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Abstract 

 

The emergence of a new human coronavirus (SARS-CoV-2) has imposed great pressure on 

the health system worldwide. The presence of glycoproteins on the viral envelope opens a 

wide range of possibilities for application of lectins to address some urgent problems involved 

in this pandemic. In this work, we discuss the potential contributions of lectins from non-

mammalian sources in the development of several fields associated with viral infections, most 

notably COVID-19. We review the literature on the use of non-mammalian lectins as a 
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therapeutic approach against members of the Coronaviridae family, including recent 

advances in strategies of protein engineering to improve their efficacy. The applications of 

lectins as adjuvants for antiviral vaccines are also discussed. Finally, we present some 

emerging strategies employing lectins for the development of biosensors, microarrays, 

immunoassays and tools for purification of viruses from whole blood. Altogether, the data 

compiled in this review highlights the importance of structural studies aiming to improve our 

knowledge about the basis of glycan recognition by lectins and its repercussions in several 

fields, providing potential solutions for complex aspects that are emerging from different 

health challenges. 
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1. Introduction 

The year of 2020 has been marked by the global dissemination of a new type of severe 

acute respiratory syndrome, defined as COVID-19 (Rothan, H.A. and Byrareddy, S.N. 2020, 

Yi, Y., Lagniton, P.N.P., et al. 2020). The novel human coronavirus (SARS-CoV-2 or 2019-

nCoV) was first reported in Wuhan (China) with similarity to other types of Betacoronavirus: 

(i) SARS-CoV, the etiologic agent of an outbreak of severe acute respiratory syndrome in 

China (SARS, 2003); (ii) MERS-CoV, the virus identified as the cause of a severe respiratory 

syndrome in Middle East (MERS, 2012) (Zhang, Y.Z. and Holmes, E.C. 2020). However, 

SARS-CoV-2 has higher dissemination rates than MERS-CoV and SARS-CoV, imposing 

serious challenges to health systems worldwide (Requia, W.J., Kondo, E.K., et al. 2020, Sun, 

J., He, W.T., et al. 2020).  

The initial symptoms of COVID-19 disease are similar to the common cold. However, 

this infection can progress to severe respiratory failure with impaired and deleterious 

immunological responses (Li, R., Tian, J., et al. 2020, Sun, S., Cai, X., et al. 2020, Xu, B., 

Fan, C.Y., et al. 2020). This state is characterized by increased ratios of monocytes and 

neutrophils and exacerbated release of inflammatory mediators (especially IL-6) that may 

contribute to dysfunction of multiple organs (Qin, C., Zhou, L., et al. 2020, Xu, B., Fan, C.Y., 

et al. 2020). Despite the occurrence of other coronavirus outbreaks, there is still no specific 

therapy or vaccine for COVID-19 (Alanagreh, L., Alzoughool, F., et al. 2020, Pastick, K.A., 

Okafor, E.C., et al. 2020).  

Other important concern is the urgent need for simple and fast devices for viral 

detection in clinical and environmental samples (Liang, K.H., Chang, T.J., et al. 2020, Qiu, 

G., Gai, Z., et al. 2020). Particularly, the early detection of SARS-CoV-2 in asymptomatic 

and/or presymptomatic individuals is important to break the chain of transmission (Arons, 

M.M., Hatfield, K.M., et al. 2020, Furukawa, N.W., Brooks, J.T., et al. 2020). The 
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extracorporeal removal of SARS-CoV-2 from blood by plasmapheresis is also important for 

implementation of alternative therapies (Turgutkaya, A., Yavasoglu, I., et al. 2020). This 

complex panorama has imposed a race against time across different fields of knowledge 

(biomedical science, biotechnology, drug development, molecular analysis, etc.) to offer the 

maximum number of solutions to these and other issues raised by this pandemic 

(Venkatakrishnan, K., Yalkinoglu, O., et al. 2020). 

SARS-CoV-2 has a lipoprotein envelope surrounding the infectious virion particles 

which is derived from the host cell during the budding (Bianchi, M., Benvenuto, D., et al. 

2020, Sternberg, A. and Naujokat, C. 2020). The viral envelope has two layers of lipids 

whose composition depends on the type of membrane from which this structure is derived 

(Cosset, F.L. and Lavillette, D. 2011). The proteins are interspersed in the lipid layers and 

some of them are glycosylated by hots enzymes (Carbaugh, D.L. and Lazear, H.M. 2020, 

Cipollo, J.F. and Parsons, L.M. 2020). Like other enveloped viruses, the envelope 

glycoproteins of SARS-CoV-2 are involved in the process of viral adhesion and entry 

(Sternberg, A. and Naujokat, C. 2020, Verma, J., Subbarao, N., et al. 2020). 

For instance, the envelope of SARS-CoV-2 exhibits glycoproteins such as spike (S-

protein) and membrane (M-protein) proteins (Ahmed, S.F., Quadeer, A.A., et al. 2020, 

Shajahan, A., Supekar, N.T., et al. 2020) (Supplementary Figure 1A). These structural 

proteins (specially S-protein) exert central roles in viral pathogenesis and are pointed as 

important targets for neutralizing antibodies, vaccine and drug design (Ahmed, S.F., Quadeer, 

A.A., et al. 2020, Bagdonaite, I. and Wandall, H.H. 2018). Besides, non-structural proteins 

are also found in glycosylated forms, such as the 3a protein, which plays an essential role in 

SARS-CoV-2 virulence (Fung, T.S. and Liu, D.X. 2018, Issa, E., Merhi, G., et al. 2020). The 

presence of glycoproteins in viral envelope opens a wide range of possibilities for application 
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of carbohydrate binding agent, such as lectins, to address some urgent problems involved in 

this pandemic situation. 

Lectins comprises a large class of proteins sharing the ability to recognize specific 

types of carbohydrates residues (Coelho, L.C., Silva, P.M., et al. 2017). They are ubiquitously 

distributed in the organisms where participate in sugar storage, immune defense systems and 

other physiological processes (Brown, G.D., Willment, J.A., et al. 2018, Prado Acosta, M. 

and Lepenies, B. 2019, Ribeiro, A.C., Monteiro, S.V., et al. 2014). Moreover, lectins from 

pathogenic agents (including viruses, bacteria and fungi) are involved in their virulence 

mechanisms through binding to glycans present on host cell surfaces (Landi, A., Mari, M., et 

al. 2019, Patra, D., Mishra, P., et al. 2014, Van Breedam, W., Pohlmann, S., et al. 2014).  

The recognition of glycans allow the use of lectins for several biotechnological 

applications (de Oliveira Figueiroa, E., Albuquerque da Cunha, C.R., et al. 2017, Hamorsky, 

K.T., Kouokam, J.C., et al. 2019, Swanson, M.D., Boudreaux, D.M., et al. 2015). Importantly, 

these agglutinins are pointed as broad-spectrum inhibitors of viral invasion, since they could 

target sugar moieties in surface proteins and block the adhesion to host cells (Gondim, A.C.S., 

Roberta da Silva, S., et al. 2019, Mitchell, C.A., Ramessar, K., et al. 2017, Wang, D., Tang, 

J., et al. 2015). The interaction with glycoproteins also allows the use of lectins in the 

development of devices for identification and characterization of glycoproteins in viral 

envelope or alterations in host glycoproteins during viral infection (Andrade, C.A., Oliveira, 

M.D., et al. 2011, Koch, B., Schult-Dietrich, P., et al. 2018, Simao, E.P., Silva, D.B.S., et al. 

2020).  

Herein, we discuss the potential contributions of non-mammalian lectins in the 

development of different fields of viral infections research, using COVID-19 disease as 

background. Given the recent emergence of the SARS-CoV-2, we review some lessons 

acquired from previous studies on closely related coronaviruses (SARS-CoV, MERS-CoV) 
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and other enveloped viruses. In this regard, the possible applications of lectins include: (i) 

design of leading molecules for antiviral therapy; (ii) development of adjuvant compounds for 

immunization; (iii) establishment of approaches to characterize glycosylation of viruses or 

infected host protein structures; (iv) development of devices for viral detection and 

purification. We also discuss challenges and limitations for each target application. 

 

2. Overview of glycosylation of viral proteins 

Glycosylation is the most common type of post-translational modification (PTM), 

which significantly regulates the structure (folding and stability) and functions of proteins 

(Cipollo, J.F. and Parsons, L.M. 2020, Ohyama, Y., Nakajima, K., et al. 2020). Glycans are 

involved in viral adhesion and epitope shielding from antibody recognition, therefore 

glycosylation sites may be under selective pressure (Vankadari, N. and Wilce, J.A. 2020, 

Watanabe, Y., Bowden, T.A., et al. 2019). The synthesis, folding and glycosylation (as other 

PTMs) of viral proteins depend on host organelles (ribosomes, endoplasmic reticulum and 

Golgi apparatus) and enzymes (glycotransferases and glycosidases) (Carbaugh, D.L. and 

Lazear, H.M. 2020, Cipollo, J.F. and Parsons, L.M. 2020).  

The current experimental data regarding the glycosylation of viral proteins is 

dependent on the carbohydrate processing enzymes available in the biological systems used to 

propagate the viral strain. In this sense, our knowledge about the natural pattern of viral 

glycosylation is very limited (Bagdonaite, I., Vakhrushev, S.Y., et al. 2018, Cipollo, J.F. and 

Parsons, L.M. 2020). It is also important to consider that viral proteins may follow different 

pathways than those observed from host glycoproteins (Watanabe, Y., Bowden, T.A., et al. 

2019). 

The covalent addition of glycans in viral proteins occurs mainly through two 

pathways: (i) N-glycosylation, when the glycan is connected to asparagine (Asn) residues; 
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and (ii) O-glycosylation, when the modification is performed in oxygen atoms of serine (Ser) 

and threonine (Thr) residues [sometimes tyrosine (Tyr) residues are used] (Watanabe, Y., 

Bowden, T.A., et al. 2019). The mucin-type O-glycosylation, also known as N-

acetylgalactosamine (GalNAc)-type, is the most commonly observed in viral proteins (Chen, 

N., Kong, X., et al. 2020, Hargett, A.A. and Renfrow, M.B. 2019). 

The process of N-glycosylation of viral proteins in mammalian cells starts in parallel 

with their synthesis. In the cytoplasmatic side of endoplasmatic reticulum (ER), the glycan 

precursor is synthesized containing three glucose (Glc), nine mannose (Man), and two N-

acetylglucosamine (GlcNAc) (Glc3Man9GlcNAc2) glycosylation sites (Hargett, A.A. and 

Renfrow, M.B. 2019). This precursor is transferred to the ER lumen and modified by the 

addition of monosaccharides (Fung, T.S. and Liu, D.X. 2018).  

The mature glycan structure is then added, by an oligosaccharyltransferase, to the Asn 

residue of an Asn-X-Ser/Thr motif (‘X’ in any amino acid, except proline) in the nascent 

protein chain (Carbaugh, D.L. and Lazear, H.M. 2020). Following, other enzymes from the 

ER and Golgi apparatus (glucosidases, mannosidases, galactosyl-, fucosyl- and sialyl-

transferases) modify the structure, which results in the diversification of glycan molecules 

that are allocated in the classes: oligomannose, hybrid, and complex-type N- glycan structures 

(Supplementary Figure 1B) (Fung, T.S. and Liu, D.X. 2018, Watanabe, Y., Bowden, T.A., et 

al. 2019). 

The mucin-type O-glycosylation can be considered more complex than N-

glycosylation. The first takes place in the Golgi apparatus, where a group of GalNAc-

transferases mediates the insertion of GalNAc monosaccharide to the appropriated amino 

acids residues (Ser, Thr or Tyr) (Cipollo, J.F. and Parsons, L.M. 2020, Hargett, A.A. and 

Renfrow, M.B. 2019). Next, glycosyltransferases can process the O-linked glycan generating 

the eight types of cores (cores 1 to 8) (as shown in Supplementary Figure 1C). The core types 
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1 to 4 are the most common in mammalian systems. During the passage through the Golgi 

apparatus, these structures are further altered, which leads to the diversification of mucin-type 

O-linked glycans (Hargett, A.A. and Renfrow, M.B. 2019, Watanabe, Y., Bowden, T.A., et al. 

2019). 

 

3. Glycosylation profile of the Spike protein from SARS-CoV-2 

Glycoproteins of SARS-CoV-2 are involved in cell adhesion and invasion, 

morphogenesis and modulation immune response processes (Fung, T.S. and Liu, D.X. 2018, 

Issa, E., Merhi, G., et al. 2020, Walls, A.C., Park, Y.J., et al. 2020). Although other SARS-

CoV-2 proteins have predictable glycosylation sites (such as M-protein, E-protein), the 

majority of experimental data currently available is based on the S-protein (Supplementary 

Figure 1D) (Andersen, K.G., Rambaut, A., et al. 2020, Watanabe, Y., Allen, J.D., et al. 2020). 

This is a trimeric protein that mediates the viral adhesion through binding to the human 

angiotensin-converting enzyme 2 (hACE2) and also interacts with the host immune defense 

(Ou, X., Liu, Y., et al. 2020, Vankadari, N. and Wilce, J.A. 2020, Walls, A.C., Park, Y.J., et 

al. 2020).  

The S-protein from SARS-CoV-2 has two functional subunits (S1 and S2) with 22 and 

3 potential sites for N-glycosylation and O-glycosylation, respectively (Andersen, K.G., 

Rambaut, A., et al. 2020, Watanabe, Y., Allen, J.D., et al. 2020). Despite the similarity with 

SARS-CoV spike (approximately 87.2%), some differences in the glycosylation sites 

repertoire and known epitopes have been reported for SARS-CoV-2 spike (Kumar, S., 

Maurya, V.K., et al. 2020, Vashi, Y., Jagrit, V., et al. 2020). For instance, it exhibits an 

unusual cleavage site for the furin protease between the S1/S2 subunits, which is not observed 

in SARS-CoV. The N-linked glycans were recently mapped by cryoelectron microscopy in 16 
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amino acid residues of the S-protein expressed in HEK293F cells (from human embryonic 

kidney) (Walls, A.C., Park, Y.J., et al. 2020). 

More details on N-glycosylation profiles of the 22 sites were unraveled using 

recombinant proteins expressed in HEK293F cells. The oligomannose-type glycans were 

predominant in two sites (N234 and N709). Complex-type glycans were predominantly 

exhibited in 14 amino acid residues (N17, N74, N149, N165, N282, N331, N343, N616, 

N657, N1098, N1134, N1158, N1173, N1194); while six sites showed a mixture of 

oligomannose- and complex-type glycans (N61, N122, N603, N717, N801 and N1074). The 

most common configuration of oligomannose-type glycans was Man5GlcNAc2. Afucosylated 

and fucosylated hybrid-type glycans were detected in at least 9 sites. The authors highlighted 

that the glycosylation profile of the SARS-CoV-2 S-protein was different from those observed 

for host glycoproteins or for other enveloped viruses (Watanabe, Y., Allen, J.D., et al. 2020). 

Other experimental study evaluated the N-glycosylation and O-glycosylation of spike 

protein subunits also using HEK293-based expression system. The authors have solved the 

structures of N-linked glycans in 17 predicted sites and reported the presence of three classes 

of N-glycans. Importantly, this study revealed O-glycosylation modifications on two residues 

(Thr323 and Ser325) present in the receptor binding domain (RBD) of the S1 subunit 

(Shajahan, A., Supekar, N.T., et al. 2020). Recently, the characterization of the glycosylation 

profile of the S-protein expressed in BTI-Tn-5B1-4 insect cells was reported showing the 

presence of high-mannose N-glycans in all 22 predicted sites. Interestingly, these glycans 

cover almost all of the RBD area (Zhou, D., Tian, X., et al. 2020). 

 

4. Lectins can target envelope glycoproteins and inhibit the adhesion of coronavirus to 

host cell receptors. 
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As previously mentioned, the S-protein of SARS-CoV-2 has a crucial role in viral 

adhesion by binding to hACE2. Therefore, the disruption of this interaction is considered an 

attractive target for antiviral therapy (Batlle, D., Wysocki, J., et al. 2020, Ou, X., Liu, Y., et 

al. 2020). Some non-mammalian derived lectins (from plants and bacteria) are pointed as 

alternative antiviral agents against enveloped viruses due to their ability to recognize the 

glycans present in the structural proteins and to impair the initial steps of viral pathogenesis 

(Mitchell, C.A., Ramessar, K., et al. 2017) (Supplementary Figure 2A and 2B).  

Given the recent emergence of SARS-CoV-2, only the lectin isolated from Lablab 

purpureus (FRIL) has been reported so far as an antiviral agent against this virus. FRIL (Flt3 

Receptor Interacting Lectin) is a glucose/mannose lectin also known as DLL-I. This protein 

completely inhibited the cytopathic effect of SARS-CoV-2 (strain hCoV-

19/Taiwan/NTU04/2020) towards Vero cells at concentrations higher or equal than 6.25 

µg/mL. The PRNT50 (50% plaque reduction neutralization test) and microneutralization 

EC50 (half maximal effective concentration) values for FRIL against hCoV-

19/Taiwan/NTU04/2020 were 0.71 µg/mL and 0.80 µg/mL, respectively. This action was 

correlated with the ability of FRIL to bind to SARS-CoV-2 S-protein harboring complex-type 

N-glycans (as shown by ELISA-lectin assay). The authors also showed that FRIL treatment 

impairs the synthesis of SARS-CoV-2 N-protein and SARS-CoV-2 S-protein. Furthermore, 

FRIL has in vitro and in vivo action against influenza virus (Liu, Y.M., Shahed-Al-Mahmud, 

M., et al. 2020). 

Besides these insights given by the anti-SARS-CoV-2 action of FRIL, other important 

lessons can be learned from other SARS-CoV and related viruses (as summarized in Table I). 

For instance, a study evaluated the in vitro antiviral activity of 33 plant lectins towards 

coronaviruses (SARS-CoV and feline infectious peritonitis virus). Mannose-binding 

agglutinins showed the highest anti-SARS-CoV effects. Among the studied lectins, the higher 
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selective indexes (SI) were found for the ones isolated from Allium porrum (APA; SI >222.2), 

Morus nigra (Morniga M II; SI >62.5) and Epipactis helleborine (EHA; SI >55.5). Urtica 

dioica (UDA) and Nicotiana tabacum agglutinins (NICTABA), both specific for GlcNAc, 

also showed promising activity (SI >76.9 and >58.8, respectively) (Keyaerts, E., Vijgen, L., et 

al. 2007). NICTABA and UDA have also shown inhibitory activity against other enveloped 

viruses including influenza A/B, Dengue virus type 2 (DENV-2), herpes simplex virus types 1 

and 2 (HSV-1 and HSV-2) and human immunodeficiency viruses (HIV-1/2) (Gordts, S.C., 

Renders, M., et al. 2015). 

The in vivo activity of UDA was reported in murine models of lethal SARS-CoV 

(Day, C.W., Baric, R., et al. 2009, Kumaki, Y., Wandersee, M.K., et al. 2011). Initially, the 

potential effects of UDA was associated to the reduction of IL-6 levels in the lungs (Day, 

C.W., Baric, R., et al. 2009). Following, the UDA mechanism of action was further detailed 

and revealed that UDA-treated mice exhibited fewer pathologic alterations in the lung and 

higher survival indexes, when compared to the placebo-treated group. Further, the authors 

showed that this lectin targets the viral invasion by binding to the S-protein, since the UDA 

protective effects were impaired in the presence of GlcNAc (Kumaki, Y., Wandersee, M.K., 

et al. 2011). 

Other plant lectins have been shown to exhibit inhibitory action towards other 

coronaviruses. Examples include the following mannose-binding lectins: Concanavalin A 

(Con A), Hippeastrum hybrid agglutinin (HHA), Galanthus nivalis agglutinin (GNA or GNL) 

(Greig, A.S. and Bouillant, A.M. 1977, Hsieh, L.E., Lin, C.N., et al. 2010, Nguyen, T.D., 

Bottreau, E., et al. 1987, van der Meer, F.J., de Haan, C.A., et al. 2007a).  One of these studies 

highlighted the importance of glycosylation in the sensibility of two types of coronaviruses 

(mouse hepatitis virus and feline infectious peritonitis virus) towards GNA, UDA and HHA. 

In this case, the inhibition of host mannosidases resulted in the improved antiviral activity of 
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the mannose- and GlcNAc-binding lectins (van der Meer, F.J., de Haan, C.A., et al. 2007b). 

GNA was also recently reported as an inhibitor of cell entry mechanism of influenza A H3N2 

(Thompson, A.J., Cao, L., et al. 2020).  

Non-plant derived agglutinins are also pointed as promising agents against 

coronaviruses, e.g. the mannose-binding-lectins cyanovirin-N (from cyanobacterium Nostoc 

ellipsosporum) and griffithsin (from red marine alga Griffithsia sp.) (O'Keefe, B.R., 

Giomarelli, B., et al. 2010, van der Meer, F.J., de Haan, C.A., et al. 2007a). However, only 

griffithsin (GRFT) has been evaluated against SARS-CoV and MERS-CoV. This protein 

binds to multiple sites of SARS-CoV and MERS-Cov glycoproteins with high affinity and 

inhibits viral entry (Millet, J.K., Seron, K., et al. 2016, O'Keefe, B.R., Giomarelli, B., et al. 

2010). Additionally, this lectin also reduced the mortality and the severity of lethal pulmonary 

infection induced by SARS-CoV in mice. This effect is associated with the decrease of pro-

inflammatory cytokines in infected lung tissue (O'Keefe, B.R., Giomarelli, B., et al. 2010). 

Despite the potential antiviral activity of the aforementioned lectins, some limitations 

should be considered regarding their therapeutic utility. One practical issue is the rapid 

degradation of these macromolecules, imposing the need for multiple doses to maintain a 

therapeutic level. This obstacle could be addressed by the incorporation of the protein in 

formulations that promote controlled released and protection from denaturing agents (da 

Cunha, C.R., da Silva, L.C., et al. 2016, Tyo, K.M., Lasnik, A.B., et al. 2020, Yang, H., Li, J., 

et al. 2019). 

Other relevant concern is the recognition of glycoconjugates present in host cells, 

since they could share same structural patterns observed in viral glycoproteins due their 

synthesis by host machinery (Cipollo, J.F. and Parsons, L.M. 2020). The action of lectins on 

these unwanted targets could induce hemagglutination, intravascular agglutination of cells, 

cell proliferation and impaired immune responses. Even the positive results from animal 
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models need to be examined with the appropriated caution, given the clear differences among 

the in vivo model species (most notably the mouse adapted strains) and the original viruses. 

 

5. Strategies of protein engineering to improve the therapeutic application of lectins 

The mitogenicity and pro-inflammatory properties of lectins (Carvalho, E., Oliveira, 

W.F., et al. 2018, Jandu, J.J.B., Moraes Neto, R.N., et al. 2017) raise several questions 

regarding their value to treat clinical conditions with severe inflammatory components, as 

seen in COVID-19 (Ye, Q., Wang, B., et al. 2020). Several attempts to overcome these issues 

have been performed, including protein engineering techniques. In the following sub-sections, 

we present the results obtained with Griffithsin (GRFT) and Cyanovirin-N that showed action 

against coronaviruses (O'Keefe, B.R., Giomarelli, B., et al. 2010, van der Meer, F.J., de Haan, 

C.A., et al. 2007a). The data obtained with the derivative agents from BanLec (from banana) 

and Microvirin (isolated from the cyanobacterium Mycrocystis aeruginosa) towards other 

enveloped viruses are also discussed (Shahid, M., Qadir, A., et al. 2020, Swanson, M.D., 

Boudreaux, D.M., et al. 2015). These studies are summarized in table II. The broad-spectrum 

activity of these agents and the techniques used in their design should be considered in the 

search for anti-infective compounds towards SARS-CoV-2.  

 

5.1. Griffithsin derivatives 

GRFT is a jacalin-related lectin found as domain-swapped dimers with six identical 

carbohydrate-binding sites (three in each monomer) (Lee, C. 2019, Ziolkowska, N.E., 

O'Keefe, B.R., et al. 2006). The dimerization promotes a multivalent interaction with 

mannose residues in the envelope glycoproteins and are essential for its antiviral action 

(Moulaei, T., Shenoy, S.R., et al. 2010). It has shown in vitro and in vivo action against 



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

MERS-CoV, SARS-CoV and other coronaviruses, which make it a promising molecule for 

SARS-Cov-2 treatment (Lee, C. 2019, Mani, J.S., Johnson, J.B., et al. 2020). 

The monomeric forms of GRFT (mGRFT) were engineered in tandem repetitions 

leading to obtention of new proteins with two, three or four copies, designed as mGRFT 

tandemers. Cell-based assays showed that 3mGRFT and 4mGRFT tandemers exhibited higher 

anti-viral activity against HIV when compared to 2mGRGTs and native GRFT. The linker 

between each unit of mGRFT allowed strong interaction of carbohydrate-binding domains 

with the oligosaccharides in the virion surfaces, without inducing viral aggregation (Moulaei, 

T., Alexandre, K.B., et al. 2015). 

In another study, the antiviral action of oligomeric tandemers (2mGRFT and 

3mGRFT) and native GRFT was assessed against Nipah virus (NiV; Paramyxoviridae), 

which is an emerging etiologic agent of respiratory diseases and fatal human encephalitis. The 

authors also evaluated the action a recombinant form with improved resistance to oxidation 

designated as Q-GRFT (Met78 → Gln). The 3mGRFT showed the highest anti-NiV effects 

among the tested GRFT versions, with more efficacy in preventing syncytia formation. 

Interestingly, the prophylactic intranasal administration of Q-GRFT induced more protection 

than 3mGRFT in a lethal model of intranasal infection using golden Syrian hamsters (Lo, 

M.K., Spengler, J.R., et al. 2020). 

 

5.2. Cyanovirin-N derivatives  

Cyanovirin-N is one of the lectins with activity against coronaviruses and others 

enveloped viruses (Barrientos, L.G., Matei, E., et al. 2006, Hu, B., Du, T., et al. 2015, 

Kachko, A., Loesgen, S., et al. 2013, Smee, D.F., Bailey, K.W., et al. 2008, van der Meer, 

F.J., de Haan, C.A., et al. 2007a). This protein has two domains and can be found as 

monomers in solution (with two sugar-binding sites) or domain-swapped dimers when 
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crystalized (with four sugar-binding sites). The dimerization was shown to restore the viral 

inhibition of mutants (Matei, E., Zheng, A., et al. 2010).  

The antiviral activity of the designed cyanovirin-N oligomers (dimers, trimers and 

tetramers) was evaluated against HIV. The dimers showed higher anti-HIV efficacy than the 

parental protein and other forms. Importantly, the dimers exhibited neutralizing activity at 

comparable or even superior levels than antibodies (Keeffe, J.R., Gnanapragasam, P.N., et al. 

2011). A similar approach was later reported based in the construction of "Nested" dimers of 

cyanovirin-N by rational design resulting in enhanced anti-HIV activity in comparison to the 

wild type protein (Woodrum, B.W., Maxwell, J., et al. 2016). 

Other strategy was based on the addition of poly(ethylene glycol) (PEGylate) to 

reduce the immunogenicity and cytotoxicity of cyanovirin-N as well as to enhance its half-

time in plasm (Chen, J., Huang, D., et al. 2014, Wu, C., Chen, W., et al. 2015, Zappe, H., 

Snell, M.E., et al. 2008). For instance, a recombinant form of cyanovirin-N with a flexible and 

hydrophilic linker (Gly4Ser)3 at the N-terminus (denominated LCVN) was produced and then 

PEGylated in its N-terminal α-amine resulting in the 10 K PEG-aldehyde (ALD)-LCVN. Both 

cyanovirin-N derivatives exhibited anti-HIV-1 activity with reduced cytotoxicity, however, 

the mono-PEGylated version still showed the best results (Chen, J., Huang, D., et al. 2014). 

Later, a new form of mono-PEGylated cyanovirin-N (PEG20k-LCVN) was described 

as a potent anti-influenza A inhibitor. PEG20k-LCVN showed higher action than Ribavirin. 

The usefulness of PEG20k-LCVN was shown in infection models using mice and chicken 

embryos infected by influenza H3N2. The infected mice treated with PEG20k-LCVN showed 

improved life span associated with reduction of viral genome expression and attenuation of 

lung damage (Wu, C., Chen, W., et al. 2015).  

The derivative PEG10k-LCV-N also inhibited normal and acyclovir-resistant strains 

of HSV-1, even though with less action than its precursors (wild type and linked-cyanovirin-
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N). Despite of this, the reduction in cytotoxicity, antigenicity and mitogenicity observed for 

the pegylated version are important aspects that advocate for its therapeutic value (Lei, Y., 

Chen, W., et al. 2019). Overall, these results with mono-PEGylated derivatives represent 

alternative models to increase the usefulness of lectins in antiviral therapy. 

 

5.3. Recombinant BanLec (H84T) 

BanLec is a mannose-binding protein from the group of lectin related jacalin with 

tetrameric structure (two binding sites in each monomer) and remarkable anti-infective 

activity towards enveloped viruses (de Camargo, L.J., Picoli, T., et al. 2020, Hopper, J.T.S., 

Ambrose, S., et al. 2017, Meagher, J.L., Winter, H.C., et al. 2005, Swanson, M.D., Winter, 

H.C., et al. 2010). A single amino acid replacement at position 84 (histidine replacement by 

threonine) impaired the mitogenic action without altering its ability to bind to mannose 

residues present at viral glycoproteins (Swanson, M.D., Boudreaux, D.M., et al. 2015). 

These positive effects were attributed to a reduction in the multivalent lectin-glycans 

interactions that are associated with the proliferative induction (Swanson, M.D., Boudreaux, 

D.M., et al. 2015). The engineered BanLec (H84T) has shown in vitro and in vivo antiviral 

activity against HIV, hepatitis C virus (HCV), Influenza and Ebola (Coves-Datson, E.M., 

Dyall, J., et al. 2019, Coves-Datson, E.M., King, S.R., et al. 2020, Swanson, M.D., 

Boudreaux, D.M., et al. 2015). 

 

5.4.  Microvirin derivatives 

Microvirin (MVN) is a monomeric lectin that exhibits two domains (A and B) with 

35% of sequence similarity and able to neutralize some viruses (HIV, HCV) due the binding 

to high high-mannose type N-glycan present in envelope proteins. Some in vitro data suggest 

that MVN induces lower toxicity and cell proliferation than cyanovirin-N (Huskens, D., Ferir, 
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G., et al. 2010, Kachko, A., Loesgen, S., et al. 2013, Min, Y.Q., Duan, X.C., et al. 2017, 

Shahzad-ul-Hussan, S., Gustchina, E., et al. 2011).  

In order to improve the inhibitory action of MVN, some oligomeric versions of were 

designed and tested in vitro against HCV. The results showed that tri- and tetramers have 

higher ability to block the HCV invasion than dimers and monomers (Min, Y.Q., Duan, X.C., 

et al. 2017). Recently, a version of microvirin (LUMS1) was engineered to have two identical 

domains and, therefore, two carbohydrate-binding sites. Although LUMS1 showed lower 

sugar affinity than wild type, it was able to block HIV and HCV infectivity. Undoubtedly, the 

most advantageous characteristics of LUMS1 are its lower cytotoxicity and immunogenicity. 

These properties should be associated to the structural homogeneity conferred by the two 

identical domains (Shahid, M., Qadir, A., et al. 2020). 

 

5.5. Chimeras derived from antiviral lectins  

The production of chimeras using the cyanobacterium-derived lectins (cyanovirin-N or 

recombinant microvirin) is another interesting strategy that has been largely exploited for HIV 

therapy (Contarino, M., Bastian, A.R., et al. 2013, McFadden, K., Cocklin, S., et al. 2007, 

Parajuli, B., Acharya, K., et al. 2018, Parajuli, B., Acharya, K., et al. 2016). A chimera (L5) 

was formulated using cyanovirin-N and a linear peptide (12p1) aiming to target the envelope 

gp120 glycoprotein with synergistic action. For this purpose, 12p1 was fused to the C-

terminal domain of Cyanovirin-N. The chimera L5 significantly inhibited the binding of HIV 

to the host cell receptor protein (McFadden, K., Cocklin, S., et al. 2007).  

Other chimeras were constructed with the fusion of cyanobacterial lectins 

(Cyanovirin-N or microvirin) and peptides derived from the membrane-proximal external 

region (MPER) of HIV-1 gp41 glycoprotein (Ang, C.G., Hossain, M.A., et al. 2020, 
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Contarino, M., Bastian, A.R., et al. 2013, Parajuli, B., Acharya, K., et al. 2018, Parajuli, B., 

Acharya, K., et al. 2016).  

The chimeras were intended to inhibit viral binding to its receptor (through lectin 

portion) and to induce viral inactivation and were called as DAVEI (dual-acting virucidal 

entry inhibitor) (Contarino, M., Bastian, A.R., et al. 2013). The experimental data showed that 

the chimeras promoted simultaneous engagement of gp120 and gp41 domains and lead to the 

irreversibly lytic inactivation of HIV. However, the mechanism involved in the DAVEI action 

is not completely understood (Parajuli, B., Acharya, K., et al. 2018, Parajuli, B., Acharya, K., 

et al. 2016).  

The microvirin-based DAVEI is considered a second generation chimera due its lower 

mitogenicity in comparison to Cyanovirin-N. The authors further improved this characteristic 

by designing a version of microvirin (MVN*) with two mutations (Q81K and M83R), which 

resulted in higher affinity to mannose residues (Huskens, D., Ferir, G., et al. 2010, Parajuli, 

B., Acharya, K., et al. 2018). MVN*-DAVEI was able to induce disruption of any membrane 

containing the HIV Env glycoprotein (Ang, C.G., Hossain, M.A., et al. 2020).  

 

5.6. Lectibodies  

Active lectins could be also fused with broadly neutralizing antibodies (bNAbs) to 

develop potent bispecific antiviral agents. The idea of ‘lectibody’ was experimentally applied 

for anti-HIV therapy using the Avaren recombinant protein. Avarin is derived from an 

antiviral lectin isolated from the actinomycete Longispora albida K97-0003T known as 

Actinohivin  (Hamorsky, K.T., Kouokam, J.C., et al. 2019, Hoorelbeke, B., Huskens, D., et al. 

2010, Seber Kasinger, L.E., Dent, M.W., et al. 2019). Avaren is expressed in the plant 

Nicotiana benthamiana and it was designed to have improved solubility and pharmacological 

activity than its parental lectin. These enhanced features were achieved by modifying 17 
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amino acid residues and by introducing a disulfide bond in the sugar-binding sites of domains 

1 and 3 (the disulfide bond is found in the domain 2 of actinohivin) (Hamorsky, K.T., 

Kouokam, J.C., et al. 2019).  

In the first report, Avaren was fused to the antigen-binding fragment (Fab) of the CD4 

binding site-specific VRC01 bNAb, which resulted in the VRC01Fab-Avaren lectibody. In this 

case, VRC01Fab-Avaren was designed to: i. target the mannose residues present in the HIV-1 

gp120 glycoprotein; and ii. the binding site of gp120 on the receptor of TCD4 lymphocytes 

(through Avaren and VRC01, respectively). Using cell-based assays, the authors proved the 

bispecific neutralization of HIV by VRC01Fab-Avaren and showed that the lectibody had 

stronger activity than the isolated agents (Seber Kasinger, L.E., Dent, M.W., et al. 2019).  

The second lectibody was generated by fusion of Avaren and the crystallizable region 

fragment (Fc) of the human immunoglobulin G1 (Fc IgG1). It was called AvFc and showed 

higher affinity (approximately 10-folds) to gp120 than actinohivin. AvFc also showed higher 

in vitro activity towards several strains of HIV-1 and HIV-2 than its wild-type counterpart. 

Employing biochemical assays, the authors showed the bispecific function of AvFc: (i) the 

treatment with mannosidases impaired its antiviral activity; (ii) a mutant of AvFc with 

reduced affinity to Fcγ receptors also showed lower action than AvFc. This lectibody did not 

induce toxic effects to human and mice peripheral blood mononuclear cells (PBMC). Finally, 

AvFc was effective in an infection model of simian immunodeficiency virus (SIV) in rhesus 

macaques (Hamorsky, K.T., Kouokam, J.C., et al. 2019). 

In general, the advances obtained in these studies with engineered lectins provide 

several lessons that could be applied in the development of therapeutic strategies against 

COVID-19. However, the possible adverse effects discussed above due to systemic 

administration of carbohydrate-binding agents need to be carefully assessed for each type of 

infection. In the context of COVID-19, the intranasal administration of these agents seems to 
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be an attractive option. However, some aspects are also important to be examined, including 

the tissue distribution of these macromolecules (associated with their size), their influence in 

tissue metabolism, engagement of cells receptors and induction of local inflammation 

(especially in the lower respiratory tract). 

 

6. Lectins can be used as adjuvant for vaccines. 

The implementation of global community immunity using vaccines is believed to be 

the best and safest strategy for management and eradication of SARS-CoV-2 (Corey, L., 

Mascola, J.R., et al. 2020). Since the beginning of this epidemic, several academic and 

industrial groups have made considerable efforts to design effective vaccines (Cohen, J. 

2020). According to vaccine tracking data from the Milken Institute, as of 18 July 2020, a 

total of 198 projects are in development for COVID-19, of which 18 candidates are already in 

the clinical phase and the others are in pre-clinical or exploratory phases.  

The vaccines are distributed in the following categories: (i) Live attenuated virus: 4; 

(ii) Inactivated virus: 13; (iii) RNA-based: 26; (iv) DNA-based: 16; (v) Protein subunit: 63; 

(vi) Non-replicating viral vector: 23; (vii) Replicating the viral vector: 18; (ix) virus-like 

particles: 14; (x) Replicating bacterial vector: 1; (xi) unknown category (those that not fail in 

the groups or the details are not described): 20. There are at least 3 vaccines candidates in 

phase III clinical trials: AZD1222 (formally known as ChAdOx1 nCoV-19), an adenovirus-

vectored vaccine encoding the spike protein of SARS-CoV-2 which is developed by the 

University of Oxford in partnership with AstraZeneca (British pharmaceutical company); 

Coronavac, a vaccine using inactivated virus from Sinovac Biotech (Chinese biotechnology 

company); mRNA-1273, a mRNA-based vaccine encoding the spike protein of SARS-CoV-2 

which is manufactured by Moderna Therapeutics (American Company) (Jackson, L.A., 

Anderson, E.J., et al. 2020, van Doremalen, N., Lambe, T., et al. 2020). 
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The majority of these initiatives are focused on the development of gene-based 

vaccines (including viral- or nucleic acid–vectors that encode protein antigens that are 

produced by host cells) and protein-based vaccines (using recombinant or synthetic antigenic 

proteins or subdomains, or viral proteins assembled as virus-like particles) (Gao, Q., Bao, L., 

et al. 2020, Peeples, L. 2020). The biggest challenge with these types of vaccines is the 

induction of long-lasting immunity, which is usually lower than the traditional approaches 

using live or inactivated organisms (Shi, S., Zhu, H., et al. 2019, Vetter, V., Denizer, G., et al. 

2018).  

In this scenario, the employment of powerful adjuvants is important to improve 

immunization efficacy. These compounds need to enhance the immune response induced by 

the vaccine, while keeping the equilibrium between humoral and cellular immune responses 

(Del Giudice, G., Rappuoli, R., et al. 2018, Shi, S., Zhu, H., et al. 2019). Noteworthy to 

mention that even the proper induction of Th1-biased response, which is important for 

protection against viral infections, still remains as a limitation for some adjuvants (Golos, A. 

and Lutynska, A. 2015).  

Lectins are well-known to promote proliferation of lymphocytes and modulate the 

release of effector molecules (cytokines and nitric oxide) by immune cells. For instance, 

several lectins are reported as potent inducers of IL-12 and IFN-γ production, which are key 

cytokines in the establishment of Th1 axis (da Silva, L.C., Alves, N.M., et al. 2015, de Souza 

Feitosa Lima, I.M., Zagmignan, A., et al. 2019, Oliveira Brito, P.K.M., Goncalves, T.E., et al. 

2017, Ruterbusch, M., Pruner, K.B., et al. 2020). Some lectins can also bind to Toll-like 

receptors and/or increase their expression levels, which may also modulate the release of pro-

inflammatory cytokines and increase the receptor’s ability to recognize the pathogens 

(Batista, J., Ralph, M.T., et al. 2017, da Silva, L.C. and Correia, M.T. 2014, Ricci-Azevedo, 

R., Roque-Barreira, M.C., et al. 2017). 
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In fact, the enhancement of Th1-biased immune response is important for protective 

immunity against viruses and other intracellular pathogens, due to the activation of cytotoxic 

cells (natural killer cells and TCD8 lymphocytes) and production of neutralizing antibodies 

involved in immunological memory (Ruterbusch, M., Pruner, K.B., et al. 2020). In this sense, 

the immunomodulatory properties of lectins make them attractive candidates for vaccine 

adjuvants. This concept has been experimentally proven against different types of viral 

pathogens, including enveloped viruses such as hepatitis B virus, herpesvirus and influenza 

(Gao, W., Sun, Y., et al. 2013, Lavelle, E.C., Grant, G., et al. 2002, Reyna-Margarita, H.R., 

Irais, C.M., et al. 2019, Song, S.K., Moldoveanu, Z., et al. 2007) (Table III). In this section, 

some studies applying lectin as adjuvant for influenza vaccines are discussed. 

The Korean Mistletoe Lectin C (KML-C) isolated from Viscum album Coloratum 

completely protected mice against this H1N1 influenza when the lectin was intranasally 

administrated along with inactivated virus. KML-C significantly increased the levels of anti-

influenza antibodies (IgG and IgA), and the population of influenza-specific lymphocyte in 

spleens and in mediastinal lymph nodes. Moreover, the mice immunized with KML-C and 

inactivated H1N1 also exhibited partial protection towards H3N2 challenge (Song, S.K., 

Moldoveanu, Z., et al. 2007). Other interesting effect of KLM-C is the increase of perforin 

expression, an important cytotoxic protein secreted by natural killer cells and TCD8 

lymphocytes (Kim, Y., Kim, I., et al. 2018). 

The AAL molecule isolated from Agrocybe aegerita (mushroom) is another example 

of lectin with adjuvant properties for influenza immunization. In this study, mice were 

immunized by subcutaneous injection of inactivated H9N2 strain and AAL. The animals that 

received AAL and inactivated H9N2 exhibited higher levels of anti-influenza IgG1 and IgG2a 

than those treated with inactivated virus alone. By employing a recombinant-ALL with 

mutation in the carbohydrate-binding domain, the authors also showed that the adjuvant 
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properties of AAL were mediated by the recognition of glycoproteins in the viral surface (Ma, 

L.B., Xu, B.Y., et al. 2017). Transcriptome analysis revealed that the adjuvant effects of AAL 

were associated with increased expression of genes related to leukocyte migration and 

lymphocyte activation (Ma, L.B., Xu, B.Y., et al. 2018). 

Although these studies show the lectins as promisor adjuvant candidates, the concerns 

regarding their administration listed before (agglutination of host cells, induction of undesired 

inflammation and proliferation) need to be considered. Specifically, long-term immunological 

and toxicological evaluations are required to prove the usefulness of an adjuvant compound 

(Shah, R.R., Hassett, K.J., et al. 2017). The potential induction of severe systemic 

inflammation by lectins is also a possibility to be evaluated in the early stage of the research. 

Regarding the application of lectins as adjuvants for viral vaccines (including those against 

SARS-CoV-2), one important challenge is to choose of a combination (vaccine/lectin) able to 

concomitantly promote an effective adaptive immune response with clinical safety. 

 

7. Lectin-based devices for identification of glycosylation changes in viral and host 

proteins 

The incorporation of glycans in envelope proteins has great influence in viral adhesion 

and recognition by the immune system, since epitopes of neutralizing antibodies are often 

protected by glycan molecules (Vankadari, N. and Wilce, J.A. 2020, Watanabe, Y., Bowden, 

T.A., et al. 2019). The differential patterns of glycosylation in a viral protein can be 

elucidated by lectin-based devices, e.g. lectin-microarrays and lectin-ELISA assays. This 

information is essential to expand our understanding about the role played by glycan shields 

in viral pathogenesis (Guo, Y., Yu, H., et al. 2018, Hiono, T., Matsuda, A., et al. 2019, 

Thompson, A.J., Cao, L., et al. 2020, Wagatsuma, T., Kuno, A., et al. 2018). 
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The comprehension of glycosylation of host proteins is other hot topic to be 

considered in the context of infectious diseases (Goncalves, B.S., Horta, M.A.P., et al. 2019, 

Irvine, E.B. and Alter, G. 2020, Kaplan, B.S. and Vincent, A.L. 2020). The dynamic of 

glycosylation has been evaluated for a plethora of viral diseases (Dalal, K., Dalal, B., et al. 

2019, Major, M. and Law, M. 2019, Qin, X., Guo, Y., et al. 2017, Qin, Y., Zhong, Y., et al. 

2016). In some cases, specific differential expression of these glycoconjugates is correlated 

with the severity degree of some conditions (Luna, D.M., Oliveira, M.D., et al. 2014, Yeh, 

M.L., Huang, C.F., et al. 2019). These experimental approaches are important to discovery 

and clinical validation of glycoconjugates as biomarkers for diagnosis. 

The possible correlation among alterations in serum glycoproteins expression (and/or 

in their glycosylation patterns) and the clinical presentations of COVID-19 is another question 

that could be addressed by employing lectin-based tools such as lectin-affinity 

chromatography, lectin-microarrays and lectin-immunoassays (Lectin-ELISA). So far, some 

studies have associated changes in the serum constituents of patients with COVID-19 and 

disease severity. For example, serum levels of IL-6 and C-reactive protein had a significant 

correlation with the severity of the disease while the procalcitonin (a glycoprotein) may be a 

predictor of poor/good prognosis (Liu, F., Li, L., et al. 2020).  

 

8. Lectin-based biosensors 

The development of fast and sensitive methods for pathogens detection is essential to 

promote the effective treatment and to prevent their dissemination (Liang, K.H., Chang, T.J., 

et al. 2020, Qiu, G., Gai, Z., et al. 2020, Seo, G., Lee, G., et al. 2020). The techniques 

currently used for viral diagnosis comprise immunochromatography-based assays, enzyme-

linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR and derivative 

assays). However, especially in the context of COVID-19, some serological tests do not 
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exhibit satisfactory accuracy; while the molecular assays require expensive reagents and 

extensive sample preparation, which may cause a delay in results (Acquah, C., Danquah, 

M.K., et al. 2016, Cesewski, E. and Johnson, B.N. 2020).  

Biosensors are analytical tools that have a bioreceptor element (such as a lectin), 

immobilized in a thin layer on the surface of the transducer. They are intended to provide 

specific and sensitive detection of an analyte in biological samples (de Oliveira, W.F., Dos 

Santos Silva, P.M., et al. 2019, Silva, M.L.S. 2018). A few biosensors have been proposed for 

SARS-CoV-2 diagnosis targeting S protein (Seo, G., Lee, G., et al. 2020) or nucleic acids 

(Qiu, G., Gai, Z., et al. 2020). In the following sub-sections, we discuss the construction of 

lectin-based biosensors targeting viral or host glycoproteins (Table IV).  

 

8.1. Biosensors for viral glycoproteins 

The intrinsic specificity of lectins towards glycans allows their use as an element of 

biorecognition of glycans present in viral proteins (Cesewski, E. and Johnson, B.N. 2020, 

Hong, S.A., Kwon, J., et al. 2015, Tung, Y.-T., Liang, J.-J., et al. 2019). In the case of SARS-

CoV-2, its envelope glycoproteins could be also exploited for identification using lectin-based 

biosensors (as illustrated in Supplementary Figure 2C).  

An electrochemical biosensor based on Con A-modified nanostructured gold 

electrodes was used to detect Norovirus (non-enveloped virus) in fecal samples using Cyclic 

voltammetry and impedance spectroscopy analyzes. This biosensor showed high specificity 

and did not exhibit cross-reaction with hepatitis A or E viruses (Hong, S.A., Kwon, J., et al. 

2015). Another example of electrochemical biosensor was elaborated using cysteine, zinc 

oxide nanoparticles and Con A. The impedimetric response allowed the distinction of DENV-

2, Zika virus, Chikungunya virus, and Yellow fever virus in serum samples (Simao, E.P., 

Silva, D.B.S., et al. 2020). 
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8.2. Biosensors for detection of glycan patterns in infected individuals 

Some studies have suggested that glycoproteins are differentially expressed in the 

serum of subjects affected by acute and chronic viral infections (such as dengue and 

hepatitis), making the profile of serum glycoproteins an emerging target for diagnosis (Luna, 

D.M., Oliveira, M.D., et al. 2014, Yeh, M.L., Huang, C.F., et al. 2019). In this scenario, 

biosensors incorporated with lectins could provide a fast identification of people infected with 

SARS-CoV-2 based on the profile of glycoproteins in biological fluids. This approach could 

be extremely interesting if SARS-CoV-2-infected subjects exhibited a differential 

glycosylation profile that those individuals affected by other respiratory pathogens. 

Two types of Con A-based biosensors have been proposed for Dengue diagnosis using 

serum glycoproteins. In the first, Con A was immobilized on gold electrode using polyvinyl 

butyral to construct a biosensor capable to identify different glycoprotein patterns in the sera 

of patients with dengue fever and dengue hemorrhagic fever. The distinction was based on 

changes in charge transfer resistance using electrochemical impedance spectroscopy 

(Oliveira, M.D., Correia, M.T., et al. 2009). The other system was designed using Con A and 

lipid membranes for differentiation of glycoproteins from serum of individuals infected with 

DENV-1, DENV-2 and DENV-3. The differentiation of the pattern of serum glycoproteins 

from subjects infected by each serotype was based in impedimetric analysis, with higher 

response to DENV-3 infection (Luna, D.M., Oliveira, M.D., et al. 2014). 

Cramoll, a glucose/mannose-binding lectin extracted from Cratylia mollis seeds, is 

another lectin used in biosensors for Dengue diagnosis. It was used in two types of biosensors 

employing: (i) gold electrodes modified with Fe3O4 nanoparticles and polyvinyl butyral 

(Oliveira, M.D., Nogueira, M.L., et al. 2011); (ii) gold nanoparticles/polyaniline electrodes 

(Avelino, K., Andrade, C., et al. 2014). Similarly, the galactose-specific lectin isolated from 
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Bauhinia monandra leaves (BmoLL) was immobilized on gold nanoparticles-polyaniline 

hybrid composite (Andrade, C.A., Oliveira, M.D., et al. 2011). All these lectins-derived 

sensors were effective in correlating the glycosylation patterns of serum proteins with the type 

of infection. 

These lectin-based biosensors could represent a more cost-effective alternative when 

compared to those that currently use antibodies and nucleic acids (Luna, D.M., Oliveira, 

M.D., et al. 2014). However, their sensitivity and specificity could be a limitation. In 

particular, the binding to glycans from other sources (host or other pathogens) could induce 

false results. Thus, these parameters need to be effectively optimized prior their use in clinical 

analysis.  

 

9. Lectin affinity plasmapheresis for extracorporeal viral elimination  

Plasmapheresis is the extracorporeal purification of pathogens and other products 

(toxins, cytokines) from blood. This could be performed in association with dialysis as a 

resource to reduce SARS-CoV-2 levels in the patient’s blood (Turgutkaya, A., Yavasoglu, I., 

et al. 2020). Indeed, this technique has been used to remove SARS-CoV-2 from convalescent 

plasma transfusions (Li, L., Yang, R., et al. 2020) and has been considered as an alternative 

treatment considered for COVID-19 due the absence of vaccine or specific medication for 

SARS-CoV-2 (Brown, B.L. and McCullough, J. 2020, Duan, K., Liu, B., et al. 2020).  

The ability of GNA to bind mannose-containing glycans has been used to modify the 

plasmapheresis apparatus (Hemopurifier
®
 cartridges) (Supplementary Figure 2D). The system 

is designed as a lectin affinity plasmapheresis (LAP) and has been employed in in vitro and 

clinical evaluations of viral disease. For instance, GNA-modified hemopurifier removed HCV 

from blood of HCV-infected patients. In vivo analysis showed that the association of this 
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system with dialysis was effective in reducing HCV load in the blood (Tullis, R.H., Duffin, 

R.P., et al. 2009). 

Later, other study showed that the continuous blood purification using LAP resulted in 

undetectable viral load in HCV-positive patients. This therapy enhanced the effectiveness of 

standard drugs without plasma losses (Tullis, R.H., Duffin, R.P., et al. 2010). A GNA-based 

system was also successfully applied for extracorporeal removal of Ebola virus in a patient 

(Buttner, S., Koch, B., et al. 2014). In addition to these cases, in vitro analysis with LAP 

devices cleared MERS-CoV and Marburg virus as well as their respective soluble 

glycoproteins (Koch, B., Schult-Dietrich, P., et al. 2018).  

Although the number of tested patients in these studies is rather limited, these results 

with LAP shall be considered for future applications of lectins in clinical settings (Table IV). 

Further evaluation of fluid composition after the procedures is performed needs to be 

conducted to rule out the possibility of removal of other important plasmatic proteins, in 

special neutralizing antibodies. The efficiency of these devices should be compared with other 

assays of pathogen inactivation. 

 

10. Conclusions and perspectives 

The presence of glycoproteins in the viral envelope opens a wide range of possibilities 

for application of lectins to solve different types of problems involved with viral infections 

such as COVID-19. In the therapeutic area, the lectins could be considered leading molecules 

for the development of new antiviral approaches due to their ability to inhibit viral entry in the 

host cell. The advances in protein design strategies are important to boost the clinical 

application of these agents considered for treatment of SARS-CoV-2 and other viral 

infections. The immunomodulatory action of some lectins can also be exploited to improve 

the effectiveness of immunization schemes for viral infections. 
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On the other hand, lectin-carbohydrates interactions can be used to design devices for 

diagnosis targeting viral glycoproteins or host glycoproteins alterations during viral 

infections. These apparatuses hold the promise to provide fast, sensitive and cost-effective 

identification of infected individuals and are of vital need during pandemic situations, as this 

imposed for COVID-19. Finally, the lectin affinity plasmapheresis is an interesting resource 

for blood purification and to help the implementation of convalescent plasm therapy.  

The major limitation for these diverse applications is the possible binding of this lectin 

in unwanted glycosylated targets. For instance, the administration of lectins could result in 

agglutination and proliferation of cells, besides the exacerbation of immune response. 

Similarly, the lectin-based biosensors could have low specificity due the signals from other 

glycans. Several interesting strategies have been applied to overcome these issues.  
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Legends to Tables 

 

Table I: Antiviral activity of some lectins against SARS-CoV, MERS-CoV and other types of 

coronavirus. 

 

Table II: Some examples of engineered proteins derived from antiviral lectins. 

 

Table III: Examples of lectins used as adjuvant for antiviral vaccines. 

 

Table IV: Examples of lectins used for development of biosensor and Lectin affinity 

plasmapheresis. 
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Table I 

Lectin Source 
Sugar 

affinity 

Anti-SARS-

CoV-2 action 

Anti-SARS-

CoV action 

Anti-MERS-

CoV action 
References 

FRIL Lablab purpureus Man/Glu In vitro - - 
Liu and Shahed-Al-Mahmud et al. 

(2020) 

APA Allium porrum Man - In vitro - Keyaerts and Vijgen et al. (2007) 

Morniga M II Morus nigra Man - In vitro - Keyaerts and Vijgen et al. (2007) 

EHA Epipactis helleborine Man - In vitro - Keyaerts and Vijgen et al. (2007) 

UDA Urtica dioica GlcNAc - 
In vivo and in 

vitro 
- 

Keyaerts and Vijgen et al. (2007); Day 

and Baric et al. (2009); Kumaki, Y., 

Wandersee, M.K., et al. (2011) 

NICTABA Nicotiana tabacum GlcNAc - In vitro - Keyaerts and Vijgen et al. (2007) 

Con A Canavalia ensiformis Man/Glu - - - 
Greig and Bouillant (1977); Nguyen 

Bottreau et al. (1987) 

HHA Hippeastrum hybrid Man - In vitro - 
van der Meer, de Haan et al. (2007a); 

van der Meer, de Haan et al. (2007b) 

GNA (or 

GNL) 
Galanthus nivalis Man - In vitro - Hsieh, Lin et al. (2010) 

Cyanovirin-N Nostoc ellipsosporum Man - - - van der Meer, de Haan et al. (2007a) 
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Man: mannose; GlcNAc: N-acetylglucosamine; Glu: glucose.  

Griffithsin Griffithsia sp. Man - 
In vivo and in 

vitro 
In vitro 

Millet, Seron et al. (2016), O'Keefe, 

Giomarelli et al. (2010) 
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Native Lectin Source 
Sugar 

affinity 

Type(s) of 

derivative(s) 
Action References 

Griffithsin Griffithsia sp. Man 

Monomeric and 

(mGRFT) Oligomeric 

tandemer forms 

(2mGRFT, 3mGRFT, 

4mGRFT) 

3mGRFT and 4mGRFT exhibited 

improved in vitro anti-HIV action. 

Moulaei, Alexandre et al. 

(2015) 

3mGRFT showed improved action 

towards NiV 
Lo, Spengler et al. (2020) 

Q-GRFT 
Q-GRFT has higher resistance to 

oxidation and in vivo anti-NiV action. 
Lo, Spengler et al. (2020) 

Cyanovirin-N Nostoc ellipsosporum Man 

Oligomers (dimers, 

trimers and tetramers) 

The dimers showed highest anti-HIV 

efficacy. 

Keeffe, Gnanapragasam et al. 

(2011); Woodrum, Maxwell et 

al. (2016) 

PEGylated versions 

10 K PEG-ALD-LCVN has improved 

anti-HIV and anti-HSV-1 actions. 

Chen, Huang et al. (2014); Lei, 

Chen et al. (2019) 

PEG20k-LCVN has improved anti-

influenza H3N2 action. 
Wu, Chen et al. (2015) 

Chimera L5 

(cyanovirin-N and 

12p1) 

In vitro inhibition of HIV. 
McFadden, Cocklin et al. 

(2007) 

DAVEI: Chimeric 

Cyanovirin-MPER 

formulation 

In vitro dual inhibition of HIV. 

Contarino, Bastia et al. (2013); 

Parajuli, Acharya et al. (2018); 

Parajuli, Acharya et al. (2016). 

BanLec Musa sp. Man Recombinant BanLec The mutation impaired the mitogenic Coves-Datson, Dyall et al. 
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T(H84T) activity. rBanLec showed antiviral 

action against HIV, HCV, Influenza 

and Ebola. 

(2019); Coves-Datson, King, 

S.R. (2020), Swanson, 

Boudreaux et al. (2015). 

Microvirin 
Mycrocystis 

aeruginosa 
Man 

Oligomers (dimers, 

trimers and tetramers) 

Trimers and tetramers exhibited 

improved in vitro anti-HCV action. 
Min, Duan et al. (2017) 

LUMS1 with two 

identical structural 

domains. 

Although LUMS1 has lower 

cytotoxicity and immunogenicity than 

native microvirin, it showed lower 

anti-HIV and anti-HCV actions. 

Shahid, Qadir et al. (2020) 

MVN* 

MVN* has two mutations (Q81K and 

M83R) that resulted in higher affinity 

to mannose residues and lower 

mitogenicity. 

 

Ang, Hossain, et al. (2020) 

MVN*-DAVEI 

(second generation): 

fusion of MPER with 

MVN* 

In vitro dual inhibition of HIV. 
Parajuli, Acharya et al. (2018); 

Ang, Hossain et al. (2020) 

Actinohivin Longispora albida Man 

Avaren 
It has improved solubility and 

pharmacological activity. 

Hamorsky, Kouokam, et al. 

(2019). 

Lectibody: VRC01Fab-

Avaren 
In vitro neutralization of HIV. 

Seber Kasinger, Dent et al. 

(2019). 

Lectibody: AvFc 

In vitro neutralization of HIV. 

Inhibition of SIV infection in rhesus 

macaques. 

Hamorsky, Kouokam et al. 

(2019). 
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TMan: mannose; NiV: Nipah virus; HIV: human immunodeficiency virus; HSV-1; herpes simplex virus; HCV: hepatitis C virus; SIV: simian 

immunodeficiency virus; VRC01Fab: antigen-binding fragment (Fab) of the CD4 binding site-specific bNAb VRC01; AvFc: fusion of Avaren and 

human the fragment crystallizable region (Fc) of the human immunoglobulin G1 (Fc IgG1). MPER: membrane-proximal external region (MPER) 

of HIV-1 gp41. 
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Lectin Source Sugar affinity Administration Type of vaccine References 

KML-C  
Viscum album Coloratum 

(Korean Mistletoe) 
Gal and GalNAc 

Intranasal route 

in mice 

Inactivated vaccine for 

influenza H1N1 

Kim, Kim et al. (2018); Song, 

Moldoveanu et al. (2007). 

AAL Agrocybe aegerita GlcNAc 
Subcutaneous 

route in mice 

Inactivated vaccine for 

influenza H9N2 
Ma, Xu et al. (2017). 

POL Pleurotus ostreatus  GalNAc 
Intramuscular 

route in mice 
DNA vaccine for HBV Gao, Sun et al. (2013) 

MLI, MLII, 

MLIII 

Viscum album L. 

(Eupopean Mistletoe) 
Gal and GalNAc 

Intranasal route 

in mice 

Subunit vaccine (Glycoprotein 

D2) for HSV 
Lavelle, Grant et al. 2002 

GlcNAc: N-acetylglucosamine; GalNAc: N-acetylgalactosamine; Gal: Galactose; Man: mannose. 

  



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
TTable IV 

Lectin Source Sugar affinity Type of application References 

Con A Canavalia ensiformis Man/Glu 

Biosensor for viral detection 
Hong, Kwon et al. (2015); Simao, Silva et al. 

(2020). 

Biosensor for detection of 

serum glycoproteins 

Luna, Oliveira et al. (2014); Oliveira, Correia 

et al. (2009). 

Cramoll Cratylia mollis Man/Glu 
Biosensor for detection of 

serum glycoproteins 

Oliveira, Nogueira et al. (2011); Avelino, 

Andrade et al. (2014) 

BmoLL Bauhinia monandra Gal 
Biosensor for detection of 

serum glycoproteins 
Andrade, Oliveira et al. (2011) 

GNA (or 

GNL) 
Galanthus nivalis Man Lectin affinity plasmapheresis 

Koch, B., Schult-Dietrich, P., et al. (2018); 

Tullis, R.H., Duffin, R.P., et al. (2010) 

Gal: Galactose; Glu: glucose; Man: mannose. 

 


