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Abstract: In order to improve the utilization efficiency of road runoff and the remove effects of heavy
metals, porous asphalt pavements have been used as an effective measure to deal with heavy metals
in road runoff. However, the removal effect on dissolved heavy metal is weak. In this paper, basic
oxygen furnace (BOF) slag was used as aggregate in porous asphalt concrete to improve the removal
capacity of heavy metal. Road runoff solution with a copper concentration of 0.533 mg/L and a zinc
concentration of 0.865 mg/L was artificially synthesized. The removal effect of BOF slag porous
asphalt concrete on cooper and zinc in runoff was evaluated by removal tests. The influence of rainfall
intensity and time on the removal effect was discussed. The results obtained indicated that BOF slag
porous asphalt concrete has a better removal effect on copper. The removal rate of copper is 57–79%
at the rainfall intensity of 5–40 mm/h. The removal rate of zinc is more susceptible to the changes of
rainfall intensity than copper. The removal rate of zinc in heavy rain conditions (40 mm/h) is only
25%. But in light rain conditions (5 mm/h), BOF slag porous asphalt concrete maintains favorable
removal rates of both copper and zinc, which are more than 60%. The heavy metal content of runoff
infiltrating through the BOF slag porous asphalt concrete meets the requirements for irrigation
water and wastewater discharge. The results of this study provide evidence for the environmentally
friendly reuse of BOF slag as a road material and the improvement of the removal of heavy metal by
porous asphalt concrete.

Keywords: heavy metals; road runoff; porous asphalt pavement; steel slag; removal effect

1. Introduction

With the rapid development of urbanization and the continuous increase of highway
mileage and traffic volume, soil pollution and water pollution caused by highways have
gradually attracted attention. Various pollutants from vehicles or the atmosphere accu-
mulate on the road during non-rainfall periods, and when it rains, the accumulated road
pollutants are easily washed by rainfall runoff and carried into the groundwater or soil,
causing potential harm to the surrounding environment [1,2]. In addition to conventional
pollutants such as suspended solids and organic pollutants, road runoff also contains a
variety of heavy metals, which are difficult to degrade in the environment, and the harm
to organisms is generally irreversible for life [3,4]. Research has shown that only 40–50%
of pavement pollutants can be removed by conventional cleaning measures [5]. Mechani-
cal cleaning can only remove particles above 250 microns in size, and has little effect on
dissolved heavy metal [6].

In order to remove road runoff pollutants more efficiently, advanced measures have
been applied to road engineering such as vegetation control, wet retention ponds, and
infiltration systems [7]. The vegetative buffer strips reduced the runoff volume by 35–90%,
sediment concentration by 42–94%, nitrate concentration by 35–88% and phosphate con-
centration by 28–95% [8]. Wet retention ponds can reduce the dissolved nitrogen species,
total and dissolved phosphorus, and total suspended solids concentrations for more than
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30% [9]. Porous asphalt pavement is a type of road infiltration system. In addition to im-
proving the anti-slide performance of the pavement and reducing traffic noise, the purpose
of early research and application of porous asphalt pavement is to reclaim stormwater and
recharge the groundwater. As researchers continued to study porous asphalt pavements, it
was realized that the porous asphalt pavement has a good control effect on the suspended
solids and heavy metal in the road runoff due to the complex pore structure [10–13]. In a
laboratory-scale test, porous asphalt concrete prepared with limestone and basalt produced
average reductions in zinc of 79% during the 696 h storage [14]. But, the removal rate was
lower (less than 40%) at the initial stage (0–144 h). It is indicated that basalt and limestone
have a removal capacity on zinc indeed, but it takes a long time to take effect. The removal
mechanism of heavy metal ions in pavement runoff by porous asphalt pavement includes
adsorption, precipitation and electrostatic attraction [15–17]. Precipitation and electrostatic
attraction generally originate from the interaction between heavy metal ions and aggre-
gates of porous asphalt pavement. For instance, the surface components of calcite can be
complexed with Zn2+ and Pb2+ to form carbonate precipitates [15]. The negative charge on
the surface of dolomite has electrostatic adsorption of heavy metal cations [17].

Basic oxygen furnace (BOF) slag is a kind of steel slag. As a by-product in the
steelmaking process, steel slag is often recycled for road construction due to its good
mechanical properties [18,19]. Steel slag with a particle size of 2.36–25 mm is usually
used as an aggregate for pavement engineering, which can enhance the ability of the
pavement to resist heavy loads, so that steel slag improves the durability of the asphalt
pavement [20]. Moreover, steel slag significantly improves the anti-skid performance,
bending strength and Marshall stability of asphalt concrete [21,22]. X-ray fluorescence
spectroscopy results show that steel slag generally contains 25–50% calcium oxide, 25–40%
iron oxide (or ferric oxide), 8–18% silicon dioxide, 1–9% aluminum oxide, 3–13% oxidase,
and other components [20]. Calcium oxide is one of the main components of steel slag.
Most of the calcium oxide combines with silicon dioxide to form calcium silicate, the
others are free calcium oxide (f-CaO). f-CaO will undergo a hydrolysis reaction in the
aqueous solution to release hydroxyl ion, which results in the alkalinity of the aqueous
solution [23]. Therefore, steel slag has a chemical precipitation and acid neutralizing
capacity. Studies have shown that steel slag can effectively remove chromium, copper, zinc,
lead and other metals in wastewater [24–27]. In the cylindrical column test, the removal
efficiency of steel slag for zinc and copper were 78% and 68% [26]. Otherwise, steel slag
has a maximum removal efficiency of 74%, 64% and 34% for chromium, cadmium and
cadmium, respectively [27]. Recycling steel slag as aggregates can not only reduce the
consumption of natural resources, but also theoretically improve the removal of heavy
metal by porous asphalt concrete. However, when steel slag is used as aggregate, its
surface is wrapped by asphalt, and the leaching of free oxides is inhibited. The generation
of hydroxide ions is reduced, resulting in a weakening of the sedimentation effect on metal
cations. There are few relevant studies at present, so the actual effect of steel slag porous
asphalt concrete in purifying road runoff remains to be explored.

Although there are a variety of methods to deal with pollutants in road runoff, only
a few have obvious effects on heavy metals, and include the disadvantage of low effi-
ciency. Using steel slag as the aggregate of asphalt concrete to precipitate heavy metals
by increasing the pH of the solution is a more efficient way to take effect. As steel slag
is a kind of solid waste, the reuse of resources is realized at the same time. In this study,
steel slag and basalt were used as aggregates to prepare porous asphalt concrete, and their
volume properties and road performance were characterized. According to the observation
data of road rainwater runoff in the literature, a rainwater runoff solution containing Cu2+

and Zn2+ was artificially synthesized. The removal rate of copper and zinc by porous
asphalt concrete under different conditions was measured by removal tests. The effects of
steel slag porous asphalt concrete on the removal of copper and zinc in road runoff and
the influence of rainfall intensity and duration were evaluated. The results of this study
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provide evidence for the reuse of steel slag as a road material and the improvement of the
removal of heavy metal by porous asphalt concrete.

2. Materials and Methods
2.1. Raw Materials

In this study, BOF slag and basalt from Hubei Province were used as the aggregates.
BOF slag generally contains a higher content of calcium oxide than other steel slags, which
results in a higher alkalinity. The chemical composition of BOF slag and basalt was obtained
by X-ray fluorescence analysis (XRF), as shown in Table 1. Most of the calcium oxide in the
steel slag combines with silicon dioxide to form calcium silicate. When the ratio of calcium
oxide to silicon dioxide is high, free calcium oxide exists. The BOF slag used in this paper
has a ratio of calcium oxide to silica content exceeding 2.5, which is a steel slag with high
basicity [20]. The ratio of calcium oxide to silicon dioxide in basalt is so low that there is
little free calcium oxide. The main properties of BOF slag and basalt are shown in Table 2,
which meet the requirements in current Chinese standard [28]. Limestone powder with a
size less than 0.075 mm was used as a filler of asphalt concrete.

Table 1. Chemical composition of basic oxygen furnace (BOF) slag and basalt (%).

Compound CaO SiO2 Al2O3 Fe2O3 MgO LOI

BOF slag 45.89 18.19 1.50 23.86 6.34 0.75
Basalt 8.54 47.76 20.14 10.24 5.75 3.60

Table 2. Characteristics of aggregates in the asphalt mixture.

Properties Unit
Tested Results

Requirement Test Method
BOF Slag Basalt

Apparent
specific gravity

9.5–16 mm

g/cm3

3.634 2.960 ≥2.9 T0304-2005 [28]
4.75–9.5 mm 3.586 2.946 ≥2.9 T0304-2005 [28]
2.36–4.75 mm 3.579 2.949 ≥2.9 T0304-2005 [28]

0–2.36 mm 3.548 2.967 ≥2.9 T0304-2005 [28]
Crush value % 13.5 9.4 ≤20 T0316-2005 [28]

Los Angeles abrasion % 16.8 10.6 ≤28 T0317-2005 [28]
f-CaO % 2.7 – ≤3.0 YB/T4328-2012 [28]

In order to prepare porous asphalt concrete with large porosity, modified asphalt with
higher viscosity is required to provide sufficient cohesive strength. SBS modified asphalt
has better viscosity and high temperature stability than base asphalt. In this study, SBS
modified asphalt with a penetration of 46.8 (0.1 mm at 25 ◦C, 100 g, and 5 s), ductility of
45.0 cm (5 cm/min, 5 ◦C), and softening point of 78.3 ◦C was used as the binder. 0.05 mol/L
Zn(NO3)2 solution, 0.05 mol/L Cu(NO3)2 solution and deionized water were used to
artificially synthesize road runoff solution because nitrate ions would not interfere with
the removal tests.

2.2. Experimental Preparation
2.2.1. Porous Asphalt Concrete Specimens

The aggregate gradation of OGFC-13 was used in the paper, and the optimal asphalt
content was determined by a series of tests for porous asphalt concrete [29]. The design
results of the aggregate gradation are shown in Figure 1.

The preparation of porous asphalt concrete specimens was based on the current
Chinese standard [30]. According to the design results, the aggregate, filler and asphalt
were mixed at 175 ◦C to prepare a loose asphalt mixture. The loose asphalt mixture was
compacted into Marshall specimens by an electric compactor. The Marshall specimen is a
cylindrical asphalt concrete specimen with a height of 63 mm and a diameter of 101 mm.
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The basic properties of Marshall specimens, including Marshall stability, immersion resid-
ual stability and freeze-thaw residual strength, were specified in the current Chinese
standards [30,31]. The void ratio of BOF slag Marshall specimens and basalt Marshall
specimens were 22.4% and 21.6%, respectively.

Figure 1. Gradation curves of basalt and BOF slag.

In order to increase the length-diameter ratio to ensure uniform infiltration, three
Marshall specimens were stacked as the porous asphalt concrete specimens in each removal
test. The height of three Marshall specimens was about 189 mm, which is close to the
thickness of the asphalt pavement surface. The removal tests were also applied to the loose
asphalt mixture as a comparison.

2.2.2. Synthetic Stormwater Runoff

Zhang [32] summarized the concentrations of heavy metal pollutants lead, zinc, and
copper in road runoff in worldwide research. Among them, the concentration of zinc is
generally the highest, and the concentration of lead and copper are close to each other,
but the concentration of copper has a higher peak. In addition, studies have pointed out
that copper in runoff exists in both dissolved and granular states and can be transformed
into each other, while lead mostly exists in granular states [33–35]. The selection of BOF
slag as aggregate in this paper mainly improves the sedimentation effect of porous asphalt
concrete on dissolved heavy metal. Therefore, the rainwater runoff solution was synthe-
sized according to the concentration range of copper and zinc in the literature, and the
concentration is shown in Table 3.

Table 3. Target chemical makeup of synthetic stormwater runoff [32].

Item Concentration Range
in Literature Chemical Concentration in Synthetic

Stormwater

Copper 0.01–0.85 mg/L Cu(NO3)2 (0.05 mol/L) 0.533 mg/L
Zinc 0.03–1.76 mg/L Zn(NO3)2 (0.05 mol/L) 0.865 mg/L

2.3. Experiments and Procedures

In this paper, removal tests were undertaken to allow the synthetic runoff solution
infiltrating through the porous asphalt concrete or loose asphalt mixture as a contrast. In
the process, calcium hydroxide was produced by the hydration of f-CaO, which made
the solution alkaline. The Cu2+ and Zn2+ in the solution were precipitated by OH− and
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adsorbed by the complex voids in the porous concrete. In order to achieve the above
experimental process, an experimental facility as shown in Figure 2 was designed.

Figure 2. Laboratory scale road runoff heavy metal removal experimental facility. 1—liquid storage
vessel, 2—rubber tube, 3—peristaltic pump, 4—reaction vessel, 5—collection vessel, 6—asphalt
concrete specimens.

The experimental device was mainly composed of four parts: liquid storage vessel,
peristaltic pump, reaction vessel and collection vessel, which were connected by rubber
tubes. The liquid storage vessel was used to store the synthetic runoff solution, and the
peristaltic pump could deliver the solution to the reaction vessel at a certain flow rate. The
reaction vessel was cylindrical, in which the asphalt concrete specimens or loose asphalt
mixture was placed. The diameter of the reaction vessel was 105 mm. There was a liquid
inlet at the bottom of the side wall of reaction vessel, and a liquid outlet at the heights of
200 mm and 300 mm, respectively, on the opposite side. The liquid outlet at 200 mm was
for the stacked Marshall specimens, and 300 mm was for the loose mixture, because the
loose mix of the same quality is higher than the compacted Marshall specimens. The runoff
solution was from bottom to top in the vessel to make the solution infiltrate evenly through
the concrete specimens under the action of gravity. Three Marshall specimens were stacked
in the reaction vessel to simulate a porous asphalt concrete pavement. The peristaltic pump
was set to the flow rate required for the experiment. Since the diameter of the reaction
vessel was 105 mm, a flow rate of 1.44 mL/min was used to simulate a rainfall of 10 mm/h,
according to the calculation formula of the cylinder volume. Similarly, 0.72 mL/min,
2.88 mL/min, 4.33 mL/min and 5.77 mL/min were used to simulate 5 mm/h, 20 mm/h,
30 mm/h and 40 mm/h rainfall, respectively. The effluent runoff solution flowed into the
collection vessel through the rubber tube.

The runoff solution in the collection vessel was stirred well every 8 h and cleaned
up after sampling. A pH meter was used to measure the pH value of each liquid sample.
Inductively coupled plasma atomic emission spectrometry was used to analyze the heavy
metal composition and concentration in the liquid samples. The composition of liquid
samples under different conditions was compared, and the effect of BOF slag porous
asphalt concrete on the removal of heavy metal in road runoff and its influencing factors
were evaluated.

3. Results and Discussion
3.1. Removal Effect of Basic Oxygen Furnace (BOF) Slag Asphalt Concrete on Copper and Zinc

Removal tests were carried out on BOF slag porous asphalt concrete, basalt asphalt
concrete and their loose asphalt mixtures. The solution flow rate was set to 1.44 mL/min
to simulate a rainfall intensity of 10 mm/h. During the process, the pH changes of the
effluent runoff solution were recorded, as shown in Figure 3.
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Figure 3. pH vs. time of runoff solution infiltrating through different specimens.

The value of 0 h represents the pH of the solution before tests. The synthetic runoff
solution is composed of Cu(NO3)2 and Zn(NO3)2, which are hydrolyzed to make the
solution weakly acidic. When the solution infiltrates through the BOF slag porous asphalt
concrete, the f-CaO in the BOF slag hydrates and the solution becomes alkaline. The BOF
slag with the size of 5–10 mm can make the pH of the solution up to 11–12.5 [36]. But the
pH of the solution in this paper is only 10–11, because the BOF slag used as aggregate was
mainly 4.75–16 mm in size and coated with asphalt. The pH of the solution infiltrating
through the loose mixture of BOF slag was higher than the porous asphalt concrete and
decreased faster because of larger contact area between BOF slag and solution, which
indicates that the skeleton structure of asphalt concrete inhibited the hydration of f-CaO
in BOF slag and slowed down its loss. There was little free alkaline oxide in basalt, so the
basalt asphalt mixture had little effect on pH.

The effluent runoff solution samples were collected every 8 h, and the composition
was analyzed by inductively coupled plasma emission spectrometer. All the results were
the average of three measurements. The error was less than 10%. Concentration of copper
and zinc in runoff solution at 8 h are shown in Figure 4. The concentration of zinc and
copper in the liquid samples infiltrating through BOF slag specimens were much lower
than basalt specimens, which indicated that BOF slag can improve the effect of porous
asphalt concrete on the removal of zinc and copper. The removal rate of copper and zinc
by different specimens was calculated according to the concentration difference of copper
and zinc before and after tests, as shown in Figure 5.

Figure 4. Concentration of zinc and copper in runoff solution at 8 h.
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Figure 5. Reduction rate of copper and zinc in runoff solution infiltration through different specimens.

The removal rate of both copper and zinc by BOF slag is higher than that of basalt.
However, the reduction rate curves of basalt are relatively flat, indicating that the pore
structure in the asphalt mixture has a stable removal effect on heavy metal. The removal
capacity of porous asphalt concrete is higher than that of loose mixture. However, the
removal effect of the loose asphalt mixture of BOF slag on copper and zinc is better than
BOF slag porous asphalt concrete in the initial stage. This is because the f-CaO in the loose
mixture is easier to hydrate in order to provide a higher pH of the solution, as shown in
Figure 3. It is indicated that the sedimentation effect of the alkaline oxides in the BOF slag
on heavy metal is much stronger than the removal effect of the pore structure in the initial
stage. However, the content of f-CaO in BOF slag is limited, so the sedimentation effect
gradually weakens with the leaching of f-CaO, resulting in a rapid drop in the reduction
rate of heavy metal, which is more obvious on the curve of zinc. Although it is hard to
dissolve both zinc hydroxide and copper hydroxide in water, the solubility product of zinc
hydroxide is larger, so the removal rate of zinc is more susceptible to the changes in pH.
The removal rate of zinc by loose asphalt mixture of BOF slag was reduced to about 40% at
64 h, while the curve of BOF slag porous asphalt concrete was flatter. It was demonstrated
that the removal effect of pore structure of BOF slag porous asphalt concrete plays an
important role in the removal of zinc.

3.2. Influence of Rainfall Intensity on the Reduction Rate of Heavy Metal

In order to investigate the influence of rainfall intensity on the reduction rate of heavy
metal, the flow rate was set to 0.72 mL/min, 2.88 mL/min, 4.33 mL/min and 5.77 mL/min
to simulate rainfall intensity of 5 mm/h, 20 mm/h, 30 mm/h and 40 mm/h, respectively.
The specimens in this section was BOF slag porous asphalt concrete only. The results of
removal tests are shown in Figure 6.

Figure 6. Reduction rate of copper and zinc at different rainfall intensity.
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The reduction rate of copper and zinc is decreased by the increase of rainfall intensity
and sampling time. The decrease of zinc reduction rate is particularly obvious. The increase
in rainfall intensity means that more runoff infiltrate through the concrete in the same
period of time, resulting in a faster decrease in pH. The steeper curve of zinc also confirms
the inference that the removal of zinc is more susceptible to pH changes. However, BOF
slag porous asphalt concrete still maintains a good removal effect on zinc at a rainfall
intensity of 5 mm/h, which is over 55%. The removal rate of copper is relatively steady,
which is more than 70% at the rainfall intensity of 20 mm/h. Rainfall intensity higher than
20 mm/h is rare, so that BOF slag porous asphalt concrete has a good effect on removing
copper in most rainfall situations, and effectively removes zinc under light rain conditions.
Compared with the results in the literature, the porous asphalt concrete prepared with
limestone and basalt produces an obvious effect (more than 40%) on the removal of zinc
only after 168 h storage with the initial concentration of 0.51 mg/L, while the BOF slag
porous asphalt concrete provides a stabilizing effect (45–70%) for the removal of zinc from
the beginning with the similar initial concentration (0.865 mg/L). It is indicated that BOF
slag, as the aggregate of porous asphalt concrete, provides an efficient removal effect on
zinc and copper. The final concentrations of copper and zinc are 0.096–0.227mg/L and
0.337–0.649 mg/L, respectively, under different rainfall conditions, which meet the Chinese
standards for wastewater discharge and irrigation water [37,38].

3.3. Additional Heavy Metal Brought by BOF Slag Aggregate

In addition to zinc and copper, multiple heavy metals exist in BOF slag aggregate,
which may leach into the runoff. The leaching concentration of heavy metals in steel slag
asphalt mixture shows a downward trend with time [18]. Therefore, the liquid sample of
the early stage (8 h) at 10 mm/h rainfall intensity was chosen to analyze the concentration
of heavy metal, as shown in Table 4. The results were compared with current Chinese
standards [37–39]. The concentration of heavy metal including copper and zinc meets
the requirements for wastewater discharge and irrigation water. The concentrations of
manganese, chromium and lead meet the requirement for groundwater (Class I). It is
indicated that BOF slag porous asphalt concrete removes the original heavy metal in the
runoff while it produces little additional heavy metal.

Table 4. Concentration of heavy metal in runoff solution infiltrating through BOF slag porous asphalt concrete.

Heavy
Metals

Concentration (mg/L) Limit Values (mg/L)

Initial After Tests Wastewater Discharge Irrigation Water Groundwater (Class I)

Copper 0.533 0.096 ≤0.5 ≤0.5 ≤0.01
Zinc 0.865 0.337 ≤2.0 ≤2.0 ≤0.05

V 0 0.032 ≤1.0 – –
Mn 0 0.004 ≤2.0 – ≤0.1
Cr 0 0.003 ≤0.5 0.1 ≤0.01
Pb 0 0.002 ≤1.0 0.2 ≤0.01

4. Conclusions

In this paper, the removal effect of BOF slag porous asphalt concrete on copper and
zinc in runoff was evaluated by removal tests, and its influencing factors were explored.
On the basis of the data obtained in this study, the following conclusions are drawn:

(1) The BOF slag porous asphalt concrete can turn the pH of the runoff solution up to
10–11, which significantly increases the removal rate of copper. The pore structure of
porous asphalt concrete plays an important role in the removal of zinc.

(2) With the increase of rainfall intensity and time, the removal rate of copper and zinc
gradually decreases. The removal rate of zinc is more susceptible to the changes of
rainfall intensity than copper. However, in light rain conditions, BOF slag porous
asphalt concrete maintains favorable removal effect on both copper and zinc.
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(3) While removing the original heavy metal in the runoff, the BOF slag porous asphalt
concrete leaches little additional heavy metal. The heavy metal content of runoff solu-
tion infiltrating through the BOF slag porous asphalt concrete meets the requirements
for irrigation water and wastewater discharge.

The results obtained indicate that BOF slag porous asphalt concrete has favorable
pavement performance and significant removal effect on heavy metal in road runoff. The
environmentally friendly reuse of BOF slag as a pavement material is feasible.
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