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ABSTRACT

Small silencing RNAs, including microRNAs, en-
dogenous small interfering RNAs (endo-siRNAs) and
Piwi-interacting RNAs (piRNAs), have been shown
to play important roles in fine-tuning gene expres-
sion, defending virus and controlling transposons.
Loss of small silencing RNAs or components in
their pathways often leads to severe developmen-
tal defects, including lethality and sterility. Recently,
non-templated addition of nucleotides to the 3′ end,
namely tailing, was found to associate with the pro-
cessing and stability of small silencing RNAs. Next
Generation Sequencing has made it possible to de-
tect such modifications at nucleotide resolution in
an unprecedented throughput. Unfortunately, detect-
ing such events from millions of short reads con-
founded by sequencing errors and RNA editing is
still a tricky problem. Here, we developed a com-
putational framework, Tailor, driven by an efficient
and accurate aligner specifically designed for cap-
turing the tailing events directly from the alignments
without extensive post-processing. The performance
of Tailor was fully tested and compared favorably
with other general-purpose aligners using both simu-
lated and real datasets for tailing analysis. Moreover,
to show the broad utility of Tailor, we used Tailor
to reanalyze published datasets and revealed novel
findings worth further experimental validation. The
source code and the executable binaries are freely
available at https://github.com/jhhung/Tailor.

INTRODUCTION

Over the past decade, small silencing RNAs, including mi-
croRNAs (miRNAs), endogenous small silencing RNAs
(endo-siRNAs) and Piwi-interacting RNAs (piRNAs) have
been shown to play indispensable roles in regulating gene
expression, protecting against viral infection and prevent-
ing mobilization of transposable elements (1–4). Small si-
lencing RNAs exert their silencing function by associating
with Argonaute proteins to form RNA-induced silencing
complex (RISC), which uses the small RNA guide to find
its regulatory targets and reduce gene expression. Although
the studies on the biogenesis of small silencing RNAs have
made enormous progress in the past decade, the factors con-
trolling their stability and degradation remain elusive.

Recent studies have suggested that non-templated addi-
tion to the 3′ end of small silencing RNAs, namely tailing,
could play essential roles in this regard. Non-templated 3′
mono- and oligo-uridylation of the pre-microRNAs (pre-
miRNAs) regulates miRNA processing by either prevent-
ing or promoting Dicer cleavage in flies (5–7). The 3′ mono-
uridylation on small interfering RNAs in Caenorhabditis
elegans is associated with negative regulation (8). Ameres
et al. have demonstrated that highly complementary tar-
gets trigger the tailing of miRNAs and eventually lead to
their degradation in flies and mammals (9,10); a similar
mechanism has been found on some endo-siRNAs as well
(11). Identification of tailing events not only suggests the
co-evolution of small silencing RNAs and their targets, but
also sheds light on the mechanism of their maturation and
degradation.

Despite the fact that Next Generation Sequencing (NGS)
has greatly facilitated the understanding of RNA tail-
ing, computational detection of non-templated nucleotides
from millions of sequencing reads is challenging. The Ket-
ting group used MegaBLAST to align piRNA sequences
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to the genome and relied on post-processing the reported
mismatches to gain insights into tailing (8). However, as a
heuristic algorithm, BLAST is not guaranteed to find all
the tailing events (12,13) and it is significantly slower than
the NGS aligners, like MAQ (14), BWA (15), Bowtie (16)
and SOAP (17). The Chen group used an accurate method
that iterates between Bowtie alignment and 3′ clipping of
unmatched reads (18) to find all the perfect alignments of
trimmed reads. A similar approach has been used for re-
moving erroneous bases at 3′ end to increase the sensitivity
of detecting miRNAs (19). Let alone that this method in-
evitably multiples the running time by the maximal length of
tails, extra computational works are still needed to retrieve
the identity of each trimmed tail. The study by Ameres et al.
used a specialized suffix tree data structure to efficiently find
all the tails without sacrificing the accuracy. However, due
to the high memory footprint of the suffix tree data struc-
ture, which is about 16 to 20× of the genome size, the read
mapping has to be performed for each chromosome sepa-
rately (9,20). Extra processing is still required to finalize the
alignments from all chromosomes.

Moreover, the task becomes even trickier when technical
and biological confounding factors are taken into account
for better capturing the true tailing events. For example, it
is known that reads from Illumina HiSeq and Genome an-
alyzer platforms have preferential A–C conversions (21,22)
and a high error rate at the 3′ end of reads, which frequently
leads to uncalled bases, i.e. B-tails (23,24). In addition to
these technical artifacts endued by the sequencers, RNA
editing is another common post-transcriptional modifica-
tion in small silencing RNA biology that could perplex the
tools with erroneous alignment. There are two major types
of RNA editing in mammals, adenosine to inosine (A-to-
I) and cytidine to uridine (C-to-U) editing. The major en-
zymes that catalyze adenosine to inosine are the adenosine
deaminases acting on RNA (ADARs), whose main sub-
strates are RNAs with double-stranded structures (25–27).
Since many small silencing RNAs are originated from struc-
tural RNAs, they are all likely targets of A-to-I editing (28–
30). Recent studies have shown that A-to-I editing can oc-
cur on the seed region of the miRNAs with fairly high oc-
currence rate (up to 80% in some cases) and have a direct
impact on the selection of their regulatory targets (31,32).
Those unmatched bases degenerate the sensitivity and ac-
curacy of short read alignment and have a negative effect
on the detection of tailing.

Most of the current methods simply ignore those con-
founding factors and rely on adapting existing, less special-
ized tools with extensive post-processing and as a conse-
quence the performance, usefulness and application of tail-
ing analysis is seriously compromised. A fast, accurate and
straightforward approach to study tailing is still in need. To
ease the cost of performing tailing analysis with dramati-
cally increasing sequencing throughput, we here introduce
Tailor––a framework that preprocesses and maps sequences
to a reference, distinguishes tails from mismatches or bad
alignments with a novel algorithm and reports both perfect
and tailed alignment simultaneously without loss of infor-
mation. Tailor is capable of analyzing the non-templated
tailing for miRNA and other types of small RNAs and pro-
duce publication-quality summary figures. In addition, to

better demonstrate the utility of Tailor, we reanalyzed pub-
lished datasets with Tailor and unearthed several interesting
observations (see Applications––case studies in Results). Al-
though the findings still require thorough experimental val-
idation, it is clear that Tailor would help expand the scope
of the study of small silencing RNAs.

MATERIALS AND METHODS

Datasets

Illumina sequencing data of small RNAs from Drosophila
melanogaster hen1 (SRR029608, SRR029633), Danio re-
rio hen1 (SRR363984–5), Arabidopsis hen1 and heso1
(SRP010683) and Ago2 associated small RNAs in cyto-
plasmic (SRR529097) and nuclear fraction (SRR529100) of
HeLa were obtained from NCBI Sequence Read Archive.
The length distribution of the simulated confounded reads
was from the D. melanogaster Ago3 associated small RNAs
extracted from ovaries (SRR916073). In-house program
was used to trim the 3′ adaptors and filter the reads
with low quality. Randomly distributed reads from fruit-
fly genome was generated by ArtificialFastqGenerator (33).
Ten millions reads were randomly chosen using seqtk
(github.com/lh3/seqtk.git) with options ‘sample -s100 -
10000000’. To remove multiple mapping reads in some sim-
ulation datasets, we used Bowtie iteratively before and after
the tail appending and seed mutation to assure each read
has only one occurrence in the reference.

Rationale

The principle of detecting non-templated bases at the 3′
end of reads is basically to find the longest common prefix
(LCP) between the read and each of the suffixes of the ref-
erence and then report the remainder on the read as a tail.
Given a read R (M base pairs [bp] long) and all the suffixes
(Si) of a reference sequence G (N bp long), one can find the
LCP between R and Si by finding the longest consecutive
matches from the first base to the last. Since there are to-
tally N suffixes of G, a trivial solution needs at worse M*N
times of comparison to find the LCP of R and G; however
the performance is unacceptably slow when G is as large as
a human genome. Using index structures, such as the suffix
tree or suffix array, finding LCPs between the NGS reads
and the reference can be solved much more efficiently (9,34).

Recently, the Full-text index in Minute space (FM-index)
derived from the Burrows-Wheeler transform (BWT) (35–
37) is widely used in many NGS applications (15–17). The
FM-index is both time and space efficient and can be built
from a suffix array and requires only 3 to 4 bits per base
to store the index. A more detailed introduction of build-
ing the FM-index of long biological sequences is given in
the Supplementary Materials. However, since the FM-index
is originally designed for matching all bases of a read to
a substring of the reference, it cannot be used directly for
finding tails. One straightforward solution is to align reads
without those non-templated bases by repeatedly removed
one last base in each round of the alignment process until at
least one perfect hit is found (18), but the approach scarifies
the speed greatly and requires extensive post-processing. To
benefit from the space and time efficiency of the FM-index,
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we further modified its matching procedure and adapted the
error tolerant strategy proposed by Langmead et al. (16) to
devise an FM-index based tail detection algorithm, Tailor,
which is specialized in capturing the non-templated bases
at the 3′ end of reads with confounding factors, such as se-
quencing errors and RNA editing.

Read mapping algorithm of Tailor

The system flow of the Tailor algorithm is outlined in Fig-
ure 1. Since searching within the FM-index initiates from
the 3′ end of the query string (i.e. the read) (36), where the
non-templated nucleotides append, Tailor first makes the
reverse-complement of the query sequence so that search-
ing starts from the original 5′ end to avoid excessive ex-
haustive search at the early stage. To do so, the reference
should be reversed complemented as well, and the coordi-
nate of each alignment should be calculated accordingly.
To allow searching against both strands simultaneously and
improves the speed, Tailor concatenates the plus and minus
strands of the reference and constructs one index instead
of two (Figure 1A and Supplementary Materials). Tailor
also stores a part of the suffix array similar to other FM-
index based aligners (16,38–40) to achieve fast calculation
of the text shift for getting the coordinate of each occur-
rence. Any alignment whose prefix matching portion ex-
ceeds the boundary of the mapped chromosome is filtered.
The searching continues until either it matches all the char-
acters of the query to the reference (i.e. the perfect match-
ing) or no more bases can be matched (i.e. the prefix match-
ing). In the latter case, Tailor backtracks to the previous
matched position and exhaustively enumerates all the pos-
sible prefix matches. The unmatched part remained in the
query is reported as a tail (Figure 1B).

Clearly, this strategy is vulnerable to confounding fac-
tors, since the first mismatch encountered directly defines
the remainder as the tail, which can be very misleading. To
accommodate possible sequencing errors or RNA editing
events in a read, we devised specialized selection rules as
depicted in Figure 2. For each read, the first S (S = 18 by
default) bases at its 5′ portion is defined as the seed (Fig-
ure 2A). Given the fact that sequencing errors tend to occur
at the 3′ end (23,24) and RNA editing events in miRNAs
are enriched at the other end (i.e. the seed region) (30–32),
the selection rules behave according to whether or not the
first mismatch appears in the seed (Figure 2B).

If the first mismatch is not in the seed region, it is re-
garded as either the first base of the tail or a sequencing
error. In the case that the mismatch is at the last base, it
is directly deemed as a valid tail (Case 2 in Figure 2B). If
the tail is longer than 1 nucleotide (nt), it will be further
scanned to make sure that the sequence of the tail consists
of multiple non-templated nucleotides (Case 3). If the tail
is only one nucleotide different from the reference, no tail
but a mismatch will be reported (Case 4). Note that in or-
der to differentiate tails from sequencing error, a filtering
step based on the quality is necessary to avoid type I er-
ror and has been included in Tailor’s pipeline (see below;
Analysis pipeline). Our current algorithm cannot differenti-
ate the circumstance that the tailed sequence is identical to
the genome sequence. This problem is unlikely to be solved

computationally and experimental solutions are expected to
be more effective (e.g. using mutant with a defective tailing
pathway).

On the other hand, if the first mismatch is in the seed,
where RNA editing events occur frequently, the backtrack-
ing search will be reinitiated and looks for an LCP started
from the succeeding base after the mismatch. If no mis-
match is found in the reinitiated search, no tail but a mis-
match is reported (Case 5). If a mismatch is occurred out-
side the seed, the reminder is reported as a tail (Case 6 and
7); otherwise, the read is dropped (Case 8). Note that the
scenario that Case 4 with another mismatch in the seed is
not allowed (i.e. two mismatches as in Case 8), since in prin-
ciple we want to endow Tailor an error tolerance strategy
consistent to that of conventional approaches under the one
mismatch setting (e.g. −v 1 in Bowtie).

Implementation

We implemented the core of the Tailor aligner using C++
with built-in support for multithreading. Since Tailor con-
catenates both strands of the chromosomes into one long
reference, whose length could exceed the maximum num-
ber represented by 32 bits, we have to use 64 bits to store
the indexes in all the relevant data structures, which require
about 2X memory footprint than that of other FM-index
based aligners. To backward compatible with the algorithm
introduced in Ameres et al. (9), which allow only case 1,
2 and 3 in Figure 2, an option (−v) is needed to turn on
the detection of other cases. Tailor has a similar command
line interface like other NGS aligners and reports align-
ment in the SAM (41) format. A tail is described as ‘soft-
clipping’ in CIGAR and the sequences are reported un-
der ‘TL:Z:’ in the optional fields. Mismatches, if allowed
(−v), will be reported in the ‘MD’ tag (see Supplemen-
tary Materials for more details). Tailor is freely available on
GitHub (http://jhhung.github.io/Tailor/) under GNU Gen-
eral Public License 2. All the scripts used in preparing this
manuscript have also been included in the same GitHub
repository. The tailing pipelines were implemented in shell
scripting language and R.

Test environment and software

All software tests were performed in the x86 64 Centos en-
vironment with 24 cores and 48G of memory. The Bowtie
software used in this study is version 1.0.0, 64-bit. The ver-
sion of BWA used is 0.7.5a-r405. The version of Tailor used
is 1.0.0. All commands for all the tests are listed in the Sup-
plementary Materials.

RESULTS

Performance without confounding factors

To begin with, we ignored confounding factors in the
following tests to compare with conventional approaches
first. To assess the aligning speed directly, we indiscrimi-
nately generated 10 millions of perfectly genome-matching
reads from the D. melanogaster genome (simulated tail-
free dataset) (33) and randomly appended 1–4 genome-
unmatched nucleotides to the 3′ ends (simulated tailed

http://jhhung.github.io/Tailor/
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Figure 1. BWT-based tailing detection algorithm. (A) Procedure of constructing the FM-index from a reference sequence. (B) Procedure of query searching
using the FM-index. Searching starts from the 3′ end of a reverse-complemented query. Green letters indicate the non-templated tail. Red letters indicate
the positions being matched against the index. When a non-templated letter is spotted as in step 4, the algorithm backtracks to previous step and reports
all the hits and marks the unmatched string as ‘tail’.

dataset). We compared Tailor with two most popular BWT
aligners Bowtie and BWA by applying them on simulated
small RNA datasets (Figure 3A). For the simulated tail-
free dataset, Tailor outperformed Bowtie and BWA in five
thread settings (using 2, 4, 8, 12 and 24 threads; Figure 3A,
top. All the running time plotted was the average of the
actual running time of five repeated experiments). But for
the simulated tailed dataset, Bowtie ran slightly faster than
Tailor possibly due to the fact the it reported no alignment
and did not perform any disk writing (Figure 3A, bottom).
We also performed the speed test with real small RNA se-
quencing data from hen1+/− and hen1−/− fruitfly and ze-
brafish (see Datasets in ‘Materialsand Methods’ section )
(Figure 3B). hen1 encodes for a methyl-transferase that adds
a methyl group to the 3′ end of siRNA and piRNA at the 2′-
O position and prevents tailing (9,42). For both hen1+/− and
hen1−/− libraries, Tailor outperformed Bowtie and BWA
and reproduced the published result that siRNAs, but not
miRNAs, were subjected to tailing in the absence of hen1

(Supplementary Figure S1). Please note that Bowtie and
BWA in the speed test setting here were not capable of de-
tecting non-templated tails. These tests were just used to
compare their execution speed but not functionality.

To prove the accuracy of Tailor when confounding fac-
tors were not considered, we then used either Tailor or the
Chen method to identify the non-templated tailing events
(18). To achieve maximal speed of the Chen method to our
best knowledge, we used the ‘-3 k’ option of Bowtie to clip k
bases off from the 3′ end of each read. This strategy avoided
calling secondary programs and ensured that minimal com-
putational work was done other than Bowtie mapping. We
started the alignment by setting k to 0. After the initial
mapping, the unaligned reads were realigned with an incre-
mented k (k = 1). This process was repeated four times. In
the last iteration, four nucleotides were trimmed off from
the 3′ end (k = 4) and all the tailed reads should have been
mapped at this point. In the simulation test, this method
finished in 67 ± 1 s with Bowtie been called five times (k =
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Figure 2. Error tolerance filtering rules. (A) Reads would have to be reverse-complemented before searching. The corresponding seed region is highlighted
in green. (B) Eight rules for determining tails. See the main text for more details.

0–4). Not surprisingly, directly mapping by Tailor finished
in 22 ± 1 seconds in the same computational environment.
Both methods reported the same coordinates. However, in
such setting, Chen method was not able to identify the tails,
which requires considerable computational work and time
to retrieve from the raw reads. In contrast, Tailor revealed
the length and the identity of the tails in the alignment out-
put directly (see Supplementary Materials).

Performance with error tolerance

It is arguable that some NGS aligners that support local
alignment, such as Bowtie2 (38) and BWA, can recover
those tails with error tolerance. We simulated two datasets
(one normal, one mutated, see below) whose distribution of
read length follows that of the real small RNA sequencing
dataset (43) (see Datasets in ‘Materials and Methods’ sec-
tion; and also Supplementary Figure S2). For the normal
dataset, two million reads were randomly sampled from the
reference genome. We intentionally kept reads having just
one unique occurrence in the genome and then appended
a 1–4 nt non-templated tail on each read. For the mutated
dataset, a similar procedure was used to generate another
two million reads, but one additional step was added: we
introduced one substitution in the nucleotides 2–8 of each
read to simulate an RNA editing event as suggested by
Vesely et al. (32). Again, this substitution was picked care-
fully to have only one occurrence in the genome with exactly
one mismatch. The simulation guaranteed that there existed
only one best alignment to the reference for each read in
both datasets (see Datasets in ‘Materials and Methods’ sec-
tion).

Then we examined the mappability of these datasets by
Tailor (with −v option), Bowtie2 and BWA (See Figure 3C).
Tailor clearly reported more unique mapping reads than
others especially in the mutated datasets. When we looked
closer to those reads that were mapped to multiple posi-
tions, we found Bowtie2 and BWA were more likely to align
the tails to the reference than Tailor and create many al-
ternative alignments. Note that the seed region setting was
used to aid all three tools for the alignment (S = 20 and
−v in Tailor and the equivalences in Bowtie2 and BWA;
mismatches in the seed region were allowed) and all tools
should try to align the first 20 nt of each read to the genome,
but Bowtie2 and BWA still generated suboptimal align-
ments. The execution time of three aligners with the error
tolerant setting is depicted in Supplementary Figure S3. The
complete commands for running all the tests are listed in
Supplementary Materials.

We further checked whether the alignments and the tails
were correctly reported. As shown in Figure 3D, Tailor was
the only tool that gave satisfactory results reporting cor-
rect alignments and tails in the mutated dataset. There was
no information in the output of BWA to recover the tails,
and since most of the reads were aligned to multiple loca-
tions, it was expected that extensive post-processing would
be needed for extracting the tails. The simulation clearly
shows that Tailor is the only practical solution for doing
tailing analysis with confounding factors.

Analysis pipeline

In order to provide a thorough and straightforward tail-
ing analysis of deep sequencing libraries to the scientific
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Figure 3. Speed comparison between Tailor and others software. (A) Speed comparison between Tailor, BWA and Bowtie using simulated 18–23 nt small
RNA with (top) or without (bottom) non-templated tails. Tailor ran with the default setting, which allows no mismatch in the middle of the query. Tailed
alignments were reported if perfect match could not be found. Bowtie ran with ‘−a –best –strata −v 0’ setting to allow no mismatch while report all best
alignments. BWA ran with the default setting. Five different CPU settings were used and the running time was plotted. Three replicates were performed.
(B) Speed comparison between Tailor, BWA and Bowtie (commands can be found in Supplementary Materials) using published small RNA Illumina
NGS libraries from hen1+/− and hen1−/− mutants in fruitfly and zebrafish. Same settings were used as in (A). (C) The mappability of the normal (N)
and mutated (M) datasets aligned by Tailor, Bowtie2 (with local alignment) and BWA. Multiple mapping was deemed as misalignment since each read
was guaranteed to have only one occurrence in the reference. (D) The unique mapping reads shown in (C) were further examined to make sure they were
aligned correctly and with proper tails reported (correct tails); unique mapping reads that didn’t have correct alignment or tails were categorized another
group (wrong tails/wrong alignment). The unmappable and multiple mapping reads were grouped together (undetermined or unmappable).

community, we developed the interface of Tailor to take
FastQ files as input and produce publication-ready figures.
The flowchart of the pipeline is summarized in Supplemen-
tary Figure S4A. In brief, the input reads, with barcodes
and adaptors removed, are subject to a quality-filtering step
based on a PHRED score threshold provided by the user
(e.g. to get rid of B-tails). The pipeline then applies Tai-
lor to align the high-quality reads to the reference. The in-
formation on the length and identity of tails are then re-
trieved from the SAM formatted output and summarized
to a tabular text file. Additionally, the alignments are as-

signed to different genomic features (miRNAs, exons, in-
trons, etc.) using BEDTools (44). Tails from different cate-
gories are summarized. Publication quality figures depict-
ing the length distribution are drawn using R package gg-
plot2 (23) (Supplementary Figure S4B). The pipeline also
offers microRNA specific analysis. Balloon plots describing
the 5′ and 3′ relative positions and the tails length are pro-
vided for a comprehensive overview (Supplementary Figure
S4C).
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Figure 4. Applications of Tailor and the accompanying shell pipeline. (A) Length distribution of mRNA-derived small RNA reads with tailing information
from wild-type, hen1 mutant and hen1, heso1 double mutant tissues from Arabidopsis. Raw read counts are shown without normalization. Perfect match
and tailed reads are indicated in different colors. (B) Length distribution of Ago2 associated Hsa-miR-15a (left) and Hsa-miR-15b (right) in cytoplasm
(top) and nucleus (bottom) fraction of HeLa cell. Raw read count are shown without normalization. Note that since the authors of these libraries used
poly-adenylation instead of 3′ ligation in their cloning strategy, it was impractical to identify A tailing. (C) Tail composition for miR-379 and the edited
form (miR-379–5G) in wild-type and Adar−/− libraries.

Applications––case studies

To prove the utility of Tailor, we applied Tailor to re-
analyze several publicly available small RNA sequencing
datasets and revealed new facts about the data that has
not been reported yet. In plants, HUA ENHANCER 1
(HEN1) methylates both miRNA and siRNA at their 3′
ends to protect them from non-templated uridylation cat-
alyzed by HEN1 SUPPRESSOR1 (HESO1), a terminal nu-
cleotidyl transferase that favors uridine as substrate (18,45).
We applied Tailor on small RNA sequencing libraries from
WT, hen1−/− and hen1−/−;heso1−/− cells of Arabidopsis and

the results showed that siRNAs were subjected to both
non-templated uridylation and cytosylation without HEN1
while miRNAs were mainly subjected to uridylation. Fur-
thermore, the loss of HESO1 only reduced the uridylation
but not cytosylation of siRNAs, suggesting the existence of
additional nucleotidyl transferase that prefers cytosine as
substrates (Figure 4A).

We then applied Tailor to two NGS libraries that cloned
Ago2 associated small RNA from nuclear and cytoplasmic
fraction of HeLa cells respectively (46). Since RNAs were
cloned using poly-A polymerase instead of 3′ adaptor liga-
tion in the library preparation, A-tails were unable to be re-
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covered computationally. Although most miRNAs showed
very similar length distribution and tailing frequency be-
tween these two samples, one miRNA, miR-15a, exhibited
a distinct pattern. In cytoplasm, miR-15a was mostly 21 nt
long and had modest U tailing for its 22-mer isoform. Sur-
prisingly, in the nuclear fraction, miR-15a peaked at 22 nt
and showed strong U tailing (Figure 4B). In addition, miR-
15b, which shares its seed sequence with miR-15a and only
has one nucleotide different from miR-15a in the first 19
nt of its mature sequence, did not exhibit obvious variation
between the two samples. This suggests that, either 9–12
nt, also known as the ‘central site’ or the 3′ end of guide
miRNA play an important role in tailing regulation.

Finally, we applied Tailor to study the possible relation-
ship between RNA editing and tailing in microRNAs. The
miRNA libraries were constructed from the whole brain tis-
sue cells dissected from Adar2−/− and wild-type mice (32).
Adar2 is known for its strongest effects on miRNA abun-
dance and editing among the three isoforms of ADARs
(47). One of the highly expressed ADAR substrates, miR-
379, was shown to be directly edited at the nucleotide five
within the seed region and about half of the mature miR-
379 were edited by ADAR2 (32). As expected, the edited
form of miR-379 (i.e. miR-379–5G) was greatly reduced in
Adar−/− mice. Surprisingly, we found that the normal miR-
379 has much more tailing than miR-379–5G (see Figure
4C). Mono-A and poly-A tails (the bluish portion) were
depleted in miR-379–5G, which raises the probability that
ADARs and the A-to-I editing could affect the affinity be-
tween the miRNAs and the unknown enzymes responsible
for adenylylating the 3′ end. Since the proportion of dif-
ferent types of tails was unchanged upon Adar2 knockout,
the tailing machinery is less likely modulated by ADAR2
directly but by the subsequent factors after editing in the
seed, such as differential targeting, RNA stability change
or miRNA-Argonaute sorting (1,48).

DISCUSSION

Tailing is a molecular phenomenon that associates with the
function, processing and stability of many small RNAs.
Computational identification of the tailed sequences from
the millions of NGS reads has been proven to be challeng-
ing and time-consuming. We herein present a tailing anal-
ysis framework, Tailor, which aligns reads to the reference
genome, reports tailing events simultaneously and visual-
izes analysis results. We assessed the accuracy of Tailor by
comparing it with the Chen method with simulated reads
and found they generated exactly the same results while Tai-
lor only used a third of the time to align and provided more
information comparing to the alternative.

When confounding factor was ignored, Tailor was not
slower than other well-known fast general-purpose map-
pers in our tests. We demonstrated that Tailor executed
in a speed that was very competitive to, if not better
than, Bowtie and BWA, while providing more functional-
ities for detecting tailing events. When confounding fac-
tors was presented in the reads, it was arguable that ad-
vanced NGS aligners that support the local alignment mode
(e.g. Bowtie2) could be competent in finding tails, but we
tested them with simulated reads and showed that Tailor

performed significantly better in both accuracy and effi-
ciency.

Tailor’s shell-based framework takes raw reads as input
and produces comprehensive tailing analysis results and
publication quality figures. We reproduced known conclu-
sions drawn from the published tailing study by the pipeline
with little extra scripting and post-processing. We also ap-
plied the pipeline to other datasets and shed light on other
possibilities of the functional roles of tailing, such as involv-
ing in RNA processing, transport, decay and storage by in-
teracting with other RNA binding proteins (49).

Our aims to design Tailor are to reduce the cost of doing
tailing analysis and reinforce or even replace the conven-
tional computational procedure in analyzing all short non-
coding RNAs. We expect that Tailor could be applied to a
broader scope and subsequently facilitate the understand-
ing of biological processes related to tailing.
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