 in

monomeric form (Fig. 1E). This suggests that cross-linking of DC-

SIGN is required for sensitization. Indeed, antibody cross-linking

of DC-SIGN [54] and the binding of HIV-1 gp120 [8] or many

other pathogens [55–58] have been shown to initiate diverse

intracellular signalling pathways in DC that lead to different

cellular responses. Along with this thought, we blocked the Fc

receptor (FcR) of moDC (before pulse by immune-complex gp120

or HIV(+) serum) in order to allow more potent clusterization of

DC-SIGN or other MCLRs. This indeed resulted in more

abundant DC apoptosis (Fig. 2E–F & Fig. S9). This finding

further supports the involvement of DC-SIGN or MCLRs in

gp120 sensitization for CD40L-induced DC death. Another point

to support DC-SIGN for gp120-triggered intracellular signalling is

that, apart from sensitizing DC for accelerated activation-induced

death, gp120 can also induce phenotypic changes of DC that are

typical of maturation (Fig. S11). The role of MCLRs in gp120-

mediated DC phenotypic maturation has also been reported by

others [44]. Therefore, immune-complex gp120 binding to DC-

SIGN (or other MLCRs) may have sensitized DC into a ‘‘pre-

mature’’ state, which may be a pre-requisite that prompted DC to

be more vulnerable to activation-induced apoptosis. However,

when compared with conventional maturation (e.g., LPS/TNFa/

IL-1b and CD40 ligation), the gp120-induced phenotypic

‘‘maturation’’ appeared inefficient, as manifested by less remark-

able upregulation of CD80, CD86, CD83 and CCR7. The CCR5

downregulation was also less noticeable than that induced by

conventional factors; in contrast, MHC class II upregulation

remained relatively unaffected (Fig. S11). Such inefficient matu-

ration is in line with a previous report that gp120 binding to

MCLRs can induce immunosuppressive responses from DC, such

as IL-10 production, which may subsequently contribute to a

weaker T cell stimulation capacity [24].

In exploring the mechanistic basis for the gp120 sensitization

process, we observed marked decrease in the downstream anti-

apoptotic components Bcl-2 (Fig. 7A) and Bcl-xL (Fig. S12).

Turning to upstream components that may account for these

observations and explain excessive apoptosis, we found that gp120

binding activated Raf-1, an anti-apoptotic through its activity to

restrict caspase activation [41], as reported by others [22], and its

expression was not significantly modulated upon exposure to

maturation stimuli (Fig. 7A). Strikingly, however, anti-apoptotic p-

Akt was markedly reduced whereas pro-apoptotic ASK-1 was very

substantially increased. Crucially, pre-treatment of gp120-DC with

anti-DC-SIGN mAbs reduced ASK-1 activation back to control

levels (Fig. 7A), while siRNA silencing of this component

substantially prevented DC apoptosis (Fig. 7B). Hence, gp120

binding to DC-SIGN activates ASK-1 and further exposure to the

different maturation stimuli results in abundant p-ASK-1 expres-

sion which may account for the excessive levels of apoptosis.

Whether or not this is directly due to activation of a novel ASK-1-

dependent signalling pathway after gp120 ligation of DC-SIGN,

or another pathway that releases inhibition by p-Akt, deserves

further attention. Furthermore, since HIV-1 Nef can suppress

ASK-1 activation in infected T cells to protect them from

apoptosis [49], it would be interesting to determine whether or not

infected DC can be protected in a similar manner while the

uninfected ‘bystander’ cells are killed.

Based on our findings, we propose that the capacity of gp120 to

ligate DC-SIGN and sensitize conventional DC for apoptosis after

encounter with diverse activation stimuli that otherwise induce

cellular maturation may account for the depletion of DC-SIGN(+)

DC, which has been clearly demonstrated in lymph nodes of

HIV(+) patients [12] and in spleens of SIV-infected non-human

primates [12]. We further propose that during disease progression

to AIDS, this may contribute to the decreased capacity to mount

effective immune responses [15–17,59] and also to increased

susceptibility to multiple opportunistic infections. In fact, the types

of infection that are seen during AIDS progression somewhat

resemble those described for some of the recently identified DC

deficiency syndromes [13]. The presence of LPS, resulting from,

for example, the mucosal barrier of the GALT being compromised

or concomitant bacterial infections [14,50], can also potentiate

HIV-induced immunosuppression through augmentation of HIV-

1 gene expression at least in part by stimulating the secretion of

TNF-a and IL-1b [60]; high levels of circulating TNF-a can also

be detected in HIV-infected individuals [61]. These factors could

well predispose ‘bystander’ DC-SIGN(+) cells, which have been

pre-sensitized by gp120 in the serum, for exorbitant apoptosis in

the lymphoid tissues or blood.

In a broader context, it is clear that many other pathogens may

also bind DC-SIGN to subvert DC functions, and DC-SIGN

ligation can modulate TLR-associated activation [55–58]. It

therefore deserves further study if such pathogens can also

decrease the survival of DC through their capacity to cross-link

DC-SIGN. Also, whether the subsequent modulation of TLR

responsiveness can additionally or synergistically contribute to the

defects of pathogen-specific immunity in AIDS warrants further
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investigation. In a narrower context, it is also clear that many

other mechanisms can contribute to depletion of different subsets

of DC during HIV-1 infection, including negative control of the

numbers of plasmacytoid DC by type I interferons [28]. Whether

or not binding of gp120 to other membrane receptors of DC can

sensitize the respective subsets for apoptosis also needs to be

further clarified. Finally, accelerated activation-induced apoptosis

of gp120-sensitized DC is accompanied by excessive activation of

ASK-1, and that silencing of ASK1 prevents apoptosis, implying

that antagonistic ASK1 therapies, such as have been shown to

reduce SIV encephalitis in macaques [48], might be of value to

prevent DC depletion during HIV-1 disease progression.

Materials and Methods

Preparation of monocyte-derived DC and treatment with
recombinant gp120 treatment (gp120-DC)

Monocyte-derived DC (moDC) were generated by culture for

6–7 d in RPMI1640 supplemented with 5% autologous serum,

GM-CSF and IL-4 as described [27]. The moDC were then

purified by two rounds of immunomagnetic depletion (Dynabeads,

Dynal, Oslo, Norway) using monoclonal antibodies (mAbs) against

CD3, CD8, CD14, CD16, CD19, and CD56 (BD PharMingen,

San Diego, CA, USA); the resultant HLA-DRhigh cell population

was .98% pure (data not shown). Recombinant His-tagged

gp120ADA, and FLAG-tagged gp120BAL and gp120HXBc2, were

prepared as described [27]; each contained ,5 EU/ml LPS by

Limulus amebocyte lysate (LAL) assay. 16105 moDC were

cultured in 6-well tissue culture plates (Corning Life Sciences

Corp., USA) at 37uC for 24 h in culture medium as described [27]

with 50 nM recombinant R5 (HIV-1ADA and HIV-1BAL), or X4

(HIV-1HXBc2) gp120. Before use, the gp120 was cross-linked by

incubating for 24 h at 37uC with respective anti-His (mouse IgG2a

isotype) or anti-FLAG (mouse IgG1 isotype) mAbs (Sigma–

Aldrich, USA) at a molar ratio 2:1 (gp120 vs anti-His or anti-

FLAG mAb), resulting final cross-linked gp120 of 25 nM.

Therefore, gp120 was used in an immune-complex rather than

monomeric form, unless otherwise stated. In experiments to

remove the carbohydrate moieties of gp120 by enzymatic

digestion, we pre-treated the monomeric recombinant gp120 with

endo-b-N-glucosaminidase H (EndoH; New England Biolabs,

Cambridge, Mass, USA) by incubating recombinant gp120

supernatant with 25 KU of EndoH/ml for 16–18 hours, as

described [39]. The extent of deglycosylation was then examined

and confirmed by SDS-PAGE and Western blot analysis using

polyclonal rabbit anti-gp120 antibodies (Fig. S2A). We then cross-

linked the EndoH-treated monomeric gp120 (which had poly-His

or FLAG at the COOH terminus) with anti-His or anti-FLAG Ab

to form immune-complex (dimeric) gp120, as described above.

The cross-linked EndoH-treated and -untreated gp120 were

further examined by Western blot analysis in native non-reducing

conditions, confirming the dimerization after addition of anti-His

or anti-FLAG Ab (Fig. S2B). The binding of Endo-treated and -

untreated dimeric gp120 to moDC was subsequently compared by

flow cytometry, demonstrating that EndoH-treated gp120 had lost

the binding to moDC (Fig. S2C).

Pre-treatment of DC with receptor antagonists, mannan,
and FcR blockade

To block gp120 binding to CD4 and chemokine receptors, DC

were pre-treated at 4uC for 1 h with 10 mg/ml each anti-CD4

(RPA-T4) plus either anti-CCR5 (clone 2D7; mouse IgG2a) or

anti-CXCR4 mAbs (clone 12G5, mouse IgG2a; all from BD

PharMingen, San Diego, CA, USA). To block DC-SIGN, DC

were similarly pre-treated with anti-DC-SIGN mAbs clone

120612 (mouse IgG2a; R & D Systems, MN, USA) plus DC28

(mouse IgG2a; AIDS Research and Reference Reagent Program,

NIH) in combination at 10 mg/ml each. This combination of anti-

DC-SIGN mAbs significantly inhibited both R5 and X4 gp120

binding to DC-SIGN-transfected 293 cells (Fig. S4A), and HIV-1

uptake into DC-SIGN-transfected THP-1 cells (a kind gift from Dr

V. KewalRamani, HIV Drug Resistance Program, National

Cancer Institute at Frederick, NIH, MD, USA; Fig. S4B). Soluble

polyhistidin(HIS)-tagged ICAM-3-Fc chimeric protein (R & D

Systems, Abingdon, UK; Fig. S4C), cross-linked with anti-His Ab

(as above), was also used to pre-treat DC at 10 mg/ml for 1 h

before use. After pre-treatment with receptor anatagonists, DC

were washed and treated with or without recombinant gp120 as

above or HIV(+) serum as below. In some experiments, we

examined the effects of mannan in competing off gp120 binding

and also the FcR blocking to enhance gp120 binding by pre-

incubating moDC with mannan (50 mg/ml, Sigma, USA) or 30 ml

FcR blocking reagent (Miltenyl Biotec, USA), or anti-DC-SIGN

mAbs (as described above) for 30 minutes before pulse by EndoH-

treated or –untreated gp120 pulsing with subsequent 3 days’

coculture with CD40 Tf.

Co-culture of gp120-DC with activated or naı̈ve T cells
Autologous naı̈ve CD4+ T cells were isolated from peripheral

blood mononuclear cells (PBMCs) after two rounds of immuno-

magnetic depletion (Dynabeads, Dynal, Oslo, Norway) using a

cocktail of mAbs against CD8, CD14, CD19, CD40, CD45RO,

CD56 and HLA-DR (BD PharMingen, San Diego, CA, USA).

The resultant cells were .98% CD4(+) CD45RA(+) (data not

shown). Activated CD4+ T cells were prepared by treating naı̈ve T

cells with 10 ng/ml PMA and 1 mg/ml ionomycin (Sigma, St

Louis, USA) for 24 h; they expressed high levels of CD40L (Fig.

S3, left panel) whereas expression was very low or undetectable on

naı̈ve CD4 T cells (data not shown). 16105 recombinant gp120-

primed moDC were co-cultured with 16105 activated or naı̈ve

CD4 T cells in 96-well plates for 3 d. Cells were then stained with

anti-CD3-cychrome, Annexin V-FITC and Propidium Iodide (all

from BD PharMingen, San Diego, USA). Apoptosis of DC was

determined by the Annexin V-FITC and Propidium Iodide

staining of the large granular cells in the FSC-SSC plot using a

FACSCalibur instrument (Becton Dickinson, San Diego, CA,

USA); these large granular cells were confirmed to lack expression

of CD3 but to express high levels of DC-SIGN (Fig. S1A–B). For

blocking CD40 ligand, activated CD4 T cells were treated with

10 mg/ml anti-CD40 ligand mAb (Alexis, Lausen, Switzerland) for

1 h at 4uC and washed before co-culture with gp120-DC.

Culture of gp120-DC with CD40L transfectants, LPS, TNFa
and IL-1b

16105 purified moDC were treated with cross-linked recombi-

nant gp120 for 24 h, with or without prior receptor blockade, and

co-cultured with 2.56104 CD40 ligand-transfected L (CD40L Tf)

cells (a kind gift of Dr Yong-Jun Liu, MD Anderson Cancer

Center, Texas, USA) in 96-well plates; the transfectants expressed

high levels of CD40L, similar to those of activated CD4 T cells

(Fig. S3, right panel). Before co-culture, the CD40L Tf cells were

treated with 50 mg/ml mitomycin C (Sigma, St Louis, MO, USA)

for 30 minutes at 37uC, in order to prevent cellular proliferation.

After 3 days coculture, the cells were stained with cychrome-

labeled anti-HLA-DR mAb (BD PharMingen, San Diego, USA),

Annexin V-FITC and propidium iodide. Essentially all the moDC

could be harvested by vigorous pipetting and re-suspension to

separate them from the firmly adherent CD40L Tf cells; .98% of
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recovered cells expressed high levels of HLA-DR, whereas

virtually no cells remaining in the wells expressed HLA-DR after

being detached with EDTA (Fig. S2A). The survival of gp120-DC

was determined by Annexin V and/or propidium iodide staining

of cells in the HLA-DR(+) gated population, and by trypan blue

staining (Fig. S2B). Co-culture of gp120-DC with mock transfected

L cells was used as a control. Apoptosis of DC was also examined

after culturing gp120-primed DC with 100 ng/ml each LPS

(Salmonella typhosa, Sigma, St Louis, USA), TNF-a or IL-1b
(Peprotech, NJ, USA) for 3 d.

Isolation of DC-SIGN(+) cells from peripheral blood of
HIV-uninfected [HIV(2)] and -infected [(HIV(+)]
individuals

DC-SIGN(+) cells were isolated from HIV-1(2) individuals as

described [9]. Briefly, 56108 PBMCs were collected from buffy

coats of healthy individuals and the T, B and NK cells were

removed by immunomagnetic depletion (Dynabeads, Dynal, Oslo,

Norway) with a cocktail of anti-CD3/CD20/CD56 mAbs (BD

PharMingen, San Diego, CA, USA). Cells were subsequently

stained with PE-conjugated anti-CD14 (BD PharMingen, CA,

USA) plus FITC-conjugated anti-DC-SIGN (AZN-D1, Beckman

Coulter, CA, USA) mAbs, and subjected to positive sorting using a

FACS Vantage (BD Bioscience, CA, USA); yields for DC-SIGN(+)

cells ranged from 5–156104 cells (i.e., 0.01–0.03% of the starting

PBMC population). Cells were then cultured for 2 h in the

presence of 5 mM EDTA to remove the bound mAb, washed, and

cultured in fresh medium for additional 1–2 h. 26104 DC-

SIGN(+) cells were then exposed to recombinant gp120ADA and

cocultured with CD40L transfectants before assessing cell viability

as above. DC-SIGN(+) cells were similarly isolated from 36108

PBMCs of HIV-1(+) individuals after ethical review (Table S1); the

yield ranged from 8–136103 cells (,0.0027–0.0043% of starting

PBMC). Cells were then treated and cocultured with CD40L Tf

cells, or exposed to 100 ng/ml LPS, TNFa or IL-1b, prior to

analysis [62] of cell viability as above.

Treatment of moDC with serum and filtrates from HIV-
1(+) individuals

The serum and PBMCs of HIV(2) individuals were obtained

from blood collected for a genotyping study [62]. The whole

HIV(+) serum was provided by the AIDS Research Laboratory,

Department of Microbiology, Queen Mary Hospital, The

University of Hong Kong, with approval of the Institutional

Review Board. Before use, HIV-1(+) sera (Table S1) were

centrifuged through ultra-centrifugal filters (Millipore, MA,

USA) with a cut-off point of 100 kDa and fractions .100 kDa

were reconstituted to the original volume with fresh medium as

previously described [27]. Immunoprecipitation (IP) with anti-

gp120 mAbs was performed as described [27] and resulted in over

80% reduction of the p24 level (Fig. S7). Where indicated, the

.100 kDa fraction was further fractionated by centrifugation

through ultra-centrifugal filters with a cut-off point of 1000 kDa

after which the ,1000 kDa and .1000 kDa portions were each

reconstituted to the original volume with fresh medium. 16105

moDC generated from PBMC of HIV(2) individuals were

exposed to the respective HIV(+) serum fractions (above) for

24 h at room temperature, washed, and then co-cultured with

CD40L Tf or autologous activated CD4 T cells, or 100 ng/ml

LPS, for 3 d. After recovery from the adherent CD40L Tf cells

(Fig. S2A), apoptosis of moDC was determined by Annexin V and

PI staining as above. Alternatively, for biosafety reasons after co-

culture with activated CD4 T cells, apoptosis was determined by

terminal deoxynucleotidyl transferase (TdT) dUTP nick end

labelling (TUNEL) assay using the In-Situ Cell Death Detection

Kit (Roche Diagnostics, Inc.), according to manufacturer’s

instructions; the recovered moDC were fixed, permeabilized and

subjected to TUNEL reaction mix incubation at 37uC for 1 h,

followed by cytometric analysis.

Western blotting and siRNA transfection
Purified moDC were pulsed with or without whole HIV-1(+)

sera or recombinant gp120ADA for 24 h, washed, and respectively

co-cultured with CD40L Tf cells or LPS, TNFa or IL-1b for 3 d,

as described before. MoDC could be separated from CD40L Tf

and recovered by pipetting and re-suspension in the co-culture

wells. In preliminary experiments, the recovered cells were

confirmed to express high MHC class II (HLA-DR), while the

CD40L Tf (which could be subsequently detached by treatment

with 5 mM EDTA for 15 min) expressed no or little MHC class II

(Fig. S4B). The recovered moDCs were then washed with ice-cold

PBS, and lysed with buffer containing a proteinase inhibitor

cocktail (Sigma, St Louis, USA). 30 mg of total cell lysate protein

aliquots were loaded onto 12% polyacrylamide gels and subjected

to SDS-PAGE analysis. Gels were blotted onto Immobilon P

membranes (Millipore, Bedford, Mass., USA), blocked in Tris-

buffered saline (TBS) containing 0.05% Tween 20 (TBS-T) and

5% milk, and probed with primary mAbs against human Bcl-2,

Bcl-xL (Zymed laboratories Inc., CA, USA, both 1:200 dilution),

phospho-Akt (Ser-473), phospho-c-Raf (Ser338), or rabbit poly-

clonal antibodies to phospho-ASK1 (Thr845) (1:1000, Cell

Signaling, USA), or b-actin (1:1000, Santa Cruz, Ca, USA)

overnight at 4uC. Membranes were then washed and incubated

with horseradish peroxidase-conjugated secondary antibody

(1:5000; Santa Cruz, CA, USA) for 1 h at room temperature.

After washing, membranes were developed with an ECL

enhanced chemiluminescence Western blot kit and exposed to

Hyperfilm (both from Amersham Pharmacia Biotech, Inc.,

Piscataway, N.J., USA) at room temperature. The rabbit

polyclonal anti-p-ASK1(Thr845) Ab was confirmed to detect p-

ASK1 expression of HEK293 cells transfected with human ASK-1

(Fig. S12). Transfection of moDC with siRNA for human ASK1 or

control siRNA (20 mM each, Santa Cruz, USA) was performed as

described [63] by Oligofectamine, followed by protocols according

to manufacturer’s instruction (Invitrogen, Carlsbad, CA, USA).

Day 5–6 moDC were transfected 1 day before pulsing with

immune-complex gp120.

Statistical analysis
Data were presented as mean 6 standard deviations and

analyzed by ANOVA using SPSS 10 software.

Supporting Information

Figure S1 moDC in coculture with autologous activated
CD4 T cells can be identified as a large granular CD3-
negative, DC-SIGN-positive population by flow cytome-
try. (A) After vigorous pipetting and re-suspension of the cells in

the DC-T coculture wells, consistently ,5% of the cells in the

larger and more granular population (gated in R1, left panel)

expressed CD3 (right upper panel). In contrast, consistently .95%

of the smaller and less granular cells (gated in R2) expressed CD3.

Data are representative of 3 experiments. Solid line, anti-CD3;

dashed line, isotype control. (B) more than 90% of R1 population

(gated, left panel) expressed DC-SIGN (right panel), while only

4.3% of R2 cells did so. Therefore, cells in R1 are mostly moDCs,

whereas those in R2 are mostly T cells. Data are representative of
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6 experiments. (C) MoDC which were pulsed with cross-linked

(immune-complex) gp120 and cocultured with autologous activat-

ed CD4 T cells for 2 to 4 days were analyzed for their viability by

AV and PI staining. Results showed that the percentage of

AV(+)PI(2) cells (right lower quadrant) increased from d2 to d3

but decreased from d3 to d4, whereas AV(+)PI(+) cells (right upper

quadrant) increased from d2 to d3, and further increased to d4.

The total AV+ cells (including both AV+PI2 and AV+PI+ cells),

nevertheless, remained relatively consistent between d3 and d4

(58.7% vs 58.4%). This finding is in line with results of Fig. 1C (of

the text) and indicates that as incubation time increases, some cells

at early apoptotic (AV+PI2) phase would become late apoptotic

(AV+PI+) cells. Results are representative of 3 experiments.

(TIF)

Figure S2 EndoH treatment of recombinant gp120
abolished its binding to moDC. (A) Recombinant gp120ADA

supernatant was treated overnight with 25 KU of EndoH/ml as

described (Hong PWP et al, J Virol 2002;76:12855–12865), and

the treated and the untreated gp120ADA supernatant were

subjected to Western blot assay by polyclonal rabbit anti-gp120

Ab (Sino Biological Inc). The untreated gp120 had a

MW<120 kDa, whereas the EndoH-treated one had

MW<80 kDa. (B) EndoH-untreated recombinant gp120ADA and

gp120HXBc2 were cross-linked with anti-His or anti-FLAG Ab, as

described in materials and methods, and subsequently subjected to

native non-reducing Western blot analysis (as described by Hong

PWP et al, J Virol 2002;76:12855–12865). The cross-linked gp120

had MW<410–420 kDa (lane 1 & 2, left panel), and the MW of

monomeric gp120 was <120 kDa (lane 3 & 4). The cross-linked

deglycosylated (EndoH-treated) gp120 were in lanes 5 & 6 (<330–

340 kDa), and monomeric EndoH-treated gp120 were in lanes 7

& 8 (<80 kDa). In a separate gel, the MW of anti-His or anti-

FLAG Abs used for cross linking (as detected by goat polyclonal

anti-mouse IgG Ab; Genscript, USA) was <170–180 kDa (lane 9).

Flow cytometry of EndoH-treated or -untreated cross-linked

gp120ADA binding on moDC was shown in the right panel.
Briefly, 56105 moDC were fixed with formalin first and incubated

by EndoH-treated or -untreated gp120ADA cross-linked by mouse

anti-His Ab for 30 min. After wash cells were incubated with the

FITC-conjugated goat polyclonal anti-mouse IgG antibody

(BioLegend) for 30 min. Isotype control antibody (black line) was

goat control Ig (Abcam). Data are representative of 3 independent

experiments.

(TIF)

Figure S3 Anti-DC-SIGN mAbs inhibited binding of
HIV-1 gp120 and uptake of HIV-1 virions by DC-SIGN
transfectants which bound soluble ICAM-3-Fc chimeric
recombinant protein. (A) DC-SIGN-transfected or mock-

transfected 293 cells were pre-treated without (as a control) or

with anti-DC-SIGN mAb clones 120612 and DC28, individually

or in combination (10 mg/ml each), for 1 h at 4uC. After wash,

cells were incubated for 1 h at 4uC with 10 mg/ml recombinant

gp120ADA cross-linked by FITC-conjugated anti-His mAb, or with

recombinant gp120IIIB and gp120MN cross-linked by 2G12 mAb

(NIH AIDS Research and Reference Reagent Program) as

indicated, washed and analysed by flow cytometry. Shaded area,

binding of recombinant gp120; solid line, gp120 binding after pre-

treatment with anti-DC-SIGN mAb(s); dashed line, binding of

gp120 to mock transfectants. Note that the most effective

inhibition, though still incomplete, of gp120 binding was seen

with the combination of anti-DC-SIGN mAbs, while DC28 was

more effective than 120612 when tested individually. Data are

representative of 3 experiments. (B) 56105 DC-SIGN-transfected

(Tf) or mock-transfected THP-1 cells were incubated with HIV-

189.6 (p24 = 1.5 ng; from NIH AIDS Research and Reference

Reagent Program) in a total volume of 400 ml for 3 hours at 37uC
to allow cellular adsorption of the virus and viral replication. The

cells were pre-treated without or with a combination of anti-DC-

SIGN mAbs (clone 120612 plus DC28) at room temperature for

30 minutes prior to exposure to virus supernatant and during

subsequent culture. Cells were then washed extensively to remove

unbound virus, lysed in 0.5% Triton X-100, and the lysates were

subjected to analysis using p24 ELISA kits (Coulter, FL, USA).

Data are expressed as mean6SD of 3 experiments.

(TIF)

Figure S4 CD40L-transfected L cells expressed CD40L
with levels similar to activated CD4 T cells, and gp120-
DCs can be recovered from adherent CD40 ligand-
transfected (CD40L Tf) cells. (A) Activated CD4 T cells

(treated with 10 mg/ml PMA and 1 mg/ml ionomycin for 24 h) or

CD40L Tf cells were incubated with 10 mg/ml anti-CD40L mAb

(Alexis, Lausen, Switzerland) or isotype control and analyzed by

flow cytometry using a FACSCalibur (Becton Dickinson, San

Diego, CA, USA). Solid line, anti-CD40L mAb; dashed line,

isotype control. Data are representative of 4 experiments. (B) Cells

recovered from DC+CD40L Tf coculture expressed high levels of

HLA-DR. Briefly, moDCs were treated with cross-linked recom-

binant gp120ADA and subsequently co-cultured with CD40L Tf

cells for 3 days. The non- and weakly-adherent cells were

harvested by pipetting and resuspension and subsequently labeled

by anti-HLA-DR mAb (R & D systems) and subjected to flow

cytometric analysis. Virtually all the recovered (non-adherent) cells

expressed HLA-DR (left panel). The remaining adherent cells that

had been detached with EDTA expressed little HLA-DR (right

panel), confirming that virtually all DCs had been recovered for

analysis. Data are representative of 3 experiments, and results

were similar for the cocultures of CD40L Tf and DCs pulsed with

gp120ADA or HIV-1(+) serum (not shown).

(TIF)

Figure S5 Trypan blue staining of moDC that were
treated with anti-His cross-linked gp120ADA or anti-His
mAb alone (control DC) and recovered from co-culture
with CD40L Tf after 3 days. Data represent mean 6 SD from

3 experiments; ***p,0.001.

(TIF)

Figure S6 Soluble recombinant ICAM-3-Fc chimeric
protein (sICAM-3) bound to DC-SIGN-transfectants
and pre-treatment with receptor antagonist mAbs alone
did not sensitize DC for CD40L-mediated apoptosis. (a)

DC-SIGN-transfected or mock-transfected 293 cells were incu-

bated with 10 mg/ml soluble ICAM-3-Fc chimeric protein (cross-

linked with anti-His mAb) or with anti-His mAb alone, for 1 h at

4uC. After wash, cells were incubated with FITC-conjugated

rabbit-anti-mouse antibody (DAKO, Denmark) for 1 h at 4uC and

analysed by flow cytometry. Solid line, cross-linked sICAM-3-Fc;

dashed line, anti-His mAb. Data are representative of 3

experiments. (b) moDC were treated for 24 h with combinations

of anti-His plus anti-FLAG mAbs (panel A) which were used to

cross-link the gp120, anti-CD4 (clone RPA-T4) plus anti-CCR5

(clone 2D7) mAbs (panel B), anti-CD4 plus anti-CXCR4 (clone

12G5) mAbs (panel C), anti-DC-SIGN (clones 120612 plus DC28)

mAbs (panel D), or with cross-linked gp120ADA or gp120HXBc2

respectively (cross-linked with anti-His or anti-FLAG mAbs; panel

E and F respectively), and co-cultured with CD40L transfectants

for 3 days. All antibodies and gp120 were used at 25 nM and

50 nM each. Flow cytometric analysis confirmed little apoptosis of
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the mAb-treated moDC (panels A–D) compared to the gp120-DC

(panels E & F). Data are representative of 3 experiments. In

further experiments, treatment with a combination of the three

anti-CD4/CCR5/CXCR4 mAbs did not induce CD40L Tf-

mediated DC apoptosis either (data not shown).

(TIF)

Figure S7 moDCs treated with HIV(+) sera can be
identified as a distinctly smaller-sized CD3-negative
population compared to control moDC. MoDC were

treated with normal AB serum (Control DC) or with HIV-1(+)

serum [HIV(+) serum-DC] with viral loads .400,000/ml (Table

S1) for 24 h, and co-cultured with autologous activated CD4 T

cells for 3 d. Cells were then harvested and subjected to flow

cytometric analysis. In contrast to control moDC (R1 in left panel;

compare to Fig. S1A), the sera-treated moDCs were identified as a

distinctly smaller CD3-negative population (round circle in the

middle panel), indicative of the induction of apoptosis. Data are

representative of 3 experiments.

(TIF)

Figure S8 Immunoprecipitation (IP) of gp120 reduced
p24 levels in supernatants of in vitro propagated live
virus. IP was performed by adding 10 mg/ml each of anti-gp120

mAbs 2G12 and IgG1b12 (NIH AIDS Research and Reference

Reagent Program) into 2 ml supernatants of in vitro propagated HIV-

1BaL (BaL) or HIV-1IIIB (IIIB) virus. Solutions were mixed on ice for

1 hour and 20 mg of protein A sepharose (Sigma-Aldrich, St Louis,

USA) in PBS was added for additional 1 hour. Protein A beads were

then removed by centrifugation. Two further rounds of protein A

sepharose depletion were similarly performed before retrieval of the

depleted serum for determination of p24 levels by ELISA kit (Coulter,

FL, USA). Data are expressed as mean 6 SD of 3 experiments.

(TIF)

Figure S9 Pre-treatment with mannan abolished
CD40L-mediated apoptosis of moDC pulsed by HIV
serum and FcR blocking of moDC enhanced the CD40L-
mediated death of HIV serum-pulsed DC. (A & B) 50KU of

EndoH (in 100 ml) and 100 ml of protease inhibitors (cOmplete

ULTRA tablet, EDTA-free; from Roche; in order to protect the

integrity of EndoH after addition into the serum) were mixed into

1 ml of HIV(+) serum (with a viral titer .400,000/ml; Table S1)

for 5–10 minutes before being ultra-centrifuged to obtain the 100–

1000 kDa fraction (as described in ‘‘materials and methods’’). DC

were then pulsed by such EndoH-treated or untreated HIV serum

(100–1000 kDa fraction) after being pre-treated with or without

mannan or FcR blocking reagent (as described in Fig. 2E of the

text), or anti-DC-SIGN mAbs, and subsequently cocultured with

CD40L Tf. After 3 days, DC were detached and recovered, and

underwent AV/PI staining. DC pulsed by normal AB serum were

used a control. Results revealed that DC pulsed by EndoH-treated

HIV(+) serum had significant reduction in CD40L-mediated

apoptosis (down to control levels), when compared with cells

pulsed by EndoH-untreated HIV serum. Furthermore, consistent-

ly as in the use of recombinant gp120, FcR blocking itself did not

induce excessive apoptosis of control DC (which were pulsed with

normal AB serum), and FcR blockade of DC prior to pulse with

HIV serum further increased the extent of CD40L-mediated

apoptosis (P,0.05, in comparison to no FcR blockade). In

addition, compared with DC-SIGN blockade which partially

prevented DC death (p,0.05 compared to DC without DC-SIGN

blockade), pre-treatment of DC with mannan further reduced the

CD40L-mediated DC apoptotic (*p,0.05 compared to DC-SIGN

blockade). Representative of 3 independent experiments was

shown in A, and the % of total AV(+) cells in each condition was

expressed as mean 6 SD in B.

(TIF)

Figure S10 Freshly-isolated DC-SIGN(+) cells from
blood expressed CD40 and CD11c. DC-SIGN(+) cells (gated

in the left panel) were isolated from the CD14(+) subset of PBMCs as

described in the Materials and Methods. Cells were incubated with

FITC-conjugated anti-CD40 or anti-CD11c mAbs (BD PharMin-

gen, CA, USA) and analyzed by flow cytometry (middle and right

panels). In line with a previous report (Engering A et al, Blood

2002;100:1780–1786), essentially all DC-SIGN(+) cells expressed

CD11c and CD40. Data are representative of 3 experiments.

(TIF)

Figure S11 Cross-linked gp120 modulates the expres-
sion of surface molecules typically associated with DC
maturation in a DC-SIGN-dependent manner but is
inefficient compared with maturation by conventional
factors. (A) 16106 moDC were cultured for 24 h at 37uC in the

presence of 10 mg/ml monomeric gp120ADA (left column), anti-

His cross-linked gp120ADA (10 mg/ml, middle column), or anti-His

cross-linked gp120ADA with DC-SIGN blockade (10 mg/ml each

of anti-DC-SIGN mAbs clone 12612 and DC28; right column).

Results indicated that immune-complex gp120 indeed could

induce phenotypic maturation of moDC, as manifested by clear

upregulation of CD80, CD83, CD86, and CCR7, and downreg-

ulation of CCR5. Such modulation could be in part prevented by

pre-treatment by anti-DC-SIGN mAbs (right column). The

change in CD40 and HLA-DR expression was not as remarkable

as others. Data are representative of 5 experiments. (B) moDC

were treated with dimeric (cross-linked) gp120 (10 mg/ml;

immune-complex/gp120 or IC/gp120) or conventional DC

maturation factors as similarly described by Shan M et al, PLoS

Pathogens 2007;3:1637–1650, ie,, exposure to a mixture of 10 ng/

ml LPS, 25 ng/ml TNFa, 10 ng/ml IL-1b, and simultaneous

coculture with CD40L (as described in ‘‘materials and methods’’)

for 24 h. DCs with no treatment were used as a control (control

DCs). After treatment, DC were subjected to flow cytometric

analysis of surface expression of costimulatory and maturation

markers. Compared with conventional maturation, IC/gp120

induced inefficient modulation of moDCs in the upregulation of

CD80, CD86, CD83, CCR7, as well as in the downregulation of

CCR5. In contrast, the upregulation of MHC class II appeared to be

less affected. Data are representative of 3 independent experiments.

(TIF)

Figure S12 Expression of the anti-apoptotic Bcl-2 and
Bcl-xL was reduced after co-culture of gp120-primed
moDCs with CD40L transfectants, and rabbit polyclonal
anti-ASK1 Ab detected p-ASK1 expression in ASK1-
transfected cells. (A) moDC were treated with cross-linked

gp120ADA (gp120-DC) or anti-His mAb (control DC) followed by

co-culture with CD40L Tf. After 3 d, DC were harvested from

and lysed, and cellular protein was subjected to western blotting

for the indicated proteins. Data are representative of 3

experiments. (B) moDC were treated with HIV-1(+) serum

(RNA copy number.400,000/ml) with or without pre-treatment

by anti-DC-SIGN mAbs, as described in ‘‘materials and

methods’’, prior to coculture with CD40L transfectants as

described in panel A, and cellular protein was extracted and

subjected to western blotting for the indicated proteins. Data are

representative of 3 experiments. (C) Human ASK1 (Ichijo H et al,

Science 1997;275:90–94) was generated in pcDNA3 vector, as

described (Won M et al, Cell Death and Differentiation 2010;17:1830–

1841), and transiently transfected into HEK293 cells by
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lipofecatmine PLUS, according to manufacturer’s instructions.

After <36 hours, cell were lysed and subjected to Western blot

assay with rabbit polyclonal anti-ASK1 Ab (Phospho-ASK1

(Thr845) antibody, #3765, Cell Signaling, USA). Results

confirmed ASK1 expression with a molecular weight <160 kDa,

which served as a positive control for p-ASK1 expression in

Fig. 7A. Data are representative of 3 independent experiments.

(TIF)

Table S1 Viral RNA copy numbers in the sera of HIV-1
infected individuals used for this study. Patient viral RNA

copy numbers were retrieved from archived information. The

following individual or pooled patient (#) samples were used to

obtain the data shown in the respective figures: Figures 3A #9; 3B

#7–10; 3C #10; 3D #5–7 and #10; 4A #1–4 and 5–7; 4B #6,

4C #6–10; 5C #3, 5C–D #1–4; 6D #5–8; 6E #9; and 6F #6

plus #8–10.

(TIF)
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