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Hypoglycemia is a limiting factor for blood glucose management. Serious symptoms such as seizures, and coma 
may occur during severe hypoglycemia, and nocturnal hypoglycemia is particularly dangerous for patients with 
type 1 diabetes (T1D). An effective early alarm method is essential for hypoglycemia prevention but challenging, 
as blood glucose is affected by many factors and the hypoglycemia sequence patterns vary from person to person. 
In this paper, we proposed a hypoglycemia early alarm method for mining the hidden information in blood 
glucose based on multi-dimensional sequential pattern mining. The blood glucose, meal, and insulin time series 
information were used to construct a multi-dimensional database, then the UniSeq algorithm was used to extract 
multi-dimensional hypoglycemia sequence patterns. Hypoglycemia early alarm was realized through pattern 
matching with real-time blood glucose. The public OhioT1DM dataset was used for performance evaluation. The 
experiment results were: 75.76% Sensitivity, 75% Precision, 75.38% F1 score, and 25.17 minutes early alarm 
time. The result verified that multi-dimensional sequential pattern mining can extract more hidden information 
and demonstrate more potential significance in providing comprehensive diagnosis support for personalized 
treatment. Furthermore, early alarms for potential hypoglycemia can also reserve sufficient time for blood 
glucose management.
1. Introduction

Diabetes is a chronic metabolic disease [1] and hypoglycemia is 
a potential risk for T1D patients. T1D patients suffer thousands of 
symptomatic hypoglycemia episodes over a lifetime, and one or more 
episodes of severe, temporarily disabling hypoglycemia. Previous stud-

ies have demonstrated that frequent hypoglycemia events lead to a high 
incidence of diabetic retinopathy for T1D patients [2]. Dead-in-bed syn-

drome is the worst complication of severe hypoglycemia [3]. More than 
50% of severe hypoglycemia episodes at night time make the patients 
especially fear nocturnal hypoglycemia [4, 5]. It is founded that re-

peated and severe hypoglycemia can increase the death risk of diabetes 
[6, 7]. Therefore, an effective hypoglycemia early alarm method is an 
urgent problem in blood glucose management for reducing and avoid-

ing hypoglycemia events [8, 9].

In recent years, many methods have been proposed for hypo-

glycemia early alarm [10]. Palerm et al. [11] used real-time blood 
glucose sensor signals and Kalman filtering to predict hypoglycemia. 
Cameron et al. [12] employed multiple statistical linear predictions 
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with regression windows as a hypoglycemia detection algorithm. Turk-

soy et al. [13] introduced a subject-specific recursive linear time series 
model to capture blood glucose variations and used it in hypoglycemia 
early alarm systems. Bayrak et al. [14] employed the recursive au-

toregressive partial least squares algorithm to model the continuous 
glucose monitoring (CGM) data and predict future blood glucose in hy-

poglycemia early alarm systems. Yang et al. [15] proposed a prediction 
framework by the autoregressive moving average model with an iden-

tification algorithm. The hypoglycemia early alarm methods depend on 
the accuracy of the prediction model. Because blood glucose is affected 
by many factors, the prediction model is difficult to accurately predict 
especially for hypoglycemia.

The sequence pattern mining is to discover frequent patterns con-

tained in sequences, which are widely used in customer purchasing, 
weather forecasts, and production processes [16, 17]. Aileen P et al. 
[18] applied the CSPADE algorithm to mine sequence patterns of dia-

betes medication prescriptions. And ranked the drug class and generic 
drug level by the support statistic. W Lee et al. [19] proposed a se-

quential pattern mining-based framework–FuzzyGap for extracting dis-
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criminative and representative clinical pathways from EHRs. Wu et al. 
[20] applied a complete algorithm based on the Net-tree structure to 
mine the closed patterns in SARS-CoV-2 and SARS virus. Sequential pat-

tern mining predictions by mining frequent sequence patterns in events 
avoid the inherent and undeniable uncertainty of traditional prediction 
methods. However, single-dimensional sequential pattern mining does 
not consider the potential impact of multi-dimensional data correlation.

Multi-dimensional sequential pattern mining is proposed by Han 
et al. [21, 22, 23], which aims to discover more relevant and valu-

able patterns by considering the correlation between multi-dimensional 
data. Petitjean et al. [24] proposed a mining framework for discov-

ering satellite image time series patterns. Yusof et al. [25] presented 
a novel approach for mapping frequent wind profile patterns using 
multi-dimensional sequential pattern mining and identified four fre-

quent wind profile patterns. Sakuma et al. [26] developed a method 
for extracting interesting animal behaviors from multi-dimensional time 
series and applied it to several animal trajectory datasets for demon-

strating effectiveness. Reasonable use of more information can provide 
a more meaningful reference for sequence pattern mining and obtain 
better application value.

Recent studies have revealed that blood glucose is affected by many 
factors [27, 28, 29] and can be indirectly reflected through electroen-

cephalogram [30], heart rate [31], etc. This paper proposed a multi-

dimensional hypoglycemia early alarm method based on the idea of 
sequence pattern mining. It can avoid the inherent uncertainty of the 
prediction model and extract more valuable blood glucose information. 
First, the blood glucose sequence is integrated with related factors (such 
as meal, insulin, exercise, etc.) to construct a multi-dimensional se-

quence database. Secondly, the UniSeq algorithm is employed to mine 
hypoglycemic frequent sequence patterns for constructing the multi-

dimensional sequential pattern library. Finally, real-time blood glucose 
is matched through pattern matching to realize hypoglycemia early 
alarm. A multi-dimensional blood glucose sequence that contains more 
information can extract potential information more comprehensively. 
The consideration of multiple factors is conducive to individual pat-

tern mining and better reflects the individual patients’ characteristic. 
Compared with the prediction model, it avoids prediction errors and 
provides comprehensive diagnosis support for decision-makers.

Based on the above ideas, the main content of this paper is shown 
as follows: Section 2 introduces the method of multi-dimensional se-

quential pattern mining; Section 3 describes multi-dimensional hypo-

glycemia early alarm; Section 4 shows the results and Section 5 analyzes 
the method performance; Section 6 finally gives the conclusion.

2. Material and methods

2.1. Multi-dimensional sequential pattern mining

The multi-dimensional sequence database consists of a base task 
dimension and task-related dimensions. The base task dimension is 
one or more ordered information dimensions that express the progress 
of a transaction over time. The task-relevant dimensions are one or 
more unordered information dimensions that provide background in-

formation. Data is recorded as the schema (RID, 𝑆, 𝐴1, ⋯ , 𝐴𝑚) in a 
multi-dimensional sequence database [32], where RID is the primary 
key; 𝐴1, ⋯ , 𝐴𝑚 are dimensions and 𝑆 is in the domain of sequences. 
(𝑠, 𝑎1, 𝑎2, ⋯ , 𝑎𝑚) is defined as a multi-dimensional sequence, where 𝑎𝑖 ∈
(𝐴𝑖 ∪ {∗}) (1 ≤ 𝑖 ≤𝑚), 𝑠 is a sequence.

Definition 1. A multi-dimensional sequence 𝑃 = (𝑠, 𝑎1, ⋯ , 𝑎𝑚) is said to 
match a tuple 𝑡 = (𝑠𝑡, 𝑥1, 𝑥𝑚) in the multi-dimensional sequence database 
if and only if, for 𝑎𝑖 = 𝑥𝑖 (or 𝑎𝑖 = ∗) and 𝑠 ⊆ 𝑠𝑡 (1 ≤ 𝑖 ≤ 𝑚). The num-

ber of tuples in the database matching multi-dimensional sequence 𝑃
is called the support of 𝑃 , denoted as support(𝑃 ). Given a minimum 
support threshold of min_support, a multi-dimensional sequence 𝑃 is 
2

called a multi-dimensional sequential pattern if and only if support(𝑃 ) ≥
min_support.

Definition 2. The multi-dimensional information 𝑀 = (𝑎1, ⋯ , 𝑎𝑚) in the 
multi-dimensional sequence pattern 𝑃 = (𝑠, 𝑎1, ⋯ , 𝑎𝑚) is called multi-

dimensional patterns or MD-patterns. If 𝑎1, ⋯ , 𝑎𝑚 consists (𝑛 ≤ 𝑚) of 
which number is 𝑛 instead of ∗, 𝑀 is called 𝑛-dimensional patterns. 
There are 𝑖-dimensional patterns 𝑀𝑖 = (𝑎1, ⋯ , 𝑎𝑚) and 𝑗-dimensional 
patterns 𝑀𝑗 = (𝑏1, ⋯ , 𝑏𝑚). If and only if 𝑎𝑘 = 𝑏𝑘 for all 𝑎𝑘 (1 ≤ 𝑘 ≤ 𝑚)
not ∗, 𝑀𝑖 is a sub-pattern of 𝑀𝑗 and 𝑀𝑗 is a super-pattern of 𝑀𝑖.

Multi-dimensional sequential pattern mining refers to the mining 
of one or more disordered information dimensions and an ordered in-

formation dimension. UniSeq algorithm [33], as a multi-dimensional 
sequential pattern mining, merges multi-dimensional information into 
the original sequence database to form a multi-dimensional sequence 
database. The multi-dimensional information can be embedded in the 
first or last element in the extended sequence. The PrefixSpan [34] 
which is based on the idea of pattern growth is a classic sequential 
pattern mining algorithm. It uses different prefixes to project the target 
dataset and performs sequence pattern mining on the obtained data sub-

set. Then, PrefixSpan is used to mine the multi-dimensional sequence 
database. Based on the PrefixSpan, UniSeq does not require the cost of 
data structure conversion, and mining process and has higher efficiency 
when the dimensionality is low.

2.2. Sequence pattern matching

Definition 3. Suppose a longest common subsequence 𝑍 = ⟨𝑧1, 𝑧2, ⋯ ,
𝑧𝑘⟩ of sequence 𝑋 = ⟨𝑥1, 𝑥2, ⋯ , 𝑥𝑚⟩ and 𝑌 = ⟨𝑦1, 𝑦2, ⋯ , 𝑦𝑛⟩: if 𝑥𝑚 = 𝑦𝑚, 
then 𝑧𝑘 = 𝑥𝑚 = 𝑦𝑚 and 𝑍𝐾−1 is the longest common subsequence of 𝑋𝑚−1
and 𝑌𝑛−1; if 𝑥𝑚 ≠ 𝑦𝑚 and 𝑧𝑘 ≠ 𝑥𝑚, then 𝑍 is the longest common subse-

quence of 𝑋𝑚−1 and 𝑌 ; if 𝑥𝑚 ≠ 𝑦𝑚 and 𝑧𝑘 ≠ 𝑦𝑚, then 𝑍 is the longest com-

mon subsequence of 𝑋 and 𝑌𝑛−1; among them 𝑋𝑚−1 = ⟨𝑥1, 𝑥2, ⋯ , 𝑥𝑚−1⟩, 
𝑌𝑛−1 = ⟨𝑦1, 𝑦2, ⋯ , 𝑦𝑛−1⟩, and 𝑍𝑘−1 = ⟨𝑧1, 𝑧2, ⋯ , 𝑧𝑘−1⟩.

The longest common subsequence algorithm (LCSS) [35] does not 
change the sequence order and obtains a new sequence by removing 
elements in the sequence. Exhaustive methods and dynamic program-

ming algorithms can be used for LCSS solution. Dynamic programming 
first finds the optimal solution of the sub-problem, then constructs the 
optimal solution of the original problem. Establish the two-dimensional 
array 𝐶[𝑖, 𝑗] as the longest common subsequence of record sequence 𝑋
and 𝑌 . When 𝑖 = 0 or 𝑗 = 0, the empty sequence is the longest common 
subsequence of 𝑋 and 𝑌 , so 𝐶[𝑖, 𝑗] = 0. In other cases, the recursive 
relationship can be established by the theorem as equation (1):

𝐶[𝑖, 𝑗] =
⎧⎪⎨⎪⎩

0 𝑖 = 0 or 𝑗 = 0
𝐶[𝑖− 1, 𝑗 − 1] + 1 𝑖, 𝑗 > 0 and 𝑥𝑖 = 𝑦𝑗

max
(
𝐶[𝑖, 𝑗 − 1], 𝐶[𝑖− 1, 𝑗]

)
𝑖, 𝑗 > 0 and 𝑥𝑖 ≠ 𝑦𝑗

(1)

By recursion from the bottom right corner of the matrix achieves the 
solution of all the longest common subsequences.

3. Multi-dimensional hypoglycemia early alarm

3.1. Data preprocessing

3.1.1. Missing data filling

Here we use the OhioT1DM Dataset [36] including the training set 
and test set data of 12 T1D patients. The information in the dataset is 
from a CSII-CGM therapy and a fitness tracker band. Because the data 
has outliers and missing etc., it needs to be preprocessed. The outliers in 
CGM use Gaussian process regression to detect and correct. The basal 
insulin dose has daily periodicity, so the data of the previous day is 
applied for filling. The first-order Taylor series extrapolation method 
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Table 1. Symbolic mapping rules for blood glucose.

Range of Blood 
Glucose

Symbolic 
Representation

Range of Blood 
Glucose

Symbolic 
Representation

(70,75] ‘a’ (120,130] ‘h’

(75,80] ‘b’ (130,140] ‘i’

(80,85] ‘c’ (140,150] ‘j’

(85,90] ‘d’ (150,200] ‘k’

(90.100] ‘e’ (200,300] ‘l’

(100,110] ‘f’ (300,400] ‘m’

(110,120] ‘g’ [40,70] ‘z’

and historical average are used for filling when the consecutive missing 
values are less than 12. The missing CGM in the training dataset is 
not filled to avoid introducing additional noise [37]. The training set is 
used to mine the hypoglycemia sequential pattern library and the test 
set verifies the performance of the hypoglycemia early alarm method.

3.1.2. Physiological information conversion

Insulin can be divided into basal and high-dose insulin for T1D pa-

tients. The physiological information conversion model is introduced 
for reflecting the insulin effect on blood glucose.

The insulin remaining active within the body can be represented 
using a two-compartment model that estimates the insulin on board 
(IOB)[38] as equation (2). The IOB is an estimation of the residual in-

sulin accumulated in the subcutaneous tissue.

𝑑𝐶1(𝑡)
𝑑𝑡

= 𝑢(𝑡) −𝐾DIA𝐶1(𝑡)

𝑑𝐶2(𝑡)
𝑑𝑡

=𝐾DIA
(
𝐶1(𝑡) −𝐶2(𝑡)

)

IOB(𝑡) = 𝐶1(𝑡) +𝐶2(𝑡)

(2)

where 𝑡 is the time instant, the compartments 𝐶1, and 𝐶2 insulin mass 
(mU) in the accessible and non-accessible subcutaneous compartments, 
and 𝑢(𝑡) (mU min−1) is the insulin dose. 𝐾DIA = 0.0195 (min−1) is a con-

stant related to the duration of insulin action (DIA), which characterizes 
the patient’s insulin activity dynamics.

Carbohydrates on board (COB) represents the remaining CHO 
amount of a meal that has not yet appeared in the blood glucose. It 
is an extension of the model which describes the appearance rate (𝑅𝑎) 
of glucose in the blood due to CHO intake[39] as equation (3).

𝑅𝑎(𝑡) =
𝐶in𝐶bio𝑡𝑒

(−𝑡∕𝑡max)

𝑡2max

COB(𝑡) = 𝐶in𝐶bio −

𝑡

∫
𝑡meal

𝑅𝑎(𝑡)𝑑𝑡
(3)

where 𝐶in is the amount of CHO ingested and 𝐶bio = 0.8 is the bioavail-

ability. 𝑡max = 60 denotes the maximum appearance rate time of glucose 
in the accessible glucose compartment and 𝑡meal is the time instant in 
which a meal is consumed.

3.1.3. Symbolization of multi-dimensional blood glucose data

Multi-dimensional hypoglycemia early alarm aims to discover fre-

quently sequence patterns from the blood glucose time series. The 
variable sequence in a continuous numerical form is not easy to de-

scribe and search. According to the characteristics of the blood glucose 
time series, the symbol space is divided into different variables based 
on the value. Finally, the data sequence is discretized into a sequence 
composed of several distinct symbols. The “coarse-grained” can capture 
large-scale features and reduce the impact of measurement noise. It is 
more conducive to mining the hidden sequence patterns for the blood 
glucose time series. The symbolic mapping rules for blood glucose are 
shown in Table 1. And the symbolic mapping of IOB and COB is similar 
to that of blood glucose.
3

Table 2. Multi-dimensional hypoglycemic sequence database.

RID (Hypoglycemia number) IOB COB Sequence

1 A M ihgfeaz

⋯ ⋯ ⋯ ⋯

𝑘 D Z ffeecba

Table 3. Multi-dimensional hypoglycemic sequence 
database SDBmd.

RID (Hypoglycemia number) Extended sequence

1 ⟨(𝐴,𝑀)(𝑖ℎ𝑔𝑓𝑒𝑎𝑧)⟩
⋯ ⋯

𝑘 ⟨(𝐷,𝑍)(𝑓𝑓𝑒𝑒𝑐𝑏𝑎)⟩

3.2. Definition of hypoglycemia early alarm problem

The UniSeq algorithm is applied to realize multi-dimensional hy-

poglycemia sequential pattern mining and the longest common subse-

quence is used to match the real-time multi-dimensional blood glucose. 
The related concepts of multi-dimensional hypoglycemia sequential pat-

tern and early alarm sequence are defined as shown in Fig. 1.

Definition 4. An alarm sequence. According to the alarm rule (the 
blood glucose ≤70 mg/dL [40]), the alarm sequence is determined as 
the sequence index 𝑆𝑖 ∼ (𝑆𝑖 +𝐿𝑤).

Definition 5. Early alarm sequence. Given the length 𝐿𝑒 of the fixed 
window, the early alarm sequence is the blood glucose before the alarm 
sequence. That is, the corresponding value in the sequence index (𝑆𝑖 −
𝐿𝑒) ∼ 𝑆𝑖 composes the early alarm sequence.

Definition 6. Non-alarm sequence. Non-alarm sequence refers to the 
blood glucose sequence between the alarm sequence and the next alarm 
sequence, defined as (𝑆𝑖−1 +𝐿𝑝) ∼ (𝑆𝑖 −𝐿𝑒).

Definition 7. Multi-dimensional hypoglycemia sequential pattern. The 
corresponding timestamp IOB and COB merge into the blood glucose 
sequence as the multi-dimensional hypoglycemia sequential pattern.

3.3. Hypoglycemia early alarm based on multi-dimensional sequence 
mining

The overall process of hypoglycemia early alarm based on multi-

dimensional sequential pattern mining is shown in Fig. 2. The main 
steps are listed as follows and the algorithm 1.

Step 1. In the original time series, the alarm event is screened out ac-

cording to the blood glucose threshold, and the dataset is divided into 
multi-dimensional early alarm/non-alarm sequence set. To ensure the 
early alarm/non-alarm sequences are in the same sequence length for 
sequence pattern mining, the non-alarm sequence needs to be processed 
into subsequences with the same length as the early alarm sequence.

Step 2. Symbolize the database and shown in Table 2. The hypo-

glycemia number RID is used to mark each sequence. IOB and COB 
are two dimensions. 𝑎, 𝑏, ⋯ , ℎ is the blood glucose value, 𝐴, 𝐵, ⋯ , 𝐻 is 
IOB, 𝑀, 𝑁, ⋯ , 𝑍 is COB, and sequence is used to record the historical 
value before hypoglycemia.

Step 3. The multi-dimensional information is embedded as the first el-

ement in the extended sequence in converting the multi-dimensional 
sequence database, as shown in Table 3. The number of non-alarm
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Fig. 1. Multi-dimensional hypoglycemia early alarm/non-alarm sequence (where 𝑎, 𝑑, 𝑔 are early alarm number 𝑖 − 1, 𝑖, 𝑖 + 1; 𝑏, 𝑒, ℎ are alarm number 𝑖 − 1, 𝑖, 𝑖 + 1; 
𝑐, 𝑓 are non-alarm number 𝑖, 𝑖 + 1)
sequence set is much larger than that of early alarm. So the support 
threshold setting will be different for the alarm and non-alarm se-

quence.

Step 4. Set the support threshold and sequence length for the algorithm, 
and use the Prefix Span algorithm to find out the frequent sequences of 
all values when scanning the database for the first time. Then, find 
the single frequent sequence in the projection library, and obtain the 
preliminary multi-dimensional hypoglycemia sequential pattern library 
through continuous regression mining.

Step 5. Use the longest common subsequence algorithm to delete fre-

quent subsequences that are lower than the minimum length threshold 
from the early alarm/non-alarm sequence in the multi-dimensional hy-

poglycemia sequential pattern library.

Step 6. The longest common subsequence algorithm is used to remove 
the common frequent sequence in the hypoglycemia early alarm se-

quential pattern library. The redundant patterns are eliminated to com-

plete the construction of multi-dimensional hypoglycemia early alarm 
sequential pattern library.

Step 7. Real-time blood glucose uses the same slide window size as the 
early alarm sequence, and symbolizes the real-time multi-dimensional 
blood glucose.

Step 8. The longest common subsequence algorithm matches the 
real-time multi-dimensional blood glucose sequence with the multi-

dimensional hypoglycemia early alarm sequential pattern library. If the 
matching is successful, a hypoglycemia early alarm signal is issued.
4

Algorithm 1. Early alarm of hypoglycemia sequence mode based on 
UniSeq algorithm.

Input: Early alarm sequence set S obtained by dynamic sliding window, 
minimum support is 𝛼
Output: low blood sugar warning label 0 (non-hypoglycemia) or 1 (hy-

poglycemia)

Find all prefixes of length and the corresponding projection database 
𝐻𝑦𝐷;

𝑖 = 1: Obtain the 𝑙-item frequent sequence whose support degree is less 
than the threshold value, and put it into the dataset FS;

For recursive mining for each prefix𝑖 in FS:

Find the suffix projection database 𝐻𝑦𝐷𝑖 corresponding to prefix𝑖
If 𝐻𝑦𝐷𝑖 is empty:

End the current cycle, return to continue the next cycle

For event𝑖 in 𝐻𝑦𝐷𝑖:

Calculate the number of support 𝑐𝑖 = count(event𝑖)
If 𝑐𝑖 < 𝛼:

End the current cycle, return to continue the next cycle

Combine items that meet the support number with the current prefix 
to update FS

𝑖 = 𝑖+ 1
End for

For 𝑗 in length (CGM):

Current blood glucose sequence s obtained by sliding window s per-

form physiological information conversion and symbolic conversion

Use the longest common subsequence 𝑠 to match with FS

Output alarm label 0, 1

𝑗 = 𝑗 + 1
End for
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Fig. 2. Flow chart of multi-dimensional hypoglycemia early alarm.
4. Experimental results and discussion

4.1. Evaluation indicators

In the paper, we use sensitivity, precision, F1 score, and early alarm 
time to evaluate the method’s performance. The true positive (TP) rep-

resents the number of cases predicted correctly to have a hypoglycemia 
alarm and the true negative (TN) indicates the number of cases pre-

dicted correctly to not have a hypoglycemia alarm. The false positive 
(FP) is the number of cases predicted falsely to have a hypoglycemia 
alarm and the false negative (FN)is the number of cases predicted in-

correctly to have a hypoglycemia alarm. The time of hypoglycemia is 
defined as 𝑇ℎ, and the time of the early alarm sequence endpoint is 
defined as 𝑇𝑒𝑛𝑑 . And the formulas are defined as equations (4)–(7):

Sensitivity = TP
TP + FN

∗ 100% (4)

Precision = TP
TP + FP

∗ 100% (5)

F1 score = 2 × Precision × Recall
Precision + Recall

(6)

Early Alarm Time = 𝑇ℎ − 𝑇end (7)
5

4.2. Results

4.2.1. Analysis of hypoglycemia early alarm method factors

The support threshold and sequence length are key indicators for the 
hypoglycemia early alarm based on sequence pattern. To assess the re-

lationship between support threshold, sequence length, and the method 
performance, we selected Subject 540, 552, and 567 for verification. 
Set the support threshold between 0.2–0.4, and the sequence length be-

tween 10–14. The influence on the hypoglycemia early alarm is shown 
in Fig. 3 and Table 4.

Fig. 3 clearly illustrated that a few sequence patterns are mined 
at the support 0.3, while the “explosion mode” occurs at the support 
0.1. The higher the support threshold is, the fewer frequent sequence 
patterns are mined, and some low-frequency sequence patterns are 
ignored. As shown in Table 4, the sequence length of Subject 540 in-

creased the early alarm, false alarm, and average early alarm time. 
Subjects 540, 552, and 567 had a better performance with sequence 
lengths 10, 12, and 12 respectively. The introduced blood glucose in-

formation could improve the early alarm and reduce the false alarm. 
Too much ineffective blood glucose information will dilute the effective 
early alarm information while leaving only high-frequency early alarm 
information will lead to many missed alarms. Thus, the support thresh-
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Fig. 3. Hypoglycemia early alarm with different support threshold (sequence length 10).

Table 4. Hypoglycemia early alarm with different sequence length (support 0.2).

Research Object Subject 540 Subject 552 Subject 567

Sequence Length Alarm False Time Alarm False Time Alarm False Time

10 13 5 21.54 6 2 24.17 6 6 20

12 12 3 18.75 7 4 35 8 6 21.86

14 11 2 6.82 6 2 17.5 6 4 15.83

In the table, alarm represents early alarm; false is a false alarm; time means early alarm time.

Table 5. Comparison of single and multi-dimension hypoglycemia early alarm.

Method Sensitivity Precision F1 score Early alarm time

Single-Dimension 70% 70% 70% 20.81

Multi-Dimension (IOB) 71.84% 74% 72.91% 19.54

Multi-Dimension (IOB, COB) 75.76% 75% 75.38% 25.17
old and sequence length need to be set according to the size and specific 
conditions of the subjects.

Meanwhile, we expanded the CGM database to verify the influence 
on the hypoglycemia early alarm. Keep the same sequence length and 
support threshold for the subjects, as shown in Figs. 4 (a) and (b).

As illustrated in Fig. 4 (a) that the overall fluctuations of Subjects 
540, 552, and 563 are relatively smaller than other subjects. It can 
be seen from Fig. 4 (b) that Subject 591 fluctuated relatively small 
compared with other samples. The hypoglycemia early alarm has been 
greatly improved for Subject 584 and there is no change in other indica-

tors. For Subject 540, 552, and 563, the expanded library has improved 
the false alarm. The CGM database expansion can improve the method’s 
performance. Some subjects have worse performance due to the differ-

ences between subjects.

4.2.2. Multi-dimensional sequential pattern mining of hypoglycemia early 
alarm

Compare single and multi-dimensional sequential pattern mining 
with the OhioT1DM Dataset. Based on the analysis of the support 
threshold and sequence length, set the support threshold as 0.2, 0.15, 
and the sequence length as 12. The multi-dimensional hypoglycemia 
early alarm for Subject 540 is shown in Fig. 5, and the average result is 
shown in Table 5.

Fig. 5 clearly illustrated that the multi-dimensional hypoglycemia 
early alarm for Subject 540 can provide early alarm of steadily and 
6

rapidly hypoglycemia events. Due to the frequent blood glucose fluctu-

ations, there is a missing alarm between 1500–2000 steps. But it can 
early alarm potential serious hypoglycemia events in time, which is 
beneficial to take remedial measures. As shown in Table 5, the sen-

sitivity and specificity of the multi-dimensional early alarm with IOB 
improved compared with the single. Although the early alarm time de-

clined, it is still possible to give an appropriate early alarm. Secondly, 
the multi-dimensional early alarm with IOB and COB is better than the 
single-dimensional in all evaluation indicators, especially in the early 
alarm.

5. Discussion

Compared to the multi-dimensional early alarm with IOB, the ac-

curacy of the early alarm improved slightly, but the early alarm time 
improved greatly. The multi-dimensional sequential pattern mining can 
dig out some potential knowledge information, and improve the method 
ability in hypoglycemia early alarm. The performance has been im-

proved by merging food and insulin information. However, there are 
certain differences in the effect shown for different patients. Using only 
the training set data of the research object itself can better extract the 
patient’s multi-dimensional characteristics and avoid interference be-

tween different research objects. Due to the large difference between 
the training set and the test set, the lack of abundant early alarm se-

quence patterns is one reason for the high rate of the missing alarm.



N. Ma, X. Yu, T. Yang et al. Heliyon 8 (2022) e11372

Fig. 4. Hypoglycemia early alarm with database expansion (a: support 0.2, length 10; b: support 0.2, length 12).
6. Conclusions

In this paper, a multi-dimensional hypoglycemia sequential pat-

tern mining method is proposed for hypoglycemia early alarm. Com-

pared with the single-dimensional sequential pattern mining, the multi-

dimensional method can better mine the potential information of glu-

cose dynamics, and achieve improved detection performance of hypo-

glycemia events. The experiment results show that the proposed multi-
7

dimensional sequential pattern mining can predict future hypoglycemia 
events with relatively high accuracy in a short time, and could provide 
comprehensive diagnosis support for decision marking. Our future work 
will concentrate to develop a personalized model for hypoglycemia de-

tection to reduce the negative effect of specificity. And conduct a cluster 
analysis of related research objects for achieving better data expansion 
to improve the indicators.
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Fig. 5. Multi-dimensional hypoglycemia early alarm with IOB and COB for subject 540.
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