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Dependency of active pressure 
and equation of state on stiffness 
of wall
Emad Pirhadi1, Xiang Cheng2 & Xin Yong1*

Autonomous motion and motility are hallmarks of active matter. Active agents, such as biological cells 
and synthetic colloidal particles, consume internal energy or extract energy from the environment 
to generate self-propulsion and locomotion. These systems are persistently out of equilibrium due to 
continuous energy consumption. It is known that pressure is not always a state function for generic 
active matter. Torque interaction between active constituents and confinement renders the pressure 
of the system a boundary-dependent property. The mechanical pressure of anisotropic active particles 
depends on their microscopic interactions with a solid wall. Using self-propelled dumbbells confined 
by solid walls as a model system, we perform numerical simulations to explore how variations in the 
wall stiffness influence the mechanical pressure of dry active matter. In contrast to previous findings, 
we find that mechanical pressure can be independent of the interaction of anisotropic active particles 
with walls, even in the presence of intrinsic torque interaction. Particularly, the dependency of 
pressure on the wall stiffness vanishes when the stiffness is above a critical level. In such a limit, the 
dynamics of dumbbells near the walls are randomized due to the large torque experienced by the 
dumbbells, leading to the recovery of pressure as a state variable of density.

Active matter broadly refers to nonequilibrium biological or synthetic systems of motile constituents, which con-
stantly convert chemical energy from internal or surroundings to kinetic energy and exhibit persistent directional 
motion1–3. The interaction between self-propelled active particles and system boundaries leads to an important 
system property termed as active pressure4,5, i.e., the counterpart to mechanical pressure in equilibrium systems. 
Active pressure can be a key driving force for membrane deformation6–10, which promotes host cell invasion by 
pathogenic bacteria into the host. It may also contribute to the expansion and migration of bacterial colonies 
and growing tissues11–14 for nutrients15,16. In essence, the survival of numerous active living systems relies on 
active pressure. Moreover, active pressure underpins some remarkable applications of active matter17, including 
microscopic ratchet motors18 and gears19.

Despite its importance, our understanding of active pressure and its relation to nonequilibrium thermody-
namics remains incomplete. By controlling particle distribution throughout the system, activity influences the 
local density near the wall and ultimately the mechanical pressure20. Using the effective potential approximation, 
it has been shown that active pressure calculated from mechanical, virial, and thermodynamic routes do not 
necessarily match21. Thus, in contrast to passive systems in thermodynamic equilibrium, pressure is not well 
defined due to the lack of detailed balance in active matter22,23. The pioneering theoretical work of Takatori, Yan, 
and Brady investigated the pressure of self-propelled spherical particles and obtained an equation of state (EOS) 
for this active system4,23, which has then been confirmed by various studies24–28. Nevertheless, Solon et al. showed 
that the EOS is only valid for specific systems of spherical particles without torque interactions with confinement 
or boundaries22. The existence of an EOS for active particles has also been questioned in Ref.29. These results 
indicated that active pressure is controlled by boundary effects, and information about the microscopic interac-
tion between particles and the confining walls is crucial. Fily et al. further demonstrated that the mechanical 
pressure on a wall is a function of the wall stiffness for anisotropic particles that experience torque from the wall30.

Experimentally, recent studies of active pressure using acoustic trap and membrane barometer showed that 
active pressure sensitively depends on the acoustic trap stiffness and the effective elasticity of membrane31,32. 
The effective interactions between passive particles in an active bath measured by optic tweezers also exhibited 
a dependence on the trap stiffness33. These results provide evidence that pressure of active anisotropic particles 
is a function of wall stiffness in real physical systems. Yet, the microscopic origin of this dependency is still 
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poorly explored. It is also an open question whether the stiffness dependence still applies in the limit of high wall 
stiffness. As mechanical pressure results from the collision of particles with a wall, a fundamental understand-
ing of how wall stiffness affects the near-wall dynamics of active particles and modulates the transferred linear 
momentum is critical for elucidating the origin of active pressure34–36.

This work explores the impact of stiffness variation on the mechanical pressure of a dry, underdamped sys-
tem of self-propelled dumbbells, which possess intrinsic torque interaction with walls. We find that although 
pressure depends on wall stiffness for soft boundaries, this dependency vanishes as stiffness reaches high values. 
Through a systematic variation of the particle number density and the wall stiffness, we demonstrate that pres-
sure follows the prediction of an EOS at high stiffnesses, even for anisotropic particles. The microscopic origin 
of the recovery of the EOS is further explored based on single collision events, which reveal the profound effect 
of single particle dynamics on the momentum transfer and the particle density near the wall. Finally, we develop 
a simple model to analyze an anomalous reentrant collision behavior observed for highly stiff walls and discuss 
the correlation between the reentrant interaction of an individual dumbbell and the non-monotonic variation 
of pressure with the wall stiffness. As such, our results shed light onto the unusual features of active pressure and 
pave the way for manipulating the pressure of active systems in various engineering applications.

Methods
We model a two-dimensional dry active system of self-propelled dumbbells to probe their active pressure. The 
dumbbell geometry is selected to introduce shape anisotropy typically possessed by biological microswimmers 
and synthetic active particles37–40. Inspired by previous studies22,36, a rectangular simulation box is separated by 
a mobile wall into two compartments in the x direction with an equal number of dumbbells in each compartment 
(see Fig. 1). Each dumbbell is modeled as a rigid body composed of two point particles (referred to as beads 
below) of mass mb constrained at a distance of bl , as shown in Fig. 1. The constituent beads i and j of different 
dumbbells at ri =

(
xi , yi

)
 and rj =

(
xj , yj

)
 interact with each other through a pairwise Weeks-Chandler-Anderson 

(WCA) potential, UEV
ij

= 4�
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1∕6� . 

This repulsive potential imposes excluded volume interactions between dumbbell beads with � and rc quantifying 
the interaction strength and the effective diameter of the bead, respectively. Thus, the values of bl and rc determine 
the effective aspect ratio of the dumbbell. Although a physical swimmer is force-free and torque-free, activity of 
dumbbell is imparted by applying a propulsion force41 to each individual bead Fpi = fpêp . fp is a propulsion 
constant and the direction êp = (rh − rt)/|(rh − rt)| pointing from the tail bead to the head bead, where rh and 
rt are the respective positions of the head and tail beads. The effective swimming velocity of the isolated dumbbell 
can thus be calculated through the overdamped Langevin equation in the absence of interparticle interactions, 
given by v0 = v0êp . The swimming speed is v0 = fp/γb with γb being the friction coefficient with the background 
medium (e.g., substrate).

The mobile wall spans the entire y dimension of the box and has a mass of mw . It applies a soft-core repulsion 
to a nearby dumbbell bead i, expressed as UMW

i = kL,R(rp − em)
2 . Here, rp = |xi − xw| is the normal distance 

between the bead and the wall with xw being the instantaneous wall position. em represents the range of repulsion 
and can be considered as the effective thickness of the wall36. The strengths of repulsion between the mobile wall 
and the dumbbells in the left and right compartments can be independently controlled by kL and kR , respectively. 
The repulsion parameters thus quantify the stiffness of the wall. The motion of the mobile wall is driven by the 
interactions with dumbbells on both sides of the wall but is also subjected to the background friction. The simula-
tion box is confined in the x direction by two additional fixed walls. Similar to the mobile wall, a fixed wall located 
at the edge of the simulation box xFW exerts a harmonic repulsion UFW

i = kFW (rp − ef )
2 to a dumbbell bead i 

when |xi − xFW | < ef  . The repulsion parameter kFW is tuned to prevent dumbbells from leaving the simulation 
box. The periodic boundary condition (PBC) is applied in the y direction.

Figure 1.   Schematic of simulation box confined by two fixed walls in the x direction with a mobile wall 
separating dumbbells into two compartments. Dumbbell geometry is depicted in the right inset. The left inset 
shows a schematic diagram of the mobile wall interaction zone and the instantaneous penetration depth of 
dumbbell beads.
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The dynamics of the system is governed by modified Langevin equations applied to the mobile wall and each 
dumbbell beads,

and

where FWi = −∇xU
MW
i  , and Ui =

∑
j U

EV
ij + UMW

i + UFW
i  . The summation in Eq. (1) runs for all beads i within 

the cutoff distances from the mobile and fixed walls, while the summation in Eq. (2) runs for all neighbor beads 
j within the cutoff of the WCA potential from bead i. The random noise is not considered in this work due to 
its negligible impact on the effective diffusion of interacting active particles42,43. The equations of motion are 
solved using the velocity-Verlet algorithm. The simulations are implemented using the particle simulation code 
LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator)44 with in-house modifications.

In this work, we set the cutoff radius and potential well depth of the WCA potential as the characteristic length 
and energy scales, respectively. The characteristic mass is the mass of a dumbbell md = 2mb . The characteristic 
time scale tc can then be defined as tc =

√

mdrc
2∕� . For simplicity, md , rc , � , and tc are all set to one, and the 

simulation parameters are presented in reduced units. The dimension of the simulation box is set to 2L×W , 
with the mobile wall initially located at xw = 0 . To obtain statistically reliable data36, the number of dumbbells 
in each compartment is set to nd = 250 unless stated otherwise. A higher number of dumbbells would increase 
simulation cost without providing additional insight into the problem. We set W = 70 to be about two orders 
of magnitude larger than the dumbbell length to minimize the finite-size effects arising from possible PBC arti-
facts. The lateral dimension of the initial compartment is set to L = 148 to obtain a norminal packing fraction 
of 10%. The packing fraction of the system is defined as the fraction of the simulation box that is occupied by 
dumbbells, φ = n(2Ab − Aint)/(2LW) , where Ab is the area of each bead and Aint is the overlapping area of two 
beads of a dumbbell45. Higher packing fractions could result in wall induced aggregation24 as well as motility-
induced phase separation46, which would drastically change the nature of the system. Although a lower packing 
fraction results in similar behavior, it would increase the fluctuation of the system and require longer and more 
expensive sampling. To allow comparison with previous studies36, the mass of the mobile wall is set to mw = 2.0 , 
and the friction coefficients of the bead and the wall are set to be γb = 0.5 and γw = 2.0 , respectively. The bond 
length of the dumbbell is bl = 0.5 . Unless stated otherwise, the swimming speed is set to be v0 = 2 . The mobile 
wall thickness is set to em = 8 the same as Ref.36. kL and kR vary in the range of 0.2 to 300. The fixed walls have 
an interaction range of ef = 5 and a repulsion strength of kFW = 50 . To accurately resolve the detailed dynam-
ics of the system, we choose a very small timestep in this study �t = 5× 10−5 . Additional simulations with 
smaller timesteps were performed to ensure consistent behaviors. The total time of a typical simulation of the 
bulk system is t = 5000.

(1)mwẍw = −γwẋw +
∑

i

FWi

(2)mbr̈i = −γbṙi −∇iUi + F
p
i

Figure 2.   Time evolution of normalized position of the mobile wall in the simulations with three different 
combinations of wall stiffnesses. Inset is a representative snapshot at the end of simulation for the case of 
kL = 0.4 and kR = 4 . The profiles are averaged across five independent runs with different initial distributions of 
dumbbells.
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Results
Dynamic behavior of the bulk system of active dumbbells.  We first explore the dynamics of a bulk 
system of active dumbbells. We conduct a mobile-wall experiment22 to study the effect of wall interactions on the 
active pressure in our system. Two sides of the mobile wall have different stiffness parameters and hence exert 
asymmetric repulsion to the dumbbells in the different compartments. We consider the mechanical pressure of 
active dumbbells as the summation of forces that dumbbells apply to the wall divided by the wall area. The move-
ment of the mobile wall thus reflects the relative difference of mechanical pressure in the two compartments. 
Figure 2 shows that the mobile wall moves toward the side experiencing stiffer wall interaction, which indicates 
that increasing wall stiffness reduces the mechanical pressure of self-propelled dumbbells. This behavior is con-
sistent with previous studies and demonstrates that the pressure of active systems is influenced by their interac-
tions with the confining boundaries22,30,36.

To better understand the relationship between pressure and wall interaction, we perform simulations with 
systematic variations in the wall stiffness. We first increase the right-side stiffness, kR , gradually from 0.4 to 15 
while keeping the left-side potential, kL , constant at 0.4. It is expected that the equilibrium position of the mobile 
wall would progressively move to the right as kR increases, which represents a greater imbalance in pressure 
between the two sides. As illustrated in Fig. 3a, the average value of normalized wall position first increases as kR 

Figure 3.   Ensemble average of normalized wall position as a function of kR for the simulations with (a) kL 
remaining constant at 0.4 and (b) the ratio of stiffness kL/kR remaining constant at 10. Average wall position 
(represented by the angular bracket) is sampled during the equilibrium stage, defined as the last 2500 time 
units of a simulation. The instantaneous wall positions for different kR are plotted in the inset. The position 
corresponding to the center of the box in the x direction is marked with a dashed line in (b). Five independent 
runs with different initial configurations are performed for the analysis. Error bars represent the standard 
deviation.
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increases, corresponding to the movement of the wall to the right and the shrinking of the right compartment. 
However, a plateau can be clearly observed when kR > 5 . Further increase in kR results in only fluctuations of 
the equilibrium wall position between 0.45 and 0.5. This indicates that the magnitude of mechanical pressure 
on the right side saturates to a low plateau around kR = 6 . However, it would be premature to conclude that 
pressure becomes independent of wall stiffness when increasing beyond a threshold based on only this test. 
Namely, when the wall moves toward the right, the dumbbell density in the right compartment correspondingly 
increases. When density is high enough, even a small rise in density could cause a huge elevation in pressure. 
The density-induced increase could compensate for the pressure decrease originated from the change in the wall 
interaction and prevents the wall from moving further toward the right.

Therefore, to verify the behavior we observed, we design a second test in which the ratio of stiffness kL/kR is 
kept constant at 10 while the absolute stiffness is increased accordingly on both sides. Interestingly, in the simula-
tions with the right wall potential higher than 4, the mobile wall stays roughly at the middle of the simulation box, 
which means that the mechanical pressures on the left and right are balanced (Fig. 3b). Notably, the dumbbell 
densities are approximately equal on both sides of the wall, and any density effect on pressure should vanish in 
these cases. Therefore, the only factor that could influence the mechanical pressure is the interaction between the 
wall and dumbbells. The results of these two tests demonstrate that the dependency of the mechanical pressure 
on the wall-dumbbell interaction indeed vanishes at high wall stiffnesses. The movement of the wall implies the 
qualitative behavior of the mechanical pressure of active dumbbells. Starting from a system with an extremely soft 
wall (i.e., kR = 0.4 ), the pressure reduces with increasing wall stiffness until it converges to a minimal amount. 
After reaching the minimum, any increase in wall stiffness does not change pressure anymore. In such a limit, 
the mechanical pressure becomes independent of the interaction of active particles with the boundaries, which 
is an indication that an EOS may exist.

We employ an additional mobile wall experiment to explore the recovery of active pressure as a state vari-
able by distinguishing the dependency of pressure on density and stiffness. In this set of simulations, we set the 
number of dumbbells in the right compartment to be constant at nR

d
= 250 , and systematically varies the number 

of dumbbells in the left compartment nL
d
 from 25 to 500 for different sets of wall stiffnesses. Swim velocity and 

friction with the background are equal between the two compartments. Thus, the mobile wall is expected to 
move until the number densities of two sides become equal if the pressure of active dumbbells is a state function 
of density and independent of wall interaction. The equilibrium wall position for any stiffness asymmetry can 
thus be calculated by simply matching the number densities of the two compartments, representing the result of 
the existence of a pressure EOS. Figure 4 shows that for highly stiff walls, the average position of the wall agrees 
with the prediction of the EOS, and the ensemble averaged position of the wall does not change by swapping the 
stiffness asymmetry. This result confirms that pressure does not depend on microscopic interactions of particles 
with the wall in a limit of high wall stiffness. Notably, for softer walls, the average wall position and thus pressure 
depends on both dumbbell density and wall stiffness.

The relation between active pressure and near‑wall microstructure.  We utilize a method that we 
term fictitious wall method to quantify pressure. Here, we consider a physical wall with symmetric repulsion 
fixed in the simulation box. We introduce an imaginary wall at a specific location of the box to calculate the 
local pressure. All dumbbells within the cutoff range of this imaginary wall would apply forces to the wall if it 

Figure 4.   Ensemble average of normalized wall position as a function of the number of dumbbells nLd in the 
left compartment while nRd is kept constant. The prediction of a pressure equation of state for the equilibrium 
position of the wall is plotted in a black line.
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were a real wall. The summation of the virtual forces from the interacting dumbbells divided by the area of the 
wall defines an instantaneous pressure (see Supplementary Information for more details). Essentially, this value 
represents a mechanical pressure that a real wall would experience at the moment of introduction to the system 
before the wall induces any changes in the dumbbell distribution. The calculation shows that near-wall pressure 
decreases with an increase in stiffness in lower limits of kw . However, the change in near-wall pressure becomes 
less discernible as kw increases and a convergent trend to a critical value is appreciable (see Fig. S1). This result 
provides further evidence that except for cases with a very soft wall, the mechanical pressure of active dumbbells 
is independent of the stiffness, which agrees with the recovery of an EOS observed in stiff limits.

Mechanical pressure is directly related to the number of dumbbells interacting with the wall20. The number 
density profile in Fig. 5 shows that the near-wall density is higher for the softer walls. Consequently, the softer 
walls experience higher pressure from dumbbells compared to the stiffer walls. To answer how kw influences the 
near-wall density, we introduce the 2D nematic order parameter S = 2 < cos2θ > −1 to quantify the dumbbell 
orientation. Here � is the instantaneous angle between the dumbbell axis and the normal to the wall, and the 
angular bracket represents the ensemble average. The value of S ranges between -1 to 1 and characterizes the 
average orientation of dumbbells. In particular, S = −1 corresponds to the case where dumbbells align parallel 
to the wall, while the value of 1 indicates that dumbbells are perpendicular to the wall. A system of dumbbells 
without any preferential orientations will result in S = 0 . Figure 5 shows that S increases from a negative value 
greater than -1 to 0 as the distance from the wall increases. This indicates the development of alignment near the 
wall due to the repulsion from the wall. The comparison reveals that the value of S near the wall increases as kw 
increases, which corresponds to the disruption of alignment. In other words, a weaker wall repulsion promotes 
the alignment of dumbbells with the wall. A higher degree of alignment results in lower swim velocity in x direc-
tion opposite to the wall. Consequently, the particle flux toward the wall would be higher than the outgoing 
flux, and the particle density and pressure would be higher near the wall. Interestingly, S near the wall appears 
to converge to a critical value with the increase of kw . This behavior could be associated with the converging 
pressure observed in Fig. S1. Note that the mechanical pressure on the wall is also proportional to the total linear 
momentum that each dumbbell transfers to the wall. Below, we demonstrate that the torque induced alignment 
of dumbbells with the wall enhances the linear momentum transfer.

Single dumbbell interaction.  To elucidate fundamental mechanisms of the intriguing behaviors observed 
in the bulk system, we model the interaction of a single dumbbell with the wall and probe the detailed dynamics 
of collision events, which contribute collectively to the pressure. This simple system allows us to remove the com-
plexity arising from the dumbbell-dumbbell interaction and isolate the dumbbell-wall interaction for detailed 
analyses. Herein, the wall position is fixed at the edge ( x = L ) of the simulation box with the PBC applied in 
the y direction as in the bulk system. The self-propelled dumbbell is initially placed outside the cutoff distance 
of wall repulsion and starts moving toward the wall. The simulation continues until the dumbbell completes its 
interaction and moves away from the wall indefinitely. The wall has the same thickness em and stiffness kw as the 
mobile wall in the bulk system.

We find that the collision dynamics depend strongly upon the entrance angle θi , which is defined as the angle 
between the dumbbell axis and the normal to the wall (pointing inward) when the dumbbell enters the wall 
interaction zone. For each kw , we systematically explore the behavior of dumbbells by varying θi in the range 

Figure 5.   Orientational order parameter of dumbbells as a function of distance from the wall. The number 
density of dumbbells as a function of distance from the wall is plotted in the inset. For comparison, the dashed 
lines present the results of an unconfined system with full PBCs in both x and y directions. The swimming 
velocity is set to be v0 = 1 for these simulations.
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of 5◦ ≤ �i ≤ 85◦ with a 5° increment. The mechanical pressure is directly related to the total amount of linear 
momentum �p that dumbbells transfer to the wall. �p for each collision is calculated by Δp = F × � , where � is 
the duration of interaction and F  is the average force in the x direction during the interaction.

It is intuitive that stiffer walls apply larger forces to dumbbells, which is confirmed by our data (Fig. 6a). 
However, stiffer walls result in shorter interaction durations, as shown in Fig. 6b. Therefore, there exists a com-
petition between the variations in F  and � , which determines the changes in �p and accordingly pressure. 
Figure 6c indicates that the effect of kw on � overpowers that of F  , which results in stiffer walls exhibiting lower 
momentum transfer and pressure. This dominance gradually vanishes as kw further increases. Consequently, 
the total amount of transferred momentum �p to the wall converges to a critical value with increasing stiffness, 
which agrees with the behavior of mechanical pressure we observed in the bulk system. This quantification of 
dumbbell-wall collision supports our finding that the wall effect on mechanical pressure of active dumbbells 
diminishes as the stiffness of the wall increases.

To understand why the duration of interaction is longer for softer walls, we scrutinize critical dynamic quanti-
ties at play in the dumbbell-wall interaction. Fig. S2 plots the evolution of these quantities for a single collision 
event at a moderate entrance angle. For a particle without activity, the normal force from the wall is the only 
factor that determines the duration of the interaction. In contrast, for active particles, a change in swimming 
direction is required to leave the wall. The reorientation time scale is the key factor behind the swimming direc-
tion change of a self-propelled spherical particle. For a smooth-swimming dumbbell without Brownian noise, 
the important parameter is the instantaneous torque that the wall applies to the dumbbell, T , which governs the 
rotation of the dumbbell and dictates � . Torque interactions from softer walls result in lower angular velocity � 
of a rotating dumbbell, allowing it to stay in the interaction zone for longer times. This also explains why in the 

Figure 6.   (a) Average force, (b) duration of interaction, and (c) total transferred linear momentum as functions 
of the entrance angle for a single dumbbell interaction.
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bulk system, dumbbells are more aligned with softer walls with higher near-wall number densities. Here, the signs 
of T and � follows the right-hand rule (i.e., positive/negative T leads to counter-clockwise/clockwise rotation 
with positive/negative � ). The magnitude of T is determined by the dumbbell orientation and the difference in 
the repulsive forces on the head and tail beads from the wall. The evolution of the former depends mainly on the 
entrance angle θi whose distribution should be similar between different cases of the bulk system. The latter, on 
the other hand, is a function of kw which varies from case to case. The dependency of T on kw denotes that walls 
with higher stiffnesses apply larger T to dumbbells. This makes dumbbells rotate more, interact with the wall for 
shorter times (lower � ), transfer less linear momentum �p , and eventually apply less mechanical pressure to the 
wall. As kw further increases, Fig. 6c demonstrates that the monotonic behavior breaks down at certain values 
of θi . This behavior is attributed to an anomalous interaction dynamic in which the dumbbell exhibits multiple 
collisions with the wall in a very short time before leaving the wall indefinitely. We analyze this behavior in detail 
and elucidate its influence on momentum transfer and pressure generation.

Reentrant collision event.  The non-monotonic behaviors of average force, interaction duration, and 
momentum transfer observed for stiff walls ( kw ≥ 10) in Fig. 6 is associated with the onset of anomalous col-
lision dynamics, resembling the one observed in previous studies36. A representative trajectory of a dumbbell 
undergoing this anomalous behavior is shown in Fig. 7a. In particular, after hitting the wall, a dumbbell may 
rotate too much to face toward the wall again during each collision and therefore reenters the wall interaction 
zone and collides the wall again before it moves away from the wall indefinitely (Video S2). The reentrant colli-
sion effectively increases the duration of interaction and the rate of momentum transfer to the wall defined in a 
specific time span. In the bulk system, the onset of reentrant collision also results in an increase in the collision 

Figure 7.   (a) Representative trajectory of a dumbbell with �i = 30◦ exhibiting the reentrant collision dynamics. 
The wall is positioned at x = 60 with kw = 40 and ef = 8 . (b) Final orientation angle of the dumbbell with 
respect to the wall normal after the first collision event as a function of initial entrance angle. When reentrant 
collision motion happens, θf  becomes the entrance angle for the subsequent collision. The dashed line marks the 
threshold for the onset of reentrant collision.
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rate and the elevation of pressure. The torque from the wall T induces rotation and facilitates this motion, while 
the background friction reduces the angular velocity and prevents it. Our data indicate that T is a function of wall 
stiffness kw , dumbbell bond length bl , swimming speed v0 , and the entrance angle θi of the first interaction. These 
parameters govern the evolution of dumbbell orientation θ(t) by controlling the angular acceleration. Note that 
a considerable portion of dumbbell rotation takes place outside of the wall interaction zone. This implies that 
inertial effects play an important role in the reentrant collision. Therefore, this phenomenon has not been well 
documented in previous studies largely focused on overdamped systems.

The rotation of the dumbbell is governed by Newton’s second law for rotation Idω/dt = T , where I and � 
are the moment of inertia and the angular velocity of the dumbbell, respectively. Outside the wall interaction 
zone, only friction contributes to the torque. Given the knowledge of angular velocity ωe when the dumbbell 
leaves the interaction zone and the corresponding exiting angle θe for the first collision event, we can predict the 
onset of reentrant collision based on a final angle θf  , which is defined when � decreases to 0. Using the outlet 
ωe and θe obtained in the simulation, θf  can be calculated as �f = �e +

(

mb∕�b
)

�e . If θf  is greater than 3π/2 , the 
dumbbell has been rotated enough to face toward the wall and will hit it again. The results of this calculation 
match the simulation data of θf  . Figure 7b compares the onset of reentrant collision events between different kw 
for various initial entrance angle θi in the collision simulations. Points above the dashed line correspond to the 
onset of reentrant collision events. Notably, dumbbells with different intervals of θi exhibit reentrant motion, 
and some of them may even hit the wall more than twice before leaving indefinitely (Video S3). This makes the 
exact prediction of active pressure extremely complicated. It is also important to note that this simple predic-
tion of reentrant collision is based on the single-dumbbell system, and the introduction of Brownian noise and 
interparticle interactions will alter the dumbbell dynamics significantly47.

Discussion and conclusions
In this paper, we applied numerical simulation to investigate the influences of wall stiffness on the mechanical 
pressure generated by anisotropic self-propelled particles with intrinsic torque interaction. The torques applied 
to particles by the wall influence the rotational evolution of particles, which affects the distribution of particles 
throughout the domain. Our results show that the mechanical pressure near the wall decreases with increasing 
wall stiffness, and more importantly, reaches a constant plateau above a certain stiffness. This means that even 
for anisotropic particles like dumbbells, active pressure is not always influenced by interaction with the confining 
wall. Our study indicates that for a characteristic system of strongly interacting particles without random noise, 
there exists a regime in which active pressure is not a boundary effect.

The dynamics of a single collision event was explored in detail to uncover the microscopic origin of the rela-
tion between pressure and wall stiffness. The mechanical pressure is linked to the total linear momentum transfer 
between dumbbells and the wall during each interaction. We find that the amount of torque that the wall applies 
to dumbbells is a function of both the entrance angle and wall stiffness. Torque alters the total linear momentum 
by controlling rotation of the dumbbell and duration of the interaction. Our results indicate that the total linear 
momentum transferred to the wall during one collision converges to a minimum amount through increasing 
the stiffness, showing a similar trend as the mechanical pressure.

The collective impact of single particle dynamics on pressure arises from density distribution, or essentially 
particle accumulation near the wall. The rotational time scale near the wall controls particle escape time, which 
is a critical factor involved in the accumulation of anisotropic particles near the wall. Wall stiffness is correlated 
to the rotational time scale of dumbbells by controlling the magnitude of the torque that is applied to them. 
Higher torque reduces the rotational time scale, while the swimming time scale, dictated by the propulsion 
force, remains constant. These two time scales together determine the rotation and translation of dumbbells near 
the wall. Highly stiff walls induce a large torque, which makes the rotational time scale to be smaller than the 
swimming time scale. As a result, rotation will dominate self-propulsion, and we speculate dumbbells orienta-
tion near the wall becomes approximately random. The results of Joyeux and Bertin36,47 showed that the notion 
of mechanical pressure could be recovered as a result of the interplay between rotation and self-propulsion for a 
system of active dumbbells with very low background friction or strong Brownian noise. Decreasing friction or 
increasing noise intensity will both reduce the rotational time scale. Therefore, increasing wall stiffness yields a 
similar effect as varying friction or noise.

According to the kinetic theory, particle density influences pressure via controlling collision rate. Thus, single 
particle dynamics near the wall influences the mean collision rate through modulating the near-wall density. On 
the other hand, the amount of linear momentum transferred to the wall during each collision is also determined 
by single particle dynamics. Confining walls apply torque to anisotropic active particles, which strongly influ-
ences their dynamics. As a result, particle density, momentum transfer, and eventually pressure would vary by 
the wall stiffness. For highly stiff walls, both contributions of single particle dynamics to pressure converge to 
a critical value, likely because of randomization of particle orientation. Consequently, dependency of pressure 
on single particle dynamics vanishes for high limits of stiffness. As a result, pressure becomes a function of only 
bulk properties of the system, which indicates that an EOS could be found.

Anomalous particle trajectories were observed for extremely stiff walls. Namely, if a dumbbell gains a large 
amount of angular momentum during the interaction, its rotation will result in one or more reentrant collisions 
with the wall. The onset of this anomaly depends on the stiffness of wall interaction and the entrance angle of 
the initial collision. The dumbbell trajectories in Fig. 8a confirm that reentrant collision does not occur for small 
kR . We further elucidate how reentrant collision could affect active pressure. Figure 3b shows a non-monotonic 
trend, where for a small range of stiffness ( 4 < kR < 20 ), the pressure on the stiffer side of the wall is higher. 
This unusual trend of pressure variation is not attributed to the stiffness-induced change in the transferred linear 
momentum for each collision but instead caused by the difference in the collision rate in the presence of the 
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reentrant collisions, which are more probable to occur for the stiffer walls. As shown in Fig. 8b and Video S4, the 
reentrant collisions only take place or occur more frequently on the left side of the wall (the stiffer side) in the 
discussed interval of kR . Consequently, the mechanical pressure becomes higher on the stiffer side. However, as 
shown in Fig. 8c, the onset of reentrant collision becomes comparable on both sides when the stiffness increases 
beyond this range of kR . Therefore, the appearance of this anomalous motion would not affect the pressure in 
the stiff limit.

In summary, our understanding of active pressure remains incomplete and warrants more research, in par-
ticular experimental studies, to provide additional insight into the complex interaction between active particles 
and walls of different stiffnesses. Among many uncharted areas, we envision our future work to be focused on 
the active pressure of flexible particles and particles with a directional reversal.
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