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Abstract: Molecular epidemiology of hepatitis C virus (HCV) is exceptionally complex due to the
highly diverse HCV genome. Genetic diversity, transmission dynamics, and epidemic history of
the most common HCV genotypes were inferred by population sequencing of the HCV NS3, NS5A,
and NS5B region followed by phylogenetic and phylodynamic analysis. The results of this research
suggest high overall prevalence of baseline NS3 resistance associate substitutions (RAS) (33.0%),
moderate prevalence of NS5A RAS (13.7%), and low prevalence of nucleoside inhibitor NS5B RAS
(8.3%). Prevalence of RAS significantly differed according to HCV genotype, with the highest
prevalence of baseline resistance to NS3 inhibitors and NS5A inhibitors observed in HCV subtype 1a
(68.8%) and subtype 1b (21.3%), respectively. Phylogenetic tree reconstructions showed two distinct
clades within the subtype 1a, clade I (62.4%) and clade II (37.6%). NS3 RAS were preferentially
associated with clade I. Phylogenetic analysis demonstrated that 27 (9.0%) HCV sequences had a
presumed epidemiological link with another sequence and classified into 13 transmission pairs or
clusters which were predominantly comprised of subtype 3a viruses and commonly detected among
intravenous drug users (IDU). Phylodynamic analyses highlighted an exponential increase in subtype
1a and 3a effective population size in the late 20th century, which is a period associated with an
explosive increase in the number of IDU in Croatia.

Keywords: hepatitis C virus; resistance associated substitutions; direct acting antivirals; epidemiology;
phylogenetics; phylodynamics; genotypes; subtypes; intravenous drug users

1. Introduction

Molecular epidemiology of hepatitis C virus (HCV) infection is exceptionally com-
plex due to the highly diverse viral genome, which is classified into >90 genotypes and
subtypes [1]. HCV subtypes such as 1a, 1b, and 3a are considered to be epidemic and
are widely distributed worldwide. They are characterized by lower variability and are
considered to have spread across the world in the 20th century through unsafe medical
procedures, transfusion, blood products, and intravenous drug use [2–6]. On the other
hand, endemic subtypes are restricted to certain geographic areas such as the Middle East,
South and East Asia, and West and Central Africa, have higher genetic variability, and are
considered to be much older [5–8]. Furthermore, the existence of a quasispecies, which
is described as distributions of genetically non-identical but related genomes subjected
to a continuous process of competition and selection in a given host, is another factor
contributing to the extensive HCV genetic diversity [9,10].

Croatia is a South-Eastern European country with a relatively low prevalence of HCV
infection. It is estimated that 35,000–45,000 persons, or 0.9% of the Croatian population, are
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infected with chronic hepatitis C [11]. HCV genotype distribution in Croatia varies accord-
ing to different population groups and regions. Genotype 1 (GT1) is the most prevalent
among the general population (57–80%), followed by genotype 3 (GT3) (13–48%), while the
prevalence of genotype 2 (GT2) (1–2%) and 4 (GT4) (4–7%) is low [11,12]. HCV transmission
via blood transfusion and unsafe medical procedures was significantly reduced after the
introduction of blood donation screening for HCV in the 1990s [11,13]. In Croatia, blood
transfusion and haemodialysis before 1992 were strongly associated with an infection with
HCV GT1, especially subtype 1b (GT1b) [11,14]. Today, intravenous drug use represents
the major route of HCV transmission in developed countries, with a prevalence of 2–80%
among intravenous drug users (IDU) [15–17]. Estimated population size of IDU in Croatia
is around 15,000, and the most common HCV subtypes in this population are subtype 3a
(GT3a) (61%) and subtype 1a (GT1a) (24%) [11,18].

The discovery of the new direct acting antivirals (DAA) has revolutionized the treat-
ment of HCV patients and their efficacy has prompted the World Health Organization
(WHO) to launch a strategy which calls for the elimination of viral hepatitis as a public
health threat by 2030 [19]. Major changes have been implemented in HCV treatment strate-
gies in Croatia in the last several years. Treatment eligibility was expanded to include
patients aged 18–84 years, regardless of fibrosis stage, and the annual treated number of
patients tripled from 2015 to 2018 [20]. However, some quasispecies variants bear polymor-
phisms in drug-targeted genes, which may negatively impact antiviral treatment and confer
resistance to direct acting antivirals in 5–10% of the patients [21–23]. The use of direct
acting antivirals with high barrier to resistance and a combination of several DAA classes
can be beneficial in ensuring a successful achievement of sustained virological response
(SVR). A combination of highly efficient pangenotypic DAA has reduced the need for
baseline resistance testing [23–26]. However, current guidelines suggest testing for NS5A
resistance associated substitutions (RAS) in the treatment of naïve patients with HCV GT3
and liver cirrhosis before treatment with sofosbuvir/velpatasvir since Y93H mutation was
shown to reduce SVR to 84–88% in these patients [26,27]. Furthermore, testing for NS5A
RAS is advised before treatment with grazoprevir/elbasvir in patients infected with HCV
GT1a [26,28]. Literature data on baseline DAA resistance prevalence varies across different
studies, partly due to inconsistent classification of observed substitutions as RAS. Our
group previously conducted a preliminary analysis of baseline resistance to NS3 protease
inhibitors and NS5A inhibitors in patients infected with GT1a and GT1, respectively. High
prevalence of NS3 RAS (46.3%), especially Q80K RAS (42.6%), was found in GT1a-infected
patients, while clinically relevant NS5A RAS were shown to be more common in GT1b
(24.2%) compared with GT1a (7.8%) [29,30]. However, epidemic history and resistance
prevalence to all DAA classes for the most common HCV genotypes and subtypes circulat-
ing in Croatia remain unknown. The aim of this study was to conduct a comprehensive
analysis of the molecular, virological, clinical, and epidemiological characteristics of the
HCV epidemic in Croatia in a four-year period.

2. Results
2.1. Study Population

Demographic, epidemiological, clinical, and laboratory data from 300 included pa-
tients are summarized in Table 1. The majority of patients were male (187/300, 62.3%) and
had median HCV viral load 6.0 log10 IU/mL (5.5–6.3 log10 IU/mL). There were 109 GT1a-
infected patients (36.3%) with median age 44.0 (40.0–50.5) years, 80 GT1b-infected patients
(26.7%) with median age 61.0 (52.0–65.8) years, and 111 GT3a-infected patients (37.0%) with
median age 43.0 (39.0–49.0) years. Fibroscan results were available for 293/300 included
patients, with F0/F1 fibrosis stage being the most common (103/293, 35.2%). A similar
number of patients had F2 (72/293, 24.6%) and F4 fibrosis (74/293, 25.3%), while 44 had
F3 fibrosis (15%). Overall, reported HCV infection routes were intravenous drug use in
95 (31.7%) patients, iatrogenic in 48 (16.0%) patients, perinatal or sexual in 11 (3.7%) patients,
while presumptive mode of HCV transmission was unknown for 146 (48.7%) patients. The
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most commonly reported HCV infection route was iatrogenic for patents infected with
HCV subtype 1b (25/80, 31.3%) and intravenous drug use for patients infected with HCV
subtype 1a (48/109, 44.0%) or 3a (46/111, 41.4%) (Table 1).

Table 1. Demographic, epidemiological, clinical, and laboratory characteristics of the study population.

Overall Subtype 1a Subtype 1b Subtype 3a

Patients N = 300 N = 109 N = 80 N = 111

Gender, n (%)
M 187 (62.3) 73 (67.0) 36 (45.0) 78 (70.3)
F 113 (37.7) 36 (33.0) 44 (55.0) 33 (29.7)

Age (years), n (%)
18–35 32 (10.7) 11 (10.1) 5 (6.3) 16 (14.4)
36–47 140 (46.7) 66 (60.6) 11 (13.8) 63 (56.8)
48–59 72 (24.0) 27 (24.8) 21 (26.3) 24 (21.6)
>60 56 (18.7) 5 (4.6) 43 (53.8) 8 (7.2)

Age (years),
median (Q1–Q3)

45 44 61 43

(40.0–57.0) (40.0–50.5) (52.0–65.8) (39.0–49.0)

Fibrosis stage *, n (%)
F0/F1 103 (35.2) 48 (44.9) 22 (27.8) 33 (30.8)
F2 72 (24.6) 27 (25.2) 21 (26.6) 24 (22.4)
F3 44 (15.0) 15 (14.0) 12 (15.2) 17 (15.9)
F4 74 (25.3) 17 (15.9) 24 (30.4) 33 (30.8)

Reported HCV
infection route, n (%)
IDU 95 (31.7) 48 (44.0) 1 (1.3) 46 (41.4)
Iatrogenic 48 (16.0) 14 (12.8) 25 (31.3) 9 (8.1)
perinatal/sexual 11 (3.7) 2 (1.8) 1 (1.3) 8 (7.2)
Unknown 146 (48.7) 45 (41.3) 53 (66.3) 48 (43.2)

Viral load, median
(Q1–Q3), log IU/mL 6.0 (5.5–6.3) 6.0 (5.5–6.5) 5.9 (5.5–6.3) 6.0 (5.5–6.3)

Q1: first quartile; Q3: third quartile; IDU: intravenous drug use; *: available for 107 subtype 1a, 79 subtype 1b and
107 subtype 3a patients.

2.2. Resistance Analysis

The overall prevalence of baseline RAS in at least one DAA target was 45.7% (137/300).
RAS were detected in 80 GT1a-infected patients (80/109, 73.4%), 48 GT1b-infected patients
(48/80, 60.0%), and 9 GT3a-infected patients (9/111, 8.1%). Prevalence of resistance-
conferring RAS in at least one DAA target was 27.7% (83/300). Single or multiple RAS from
resistant class were detected in 60 GT1a-infected patients (60/109, 55.0%), 19 GT1b-infected
patients (19/80, 23.8%), and 4 GT3a-infected patients (4/111, 3.6%). Differences in patient
characteristics by NS3, NS5A, and NS5B RAS are summarized in Table 2. Comparison of
selected demographic, epidemiological, clinical, and laboratory data showed no statistically
significant association between prevalence of NS3, NS5A, or NS5B RAS and patients’
gender, age, fibrosis stage, or HCV viral load.
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Table 2. Comparison of demographic, clinical, and laboratory characteristics of patients with and without NS3, NS5A, or NS5B RAS.

Presence of
NS3 RAS

Absence of
NS3 RAS p-Value Presence of

NS5A RAS
Absence of
NS5A RAS p-Value Presence of

NS5B RAS
Absence of
NS5B RAS p-Value Total, N (%)

Patients, n (%) 98 (32.7) 202 (67.3) 41 (13.7) 259 (86.3) 25 (8.3) 275 (91.7) 300 (100)

Gender, n (%) a

M 61 (32.6) 126 (67.4)
0.982

27 (14.4) 160 (85.6)
0.617

13 (7.0) 174 (93.1)
0.265

187 (62.3)
F 37 (32.7) 76 (67.3) 14 (12.4) 99 (87.6) 12 (10.6) 101 (89.4) 113 (37.7)

Age, median years (Q1–Q3) c 44 (40–54) 46 (40–58) 0.168 46 (42.5–60.5) 45 (40–57) 0.271 57 (39–63) 45 (40–56) 0.111 45 (40–57)

HCV subtype, n (%) b

1a 75 (68.8) 34 (31.2)
<0.001

17 (15.6) 92 (84.4)
0.007

0 (0.0) 109 (100.0)
<0.001

109 (36.3)
1b 21 (26.3) 59 (73.8) 17 (21.3) 63 (78.8) 25 (31.3) 55 (68.8) 80 (26.7)
3a 2 (1.8) 109 (98.2) 7 (6.3) 104 (93.7) 0 (0.0) 111 (100.0) 111 (37.0)

Fibrosis stage, n * (%) a

F0/1–F2 61 (34.9) 114 (65.1)
0.278

23 (13.1) 152 (86.7)
0.609

14 (8.0) 161 (92.0)
0.920

175 (59.7)
F3–F4 34 (28.8) 84 (71.2) 18 (15.3) 100 (84.8) 11 (9.3) 107 (90.7) 118 (40.3)

Viral load, median (Q1–Q3),
log IU/mL 6.0 (5.5–6.4) 6.0 (5.4–6.3) 0.303 6.0 (5.5–6.4) 6.0 (5.4–6.3) 0.849 5.9 (5.7–6.4) 6.0 (5.5–6.3) 0.682 6.0 (5.5–6.3)

Subtype 1a clade, n ** (%) b

1 54 (79.4) 14 (20.6)
0.003

12 (17.6) 56 (82.4)
0.589

0 (0.0) 68 (100.0)
1

68 (62.4)
2 21 (51.2) 20 (48.8) 5 (12.2) 36 (87.8) 0 (0.0) 41 (100.0) 41 (37.6)

Part of TC, n (%) a

yes 6 (22.2) 21 (77.8)
0.225

4 (14.8) 23 (85.2)
0.225

2 (7.4) 25 (92.6)
0.855

27 (9.0)
no 92 (33.7) 181 (66.3) 37 (13.6) 236 (86.4) 23 (8.4) 250 (91.6) 273 (81.0)

Q1: first quartile; Q3, third quartile; IDU: intravenous drug use; RAS: resistance-associated substitution; TC: transmission cluster or pair; a: the association between the selected variables
was analysed by Pearson’s chi squared test; b: the association between the selected variables was analysed by the Fisher’s exact test; c: the association between the selected variables was
analysed by the Mann–Whitney test; *: available for total number of patients N = 293; **: available for total number of subtype 1a patients N = 109.
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2.2.1. Prevalence of NS3 Specific RAS

At least one baseline NS3 RAS was detected in 32.7% (98/300) patients with the
prevalence of clinically relevant substitutions of 20.7% (62/300). Prevalence of NS3 RAS
significantly differed according to HCV genotype, with NS3 RAS being the most common
in GT1a (75/109, 68.8%), followed by GT1b (21/80, 26.3%), and lastly, GT3a (2/111, 1.8%)
(p < 0.001). Similarly, resistance-conferring RAS were dominant in GT1a-infected patients
(57/109, 52.3%) but rarely present in patients infected with HCV GT1b (4/80, 5.0%) and
GT3a (1/111, 0.9%) (Figure 1a). The most commonly detected NS3 RAS in GT1a was Q80K
with a baseline prevalence of 46.8% (51/109). Other clinically relevant NS3 RAS in GT1a
were T54S (4/109, 3.7%) and V55A (8/109, 7.3%). Among RAS which confer reduced
susceptibility to at least one NS3 inhibitor, N174S was relatively common (43/109, 39.5%).
In patients infected with GT1b, only a few resistance-conferring RAS were detected: T54S
(2/80, 2.5%), V55A (1/80, 1.3%), and N174F (1/80, 1.3%). Much more common was Y56F
RAS (18/80, 22.5%) which causes reduced susceptibility to grazoprevir. In GT3a, only
Q168R (1/111, 0.9%) and Q168K (1/111, 0.9%) were detected (Table 3).
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Table 3. Detected baseline RAS to NS3 inhibitors.

Codon Position NS3 RAS
RAS † Prevalence according to HCV Subtype

1a (N = 109) (%) 1b (N = 80) (%) 3a (N = 111) (%)

54 T54S 4 (3.7) 2 (2.5) /
55 V55A 8 (7.3) 1 (1.3) /
56 Y56F / 18 (22.5) /
80 Q80K 51 (46.8) / /

117 R117H 2 (1.8) 4 (5.0) /

168
D/Q * 168E 1 (0.9) / /
D/Q * 168K / / 1 (0.9)
D/Q * 168R / / 1 (0.9)

174
N/S/T * 174F / 1 (1.3) /
N/S/T * 174S 43 (39.5) / /

Patients with at least one NS3 RAS
any RAS 75 (68.8) 21(26.3) 2 (1.8)

resistance-conferring RAS 57 (52.3) 4 (5.0) 1 (0.9)

RAS: resistance associated substitutions; †: resistance conferring RAS are shown in bold; *: D168 and N174 are
wild type amino acids in GT1a; D168 and S174 are wild type amino acids in GT1b; Q168 and T174 are wild type
amino acids in GT3a.

2.2.2. Prevalence of NS5A Specific RAS

At least one baseline NS5A RAS was detected in 13.7% (41/300) patients with the
prevalence of clinically relevant substitutions of 8.0% (24/300). Prevalence of NS5A RAS
also differed significantly according to genotype, with RAS being more common in GT1a
(17/109, 15.6%) and GT1b (17/80, 21.3%) compared to GT3a (7/111, 6.3%) (p = 0.007).
However, resistance conferring NS5A RAS were more prevalent in GT1b (16/80, 20.0%)
compared to Gt1a (5/109, 4.6%). Overall, NS5A RAS were rarely detected in GT3a-infected
patients, especially clinically relevant substitutions (3/111, 2.7%) (Figure 1b). The most
commonly detected NS5A RAS in GT1a was M28V with a baseline prevalence of 10.1%
(11/109). Clinically relevant NS5A RAS were Q30R (3/109, 2.8%), M28T (1/109, 0.9%), and
L31M (1/109, 0.9%). Y93H was the primary mutation detected in GT1b-infected patients
(9/80, 11.3%), with other resistance-conferring RAS being R30Q (5/80, 6.3%) and L31M
(4/80, 5.0%). In GT3a-infected patients, RAS A62L (4/111, 3.6%), Y93H (2/111, 1.8%), and
A30K (1/111, 0.9%) were detected (Table 4).

Table 4. Detected baseline RAS to NS5A inhibitors.

Codon Position NS5A RAS
RAS † Prevalence according to HCV Subtype

1a (N = 109) (%) 1b (N = 80) (%) 3a (N = 111) (%)

24 K/Q/S * 24R 1 (0.9) / /

28
M/L * 28V 11 (10.1) / /
M/L * 28T 1 (0.9) / /

30
Q/R/A * 30R 3 (2.8) / /
Q/R/A * 30Q / 5 (6.3) /
Q/R/A * 30K / / 1 (0.9)

31
L31M 1 (0.9) 4 (5.0) /
L31I / 3 (3.8) /

62 E/Q/A * 62L / / 4 (3.6)
93 Y93H / 9 (11.3) 2 (1.8)

Patients with at least one NS5A RAS
any RAS 17 (15.6) 17 (21.3) 7 (6.3)

resistance-conferring RAS 5 (4.6) 16 (20.0) 3 (2.7)

RAS: resistance associated substitutions; †: resistance conferring RAS are shown in bold; *: K24, M28, Q30 and
E62 are wild type amino acids in GT1a; Q24, L28, R30 and Q62 are wild type amino acids in GT1b; S24, M28, A30,
and A62 are wild type amino acids in GT3a.
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2.2.3. Prevalence of RAS Specific for NS5B Nucleoside Inhibitors (NI)

Within NS5B, the prevalence of NI NS5B RAS was observed in 8.3% (25/300) of
patients. All RAS were detected exclusively in GT1b-infected patients (25/80, 31.3%,
p < 0.001), with the single observed variant being L159F which causes a reduced suscepti-
bility to sofosbuvir. No NI NS5B RAS were observed in GT1a- and GT3a-infected patients.

2.2.4. Prevalence of Multiple RAS

The overall prevalence of multiple RAS in different nonstructural regions was 8.3%
(25/300). In 23 patients (23/300, 7.6%), dual class RAS were observed, while 2 patients
(2/300, 0.7%) exhibited triple class RAS. A combination of multiple RAS in the NS3 and
NS5A region was the most common (15/300, 5.0%), while NS3 + NI NS5B RAS (5/300,
1.7%) and NS5A + NI NS5B RAS (3/300, 1.0%) were rarely detected.

2.3. Phylogenetic Analysis

Maximum likelihood phylogenetic tree of the first dataset confirmed that all 300 Croat-
ian sequences were correctly subtyped (Figure 2). The results of NS3 phylogenetic analyses
for HCV GT1a, GT1b, and GT3a are shown as cladograms in Figure 3 and Supplemen-
tary Material Figure S1. Two distinct clades of GT1a were observed: clade I with 62.4%
(68/109) of Croatian GT1a sequences and clade II with 37.6% (41/109) of Croatian GT1a
sequences. NS3 RAS were more prevalent in clade I (54/68, 79.4%) compared to clade II
(21/41, 51.2%) (p = 0.003) (Table 2). Similarly, higher prevalence of resistance conferring
NS3 RAS was found among clade I-infected patents compared to clade II-infected patients
(51/68, 75.0% vs. 6/41, 14.6%, p < 0.001). The majority of clade I-infected patients (50/68,
73.5%) and only a single clade II-infected patient (1/41, 2.4%) had Q80K RAS. Subclades
could not be observed for GT1b and GT3a. Croatian sequences were dispersed within
background sequences from various countries regardless of RAS presence. The results of
NS5A (Supplementary Material Figure S2) and NS5B (Supplementary Material Figure S3)
phylogenetic analyses for all 300 patients’ sequences were concordant with phylogenetic
analysis of the NS3 genomic region for GT1a, GT1b, and GT3a, which suggests the absence
of recombination events between these regions. No statistically significant associations
between GT1a clades and NS5A or NS5B RAS were observed (Table 2). Four transmission
clusters with 8 patients (8/109, 7.3%) were consistently identified across all genomic re-
gions for GT1a, one transmission cluster with 2 patients (2/80, 2.5%) for GT1b, and eight
transmission clusters with 17 patients (17/111, 15.3%) for GT3a.

Transmission Cluster Characteristics

Transmission clusters were observed independently of RAS in the NS3, NS5A, or
NS5B region (Table 2). However, they were notably more common among younger patients
(median age = 37.0 years) compared to unclustered patients who had higher median
age (46.0 years) (p < 0.001). Prevalence of transmission clusters significantly differed
according to HCV genotype, with sequences obtained from GT3a-infected patients more
commonly forming clusters and pairs (17/111, 15.3%) (p = 0.008). GT1a-infected patients
with presumed epidemiologically linked infection were all part of clade I (8/68, 11.8%)
(p = 0.024). Transmission clusters were more common among patients who reported IDU
as a presumptive mode of transmission of HCV infection (14/95, 14.7%) compared to other
HCV infection routes (13/192, 6.3%) (p = 0.018). No statistically significant association
between clustering and patients’ gender, fibrosis stage, and HCV viral load was observed
(Table 5).
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Figure 2. Maximum likelihood phylogenetic analysis of the HCV NS5B gene sequences constructed
by applying GTR+G+I model with 1000 bootstrap replicates. Scale bar represents 0.1 nucleotide
substitutions per site. Bootstrap values between 70 and 100% are displayed at the branch nodes
as blue triangles with circle size corresponding to magnitude of bootstrap. Branches of reference
sequences are colored black, while branches of Croatian sequences are colored red. Genotypes and
subtypes are indicated by different color strips.
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Transmission clusters were observed independently of RAS in the NS3, NS5A, or 

NS5B region (Table 2). However, they were notably more common among younger pa-
tients (median age = 37.0 years) compared to unclustered patients who had higher median 
age (46.0 years) (p < 0.001). Prevalence of transmission clusters significantly differed ac-
cording to HCV genotype, with sequences obtained from GT3a-infected patients more 
commonly forming clusters and pairs (17/111, 15.3%) (p = 0.008). GT1a-infected patients 
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Figure 3. Maximum likelihood phylogenetic analysis of the NS3 gene sequences of HCV 1a subtype
constructed with GTR+G+I model and 1000 bootstrap replicates. Bootstrap values between 70 and
100% are displayed at the branch nodes as blue triangles with size corresponding to magnitude
of bootstrap. Branches of two most similar control sequences per each local sequence obtained by
searching the BLAST database and removing duplicates are colored black. Branches of Croatian
sequences without RAS are colored green, sequences with RAS conferring resistance to DAA are
colored red, and sequences with RAS associated with reduced susceptibility to DAA are colored
orange. Reference sequences are colored gray. Clade I sequences are highlighted blue, while clade
II sequences are highlighted pink. All identified RAS are positioned on the phylogenetic tree along
with the corresponding sequences. Resistance conferring RAS are marked with filled symbols, while
RAS causing reduced susceptibility to at least one DAA are marked with open symbols. Identified
transmission pairs are highlighted gray, while transmission pairs identified consistently across all
genomic regions for GT1a are highlighted yellow.
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Table 5. Comparison of demographic, clinical, and laboratory characteristics of patients in and out of
transmission clusters.

Patients in TC Patients out of TC p-Value Total, N (%)

Patients 27 (9.0) 273 (91.0) 300 (100)

Gender, n (%) a

M 18 (9.6) 169 (90.4)
0.626

187 (62.3)
F 9 (8.0) 104 (92.0) 113 (37.7)

Age, median years (Q1–Q3) c 37 (33–41) 46 (41–57.5) <0.001 45 (40–57)

HCV subtype, n (%) b

1a 8 (7.3) 101 (92.7)
0.008

109 (36.3)
1b 2 (2.5) 78 (97.5) 80 (26.7)
3a 17 (15.3) 94 (84.7) 111 (37.0)

Fibrosis stage, n * (%) a

F0/1–F2 20 (11.4) 155 (88.6)
0.111

175 (59.7)
F3–F4 7 (5.9) 111 (94.1) 118 (40.3)

Viral load, median (Q1–Q3), log IU/mL 6.0 (4.9–6.6) 6.0 (5.5–6.3) 0.944 6.0 (5.5–6.3)

Subtype 1a clade, n ** (%) b

1 8 (11.8) 60 (88.2)
0.024

68 (62.4)
2 0 (0.0) 41 (100) 41 (37.6)

Risk factor a

IDU 14 (14.7) 81 (85.3)
0.018

95 (31.7)
other/unknown 13 (6.3) 192 (93.7) 205 (68.3)

Q1: first quartile; Q3: third quartile; IDU: intravenous drug use; RAS: resistance-associated substitution; TC:
transmission cluster or pair; a: the association between the selected variables was analysed by Pearson’s chi
squared test; b: the association between the selected variables was analysed by the Fisher’s exact test; c: the
association between the selected variables was analysed by the Mann-Whitney test; *: available for total number
of patients N = 293; **: available for total number of subtype 1a patients N = 109.

2.4. Phylodynamic Analysis

Concatenated NS3, NS5A, and NS5B sequences (total length 2637 bp) were used to
estimate GT1a, GT1b, and GT3a population dynamics. The substitution rate and time
to most recent common ancestor (tMRCA) was inferred for every subtype group using
different demographic and molecular clock models along with approximate marginal
likelihoods (Table 6).

Bayes factor (BF) analysis favoured the relaxed lognormal molecular clock and the
Bayesian skyline demographic model for all subtypes which were thus used for subsequent
analysis (Supplementary Materials Tables S1–S3). The mean estimated substitution rates
of the GT1a, GT1b, and GT3a sequences were 1.48 × 10−3 (95% HPD, 0.52–2.40 × 10−3),
3.78 × 10−3 (95% HPD, 1.30–6.59 × 10−3), and 2.04 × 10−3 (95% HPD, 0.47–3.67 × 10−3),
respectively. The mean estimates for the tMRCA of the analysed sequences were 1960 (95%
HPD, 1911–1994) for subtype 1a, 1994 (95% HPD, 1973–2009) for subtype 1b, and 1978 (95%
HPS, 1933–2004) for subtype 3a (Table 6). The Bayesian skyline plots (BSP) of the analysed
dataset are shown in Figure 4. The skyline profile of the GT1a dataset shows a steady
nonexpanding phase until the 1990s followed by an exponential increase in HCV infections
from the 1990s to mid-2000s. Similarly, GT3a BSP shows expansion of the population size
since tMRCA in the late 1970s and its stabilisation in the last decade. GT1b BSP shows a
relatively constant population size from tMRCA in the early 1990s to the present time with
a slight increase in the first decade of the 21st century.
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Table 6. Estimated time of the most recent common ancestor (tMRCA) and substitution rate (substitu-
tions/site/year) with 95% lower and upper values from the highest posterior density (95% HPD) under
various molecular clock and population growth models for HCV subtype 1a, 1b, and 3a sequences.

GT1a

Molecular Clock Model
Population Growth Model

Constant Exponential Skyline

strict
tMRCA (year) * 1963 (1943–1981) 1961 (1939–1980) 1941 (1893–1975)

substitution rate (10−3) (s/s/y) * 1.42 (0.96–1.93) 1.31 (0.84–1.76) 1.02 (0.50–1.52)
marginal likelihood estimate (log) −33778.19 −33691.43 −33669.42

relaxed with lognormal rate distribution
tMRCA (year) * 1980 (1959–1995) 1982 (1963–1988) 1960 (1911–1994)

substitution rate (10−3) (s/s/y) * 2.38 (1.35–3.45) 1.99 (1.12–3.00) 1.48 (0.52–2.40)
marginal likelihood estimate (log) −33666.33 −33581.52 −33570.04

relaxed with exponential rate distribution
tMRCA (year) * *** 1996 (1984–2006) 1966 (1892–2004)

substitution rate (10−3) (s/s/y) * *** 3.61 (1.84–5.69) 2.46 (0.46–4.53)
marginal likelihood estimate (log) *** −33629.85 −33617.95

GT1b

Molecular Clock Model
Population Growth Model

Constant Exponential Skyline

strict
tMRCA (year) * 1994 (1985–2002) 1990 (1980–1999) 1984 (1965–1999)

substitution rate (10−3) (s/s/y) * 4.00 (2.71–5.38) 3.42 (2.27–4.63) 2.86 (1.59–4.32)
marginal likelihood estimate (log) −32729.35 −32649.40 −32628.27

relaxed with lognormal rate distribution
tMRCA (year) * 2004 (1997–2009) 1998 (1986–2007) 1994 (1973–2009)

substitution rate (10−3) (s/s/y) * 6.95 (4.18–9.71) 4.52 (2.30–6.80) 3.78 (1.30–6.59)
marginal likelihood estimate (log) −32680.06 −32595.23 −32572.04

relaxed with exponential rate distribution
tMRCA (year) * *** 2002 (1991–2010) 2003 (1983–2013)

substitution rate (10−3) (s/s/y) * *** 7.06 (2.87–11.80) 8.24 (1.29–15.60)
marginal likelihood estimate (log) *** −32639.60 −32631.35

GT3a

Molecular Clock Model
Population Growth Model

Constant Exponential Skyline

strict
tMRCA (year) * 1964 (1940–1985) 1961 (1934–1981) 1929 (1853–1978)

substitution rate (10−3) (s/s/y) * 1.92 (1.15–2.70) 1.68 (1.02–2.38) 1.22 (0.48–2.02)
marginal likelihood estimate (log) −38484.10 −38378.81 −38362.98

relaxed with lognormal rate distribution
tMRCA (year) * 1993 (1978–2004) 1990 (1975–2002) 1978 (1933–2004)

substitution rate (10−3) (s/s/y) * 3.85 (2.21–5.53) 2.86 (1.60–4.24) 2.04 (0.47–3.67)
marginal likelihood estimate (log) −38404.69 −38298.16 −38269.86

relaxed with exponential rate distribution
tMRCA (year) * *** 1999 (1987–2008) ***

substitution rate (10−3) (s/s/y) * *** 4.87 (2.18–7.77) ***
marginal likelihood estimate (log) *** −38342.03 ***

*: numbers in brackets indicate 95% lower and upper values from the highest posterior density (95% HPD);
***: model did not converge.
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3. Discussion

In this study, we combined molecular, virological, clinical, and epidemiological data
from 300 HCV patients receiving clinical care at the University Hospital for Infectious
Diseases Zagreb (UHID) and the Reference Centre for Viral Hepatitis in Croatia from
2016 to 2019, in order to characterize Croatian HCV epidemic. Previous studies of HCV
epidemiology in Croatia were mainly focused only on the prevalence and distribution
of various HCV genotypes and subtypes, while this study broadens this knowledge by
including transmission and phylodynamic analyses. The most common HCV genotypes in
the Croatian general population were found to be GT1 and GT3, with no major changes
in molecular epidemiology in the last 20 years [12,31]. In this study, we observed higher
median age of GT1b-infected patients (61 years) compared with GT1a (43 years) and GT3a
(44 years), which is similar to data from a previous national study and could be attributed
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to predominantly iatrogenic mode of HCV transmission in GT1b which was significantly
reduced in the last 30 years [11,31]. However, median ages of all patients included in this
study were overall at least 10 years higher which suggests aging of the patient population
and could be attributed to long persistence of HCV infection and the relatively recent
availability of the effective direct antiviral therapy. The results of previous European and
national studies are concordant with our finding that GT1a and GT3a were more frequently
associated with IDU [3,11,17,32].

We conducted the first comprehensive analysis of baseline RAS across HCV genome
of the most common genotypes circulating in Croatia. The prevalence of RAS varied greatly
according to HCV genotypes. The highest prevalence of RAS was observed in the NS3
region (33.0%), especially among GT1a-infected patients (68.8%), with the most commonly
detected RAS being Q80K (46.8%) and N174S (39.5%). Preliminary study conducted
by Grgic et al. (2017) in the NS3 region of 136 GT1a-infected patients showed similar
prevalence of Q80K and N174S RAS [29]. The prevalence of NS3 RAS was shown to be
much lower in GT1b (5.0%) and GT3a (0.9%), especially when the analysis was limited to
clinically relevant RAS. Literature data from other studies in Southern and Eastern Europe
is limited. One Italian study showed RAS prevalence of 20.4% in the NS3 region, with
the majority of NS3 RAS observed in GT1a (45.2%) and GT1b (10.8%). Similarly, to our
study, most frequently observed RAS was Q80K in GT1a (17.0%) [33]. Q80K RAS was
common in other European studies. Jimenez-Sousa et al. found prevalence of Q80K in
the range from 7.3% to 22.2% in 2568 patients with chronic hepatitis C in 115 hospitals in
Spain [34]. Beloukas et al. (2015) studied the occurrence of Q80K in 238 treatment-naïve
HCV-1a carriers in England and found 14.9–27.1% prevalence of Q80K RAS [35]. It should
be noted that Q80K mutation is considered clinically relevant in respect to simeprevir,
which is first generation protease inhibitor. Today, most of the DAA combinations include
third generation protease inhibitors such as grazoprevir, glecaprevir, and voxilaprevir,
which show higher genetic resistance barrier and better pangenotypic activity [26,36,37].
However, Q80K RAS is still relevant in the context of new protease inhibitors since it
causes reduced susceptibility to voxilaprevir [22,38]. In our study, Y56F RAS, which causes
reduced susceptibility to grazoprevir, was common in GT1b (22.5%), followed by T54S
(2.5%), V55A (1.3%), and N174F (1.3%). In Italy, several studies found very low prevalence
of Y56F in GT1b (0–0.2%), while the most common RAS was T54S (1.9–4%) [33,39].

Results of this research showed higher prevalence of baseline NS5A RAS in GT1
(18.0%) compared with GT3a (6.3%). Furthermore, even though the overall prevalence
of RAS was similar among different subtypes of GT1, a large difference was observed
in the prevalence of clinically relevant RAS with 20.0% of GT1b-infected patients and
4.6% of GT1a-infected patients having resistance conferring mutations. Such discrepancy
was first observed in our preliminary study where Y93H was the only RAS detected in
GT1b-infected patients (24.2%) [30]. Current analysis revealed other RAS in GT1b-infected
patients with the prevalence >5% (R30Q, L31M), while the prevalence of Y93H was lower
(11.3%), even though it still represents the most common NS5A RAS. In this study, Y93H
RAS was not detected in GT1a, while its prevalence in GT3a-infected patients was very low
(1.8%). NS5A represents the most important genomic region for resistance testing since it
contains the largest number of possible mutation sites, while many of the most commonly
prescribed DAA combinations include NS5A inhibitor [38,40]. There is no recent data
on the prevalence of resistance to NS5A inhibitors in south eastern Europe. An Italian
observational study which included 1032 treatment naive patients from 23 clinical centres
found NS5A RAS prevalence of 6.8% in GT1a, 10.3% in GT1b, and 8.5% in GT3a when the
analysis was limited to clinically relevant RAS [33]. Other Italian studies found similar
prevalence of NS5A RAS in GT3a (11.5%), GT1a (4.9%), and GT1b (23.0%) [41,42], while
national studies across Europe found NS5A RAS prevalence of 2–18.9% in GT1a, 13.0–43.3%
in GT1b, and 3–23.5% in GT3a [40,43–46]. It should be noted that such high variation in
RAS prevalence among a single genotype could at least partly be attributed to the lack of
standardisation in definition of RAS.
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For the first time, this study analysed the prevalence of resistance associated substi-
tutions to nucleoside NS5B inhibitors in Croatia. High genetic barrier to resistance and
pangenetic activity of NS5B inhibitors are possible due to the highly conserved NS5B
active site [23]. The only NI NS5B RAS found in the current study was L159F in GT1b
(31.3%). Literature data on the prevalence of NS5B resistance in national studies are scarce.
Several studies in southern Europe found similar prevalence of NI NS5B RAS in GT1b
(14.8–21.1%) [33,40]. No NI NS5B RAS were observed in GT1a or GT3a patients [33,41].

Since every DAA class induces specific mutation profile characteristic for various HCV
genotypes and subtypes, the use of combination therapy with agents targeting various viral
proteins has been successful in obtaining high rates of SVR [23–26]. Only a few studies
analysed the presence of RAS to all three DAA classes for every patient, mainly due to
the lack of sequences spanning across all relevant genome regions. Our data show that
multiclass resistance is relatively uncommon in Croatia (8.3%), with the most frequently
observed RAS in both the NS3 and NS5A region (5.0%). The prevalence of combination
RAS involving the NS5B region was low (<2%), especially NS3 + NS5A + NS5B RAS
(0.7%). Global analysis of DAA RAS using published GenBank data similarly found low
prevalence of multiple RAS in different regions of the same sequence (1.2–3.5%), with
the exception of NS3 + NS5A RAS (15.6%) [47]. In a study conducted as a part of the
AVIATOR, a phase 2 clinical trial, none of the patients had baseline RAS in all three
targets [48]. Among European national studies, authors of a Portuguese study found 4.9%
prevalence of NS5A + NS5B RAS, while an Italian study found 7.3% prevalence of multiclass
RAS, with RAS simultaneously observed in the NS3 + NS5A region (2.7%), NS3 + NS5B
region (1.9%) and NS5A + NS5B region (1.6%) [40]. The effect of the presence of multiple
resistance substitutions is not extensively studied, however, it should be considered when
administering DAA combinations which involve NS3 and NS5A inhibitors [33].

High molecular diversity of HCV genome due to continuous process of genetic varia-
tion enables the detection of evolutionary and epidemiological patterns in a relatively short
time span [9,32,49–51]. Phylogenetic analyses of NS5A, NS5B, and NS3 sequences showed
consistent separation of GT1a sequences into two distinct clades: clade I (62.4%) and clade II
(37.6%). Proportion of clade I sequences seems to be slightly higher compared to previous
preliminary national studies based on single gene phylogenies [29,30]. The prevalence of
NS3 RAS was shown to be associated with clade, with NS3 RAS observed more often in
clade I (79.4%) compared with clade II (51.2%) (p = 0.003). This phenomenon was even more
pronounced when taking into consideration only clinically relevant RAS (75.0% clade I
vs. 14.6% clade II, p < 0.001), especially Q80K mutation (73.5% clade I vs. 2.4% clade II,
p < 0.001). This divergence of GT1a sequences in two distinct clades and preferential associ-
ation of Q80K RAS in NS3 with clade I is in accordance with previous studies [34,48,52–54].
Picket et al. showed the existence of many clade-informative sites within the NS3, NS5A,
and NS5B non-structural coding regions using full-genome sequencing data [52]. Krishnan
et al. found that the majority GT1a sequences with Q80K RAS classified into clade I (98%),
with overall prevalence of Q80K in clade I of 66.4% [48]. Overall prevalence of Q80K was
46.8% in the United States and 13.5% in the European Union [48]. Jimenes Souisa et al. also
confirmed a higher prevalence of Q80K RAS in patients infected with clade I GT1a (41.5%)
compared to clade II (1.6%) (p <0.001) [34]. De Luca et al. (2015) observed a significant
difference in clade prevalence according to geographic origin, with higher prevalence of
clade I among non-European sequences, represented mostly by sequences from the United
States, compared with European sequences (75.7% vs. 49.3%; p < 0.001) Q80K RAS was
detected exclusively in clade I sequences with prevalence of 51.6% [54]. Several studies
suggest the origin of the Q80K polymorphism in the United States in clade I in the middle
of the 20th century [53,54]. Our study shows high prevalence of clade I and Q80K RAS,
which is comparable with data from the United States, suggesting efficient transfer of this
polymorphism from the United States to Europe.

Sequence analysis of fast evolving viruses such as HCV was shown to be efficient
method for viral transmission tracing [16,17,49,51]. Phylogenetic analysis demonstrated
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that 27 (9.0%) of Croatian HCV sequences had a presumed epidemiological link with
another sequence and classified into 13 transmission pairs or clusters which were the
most common in GT3a, while IDU was shown to be a risk factor statistically associated
with clustering. Several studies performed phylogenetic cluster analysis among IDU to
infer epidemiologic links and factors associated with clustering. Hackman et al. (2020)
found that 46% of 820 community recruited IDU in Baltimore had genetically linked HCV
infections with an average cluster size of 2–3 patients [49]. Clipman et al. (2021) analysed
483 HCV sequences from IDU in India and found transmission cluster prevalence of
28.8% with a median cluster size of three individuals [16]. Cluster analysis showed that
younger age (<35 years) was significantly associated with being in a cluster, similarly to
our study [16,50]. A study by Parczewski et al. (2018) showed that sequences obtained
from patients with F3-F4 liver fibrosis less commonly formed clusters and pairs (22.2% vs.
43.7%, p < 0.001) and that NS5A RAS were less frequent among clustered sequences (5.2%
vs. 11.2%, p = 0.039) [55]. However, in our research, fibrosis stage and presence of RAS
showed no association with clustering. Palladino et al. (2020) showed similar prevalence
of transmission clusters (10.5%) in the HCV GT1a population in Spain based on the NS5A
region. However, male-dominated transmission pairs and predomination of clade II viruses
were shown to be specific for the Spanish HCV-GT1a population [51]. In our research, the
transmission pairs and clusters comprised exclusively of clade I viruses in GT1a, while the
patients’ gender showed no association with clustering.

Phylodynamic analysis was performed on concatenated NS3, NS5A, and NS5B se-
quences of every patient in order to increase the confidence of inferred evolutionary rela-
tionships. Several studies have tried to reconstruct the origin and evolutionary history of
the most common epidemic HCV subtypes such as GT1a, GT1b, and GT3a [4,32,50,56–59].
A study by Margiokinis et al. (2009) supports a massive expansion of the GT1a and GT1b
epidemics between 1940 and 1980, with the expansion of HCV GT1b preceding that of GT1a
by 15–17 years. Authors concluded that the global epidemic of both subtypes coincides with
the vast increase of unsafe medical procedures during and after World War II, while GT1a
expansion was at least in part driven by the increase of IDU after 1960 [4]. Cuypers et al.
(2017) found that the first introduction of GT1a in Italy was timed around 1958 (95% HPD,
1949–1964), probably on multiple occasions from the US and Western Europe [56]. Our
study shows that last common ancestor of Gt1a sequences dates around 1960 (95% HPD,
1911–1994), a period of the post-World War II and Cold War–era migrations. Hoshino et al.
(2018) found the increase of GT1a population in Okinawa, Japan in two periods—from
1965 to 1980, which could be attributed to the US occupation after World War II and in the
beginning of the 21st century which could be associated with an increase in the illicit drug
use [59]. The Bayesian skyline analysis of Croatian GT1a sequences revealed an exponential
increase of HCV GT1a infections in the 1990s and its continued growth throughout the
first decade of the 2000s, which is in accordance with a huge increase in the number of
IDU registered in this period in Croatia [60]. Unlike many other studies [4,32,50], the
most recent common ancestor of Croatian GT1b sequences dates to the 1990s (95% HPD,
1975–2011), which is a period of introduction of HCV antibody screening of all donor blood
and subsequent reduction in iatrogenic transmission of HCV characteristic for GT1b. The
Bayesian skyline analysis suggests that GT1b population in Croatia was relatively constant
in the last 30 years. However, the results have to be taken with caution due to the broad
estimation errors (95% HPD limits). Furthermore, the tMRCA for GT1b sequences seems
to be too recent to fit epidemiological data. Further research is needed in order to infer
epidemiologic history of GT1b in Croatia.

Phylodynamic and phylogeographic analyses of GT3a epidemic history suggest that the
most probable origin of this subtype is the Golden Crescent and Indian subcontinent [32,57].
Recent Montenegrin studies showed that GT3a was most likely exported from this area,
which has a long history of opium production, to Europe in the first half of the 20th
century by illicit drug trade, and reached Montenegro in the 1960s or 1970s, followed
by exponential increase of effective population size [32,58]. The results of our research
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show that the last common ancestor of GT3a sequences in Croatia dates to 1978 (95% HPD,
1933–2004), causing an epidemic which exponentially grew until the last decade, suggesting
similar temporal pattern. However, continuously high upper limit of 95% HPD prevents
any definitive conclusions. The observed epidemic growth coincides with the huge increase
in the number of new registered addicts in the early 1990s in Croatia [60]. The rise in illegal
drug use in Croatia, including heroin, is considered to have begun in the 1960s, but became
a pronounced social problem during the 1980s [60]. The first harm reduction programs
were implemented in the early 2000s, and their efficiency could be partly observed in HCV
GT1a and GT3a dynamics, with the effective population size of both subtypes being in a
nonexpanding phase in the last decade.

There are some important limitations to this study. All samples were obtained from
patients in the chronic phase of HCV infection; therefore, it is possible that the obtained
sequences do not necessarily reflect true composition of viral quasispecies at the time of
HCV transmission due to high variability of HCV genome. However, due to the lack
of symptoms, HCV infection is rarely diagnosed in the acute phase and such samples
are not readily available. Our research was conducted on sequences from three key non-
structural regions of the HCV genome in order to cover DAA resistance associated sites,
while the most accurate phylogenetic relationships would have been obtained by whole
genome sequencing. We used Sanger sequencing which is a standard methodology used
in molecular epidemiology studies. It allows detection of variants present in >15% of
virus quasispecies which is sufficient for resistance analysis, while deep sequencing could
possibly be beneficial for more confident tracing of viral transmission events and HCV
genotype diversity, including mixed infections. Due to the lack of the patient follow-up, the
effect of specific RAS on achievement of sustained viral response could not be evaluated.
Furthermore, the concept of HCV compartmentalization suggests that viruses sampled
from the blood at a given time point do not fully represent HCV infection dynamics [15].
However, the use of additional sites such as liver biopsies is ethically not acceptable since
the successful implementation of non-invasive methods for assessing liver fibrosis. Our
study covered the time span of four years which is a relatively short period. The accuracy
of coalescent analysis could be improved by increasing the time frame of sampling. The
presumptive mode of HCV transmission was unknown for 48.7% patients which limited the
analysis of risk factors associated with HCV transmission. However, we remain confident
that the results of this study provide useful and novel insights for tracing HCV genetic
diversity, transmission dynamics, and epidemic history in Croatia.

4. Materials and Methods
4.1. Study Population

This cross-sectional retrospective study included 300 consecutive patients with chronic
hepatitis C receiving clinical care at the UHID which is a Reference Centre for Viral Hep-
atitis in Croatia, in the period from January 2016 to December 2019. The inclusion criteria
were as follows: age ≥ 18 years, viral load >1000 IU, HCV GT1a, GT1b, or GT3a. All
patients qualified for HCV treatment, and none were previously treated with DAA. Se-
lected demographic, epidemiological, clinical, and laboratory data (gender, age, reported
HCV infection route, fibrosis stage, viral load, HCV subtype) were collected for every
patient, when available. Fibrosis stage was previously assessed by noninvasive transient
elastography (FibroScan; Echosens, Paris, France), while viral load and HCV genotype
were determined by the Abbott RealTime HCV assay (Abbott, Abbott Park, IL, USA) and
VERSANT HCV Genotype 2.0 Assay LiPA (Siemens Healthineers AG, Erlangen, Germany),
respectively.

4.2. Amplification and Sequencing of HCV NS3, NS5A and NS5B Region

Viral RNA was extracted by QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany)
from 140 µL of serum, according to the manufacturer’s instructions. Amplification of the
whole NS3 protease region (codons 1–181, 543 bp, nucleotides 3420–3962 of the reference
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strain H77, GenBank accession number: AF009606), domain I of NS5A region (codons 1–213,
639 bp, nucleotides 6258–6896 of the reference strain H77, GenBank accession number:
AF009606), and partial NS5B region (codons 38–522, 1455 bp, nucleotides 7713–9167 of
the reference strain H77, GenBank accession number: AF009606) was performed for each
patient in two successive PCR reactions. In the first PCR reaction, viral RNA was reverse-
transcribed, and cDNA was amplified using the SuperscriptTM III One-Step RT-PCR System
with Platinum® Taq High Fidelity Polymerase Kit (Invitrogen, Waltham, MA, USA) with
outer primers specific for each HCV subtype and genome region (Supplementary Material
Table S1). Briefly, reaction was performed in 25 µL reaction tube with 12.5 µL 2× Reaction
Mix, 0.5 µL forward primer (50 µM), 0.5 µL reverse primer (50 µM), 0.5 µL enzyme mix
SuperScript™ III Reverse Transcriptase and Platinum® Taq High Fidelity DNA Polymerase,
6.5 µL water, and 5 µL extracted HCV RNA. Reaction mixtures were incubated for 30 min
at 50 ◦C followed by initial denaturation for 2 min at 94 ◦C and 45 cycles at 94 ◦C for
20 s, 55 ◦C for 30 s, and 68 ◦C for 90 s, with final extension at 68 ◦C for 5 min. In order to
improve the sensitivity and reduce the amount of nonspecific PCR products, the second
PCR reaction was performed using the FastStart High Fidelity PCR System Kit (Roche,
Basel, Switzerland) with inner primers specific for each HCV subtype and genome region
(Supplementary Material Table S2). Reaction was performed in 25 µL reaction tube with
2.5 µL 10× High Fidelity Reaction Buffer, 0.5 µL dNTP mix, 0.2 µL forward primer (50 µM),
0.2 µL reverse primer (50 µM), 0.5 µL enzyme mix FastStart High Fidelity (5 U/µL),
20.35 µL water, and 1 µL first-round PCR products used as templates. Reaction mixtures
were incubated for 2 min at 95 ◦C followed by 45 cycles at 95 ◦C for 30 s, 60 ◦C for 30 s,
and 72 ◦C for 60 s, with final extension at 72 ◦C for 7 min. Sanger sequencing of the
amplified regions was performed using the BigDye® Terminator v3.1 Cycle Sequencing
Kit (Applied Biosystems, Waltham, MA, USA) and the previously used inner primers
(Supplementary Material Table S2). Sequencing reaction was performed according to
manufacturer’s protocol following the program: initial denaturation at 96 ◦C for 1 min
followed by 25 cycles at 96 ◦C for 10 s, 50 ◦C for 5 s, and 60 ◦C for 4 min. The sequencing
products were purified and analysed on the ABI Prism 3130xl Genetic Analyzer (Applied
Biosystems, Waltham, MA, USA).

4.3. HCV Resistance Analysis

Nucleotide sequences of the sense and antisense strand were aligned and edited
in Vector NTI v.11.5 software (Thermo Fisher Scientific, Waltham, MA, USA), while the
occurrence of RAS was determined using geno2pheno [hcv] algorithm according to the
reference sequences for every HCV subtype [38]. Briefly, all detected substitutions were
categorized in three resistance classes: resistant (well-characterized, clinically relevant
resistance-associated substitutions), reduced susceptibility (substitutions associated to resis-
tance without sufficient evidence for clinical outcome), and uncharacterized substitutions
(considered susceptible to DAA therapy). Resistance to DAA was defined as the presence
of a single or multiple RAS from resistant class or reduced susceptibility class, while suscep-
tibility to DAA was defined as an absence of substitutions or presence of uncharacterized
substitutions. RAS for currently approved NS3 inhibitors (boceprevir, glecaprevir, gra-
zoprevir, paritaprevir, simeprevir, telaprevir, voxilaprevir), NS5A inhibitors (daclatasvir,
elbasvir, ledipasvir, ombitasvir, pibrentasvir, velpatasvir), and nucleoside NS5B inhibitor
sofosbuvir were considered relevant.

4.4. HCV Datasets

For phylogenetic analyses, three dataset groups were built.
The first dataset group contained all the available representative reference sequences

from each HCV genotype and subtype retrieved from the International Committee on
Taxonomy of Viruses [61] and 300 Croatian HCV NS5B sequences from this study. This
dataset was used for evaluation of previous HCV subtyping by commercial assays. The
HCV reference sequences used in this study are shown in Supplementary Material Table S3.
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In the second dataset group, the Croatian sequence data for every genotype (1a, 1b,
3a) and region (NS3, NS5A, NS5B) was supplemented with background control sequences
from GenBank obtained by BLAST search on the basis of the following inclusion criteria:
(1) there was at least 90% query sequence coverage, (2) country of origin and sampling
date were known and clearly established, (3) sequences were unambiguously subtyped,
and (4) sequences were non-recombinant and non-clonal. Ten sequences with highest
similarity score were selected for every Croatian sequence; duplicate sequences were
omitted from downstream analysis. Representative reference sequences were added for
subtype 1a, 1b, and 3a, respectively [61]. In addition, four subtype 1b reference sequences
were included to root subtype 1a phylogenetic trees, five subtype 1a reference sequences to
root subtype 1b phylogenetic trees, and two subtype 3b reference sequences to root subtype
3a phylogenetic trees (Supplementary Material Table S3). This dataset group was used for
studying subtype-specific clades, transmission networks, and phylogenetic relationships in
the context of RAS.

Third dataset group included only Croatian HCV NS3, NS5A, and NS5B sequences of
each subtype which were concatenated in order to increase the precision and confidence
in the inferred evolutionary relationship estimates. This dataset group was used for
phylodynamic analyses.

4.5. Phylogenetic Analysis

Multiple sequence alignment for all datasets was performed in ClustalX v.2.1 [62] and
edited in AliView v.1.27 [63]. Maximum likelihood trees for the first and second dataset
groups were constructed in Mega v.10.2.6. [64] under 1000 bootstrap replicates with the
best-fitting nucleotide substitution model for each dataset selected according to Bayesian
Information Criterion (BIC). Transmission pairs were identified in the maximum likelihood
trees using ClusterPicker v.1.2.3. [65] with a genetic distance and bootstrap support threshold
of 4.5% and 70%, respectively. Phylogenetic trees were graphically edited and annotated in
iTol v. 6.4.2. [66].

4.6. Phylodynamic Analysis

Phylodynamic analysis was performed using the BEAST v.2.6.6 and Markov chain
Monte Carlo (MCMC) analysis on the third dataset group [67]. Best nucleotide substitution
model was selected according to Bayesian Information Criterion in jModelTest v.2.4.1 [68],
while best fitting models of population growth and molecular clock were selected based on
path sampling analysis implemented in BEAST. Three demographic models of population
growth (constant population size, exponential population size, Bayesian skyline) and
three models of molecular clock (strict, relaxed with an uncorrelated log normal rate
distribution, relaxed with an uncorrelated exponential rate distribution) were compared
as coalescent priors. Briefly, marginal likelihood estimations obtained by path sampling
analysis were used for Bayes factor (BF) calculations. In accordance with Kass and Raftey
(1995), only log(BF) values >2 were considered significant [69]. Evaluation of temporal
signal in the dataset was performed using Tempest v.1.5.3 [70]. Due to the lack of sufficient
temporal signal in the dataset due to limited time frame of sampling, we used the previously
estimated external evolutionary rate of 1.0 × 10−3 substitutions/site/year obtained for most
of the non-structural genes [71]. The MCMC analysis was run until sufficient parameter
convergence was achieved, with 0.001 sampling rate. Convergence was assessed based
on the effective sample size (ESS) after a 10% burn in Tracer v.1.7.2 [72]; ESS values >200
for each parameter were accepted, as they indicate sufficient sampling and chain mixing.
Models that failed to converge during 200 million generations were excluded from further
analysis. For every subtype group in the third dataset, the estimates of the tMRCA and
substitution rate were inferred. Uncertainty in the estimates were indicated by 95% highest
posterior density (95% HPD) intervals.
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4.7. Statistical Analysis

Descriptive statistics was used to summarize the main features of the data. Qualitative
data was described using frequency tables, while numerical data was described using
median with first (Q1) and third (Q3) quartiles. The association between the selected
variables was analysed by the Mann–Whitney test for continuous data and Pearson’s chi
squared test or Fisher’s exact test for categorical data using Statistica v.13.5. Statistical
significance was defined as p < 0.05.

5. Conclusions

In summary, we found a high overall prevalence of baseline NS3 RAS (33.0%), mod-
erate prevalence of NS5A RAS (13.7%), and low prevalence of NI NS5B RAS (8.3%) in
300 patients with chronic HCV infection in Croatia. NS3 and NS5A RAS were more com-
mon in patients infected with HCV GT1a and GT1b compared with GT3a. Resistance
associated mutations in the NS5B region were detected exclusively in patients infected
with HCV GT1b. Phylogenetic tree reconstructions showed two distinct clades within the
subtype 1a, clade I (62.4%) and clade II (37.6%). NS3 RAS were preferentially associated
with clade I. Phylogenetic analysis demonstrated that 27 (9.0%) HCV sequences had a
presumed epidemiological link with another sequence and were classified into 13 transmis-
sion pairs or clusters which were predominantly comprised of GT3a viruses. Intravenous
drug use was shown to be a risk factor associated with clustering. Phylodynamic analysis
highlighted an exponential increase in GT1a and GT3a effective population size in the late
20th century, which is a period associated with explosive increase in the number of IDU
in Croatia. This study highlights the importance of combination regimens with a high
genetic barrier to resistance and different target sites as the new standard of care for HCV
treatment. A better understanding of transmission dynamics in the population of IDU is
critical for the increase in effectiveness of designed HCV elimination programs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11070808/s1, Table S1. Outer primers for NS3, NS5A
and NS5B amplification; Table S2. Inner primers for nested NS3, NS5A, and NS5B amplification
and sequencing; Table S3. Representative HCV reference sequences used for phylogenetic analyses;
Table S4. Log(BF) calculations of various combinations of three demographic models of population
growth and three models of molecular clock for subtype 1a, 1b, and 3a sequences; Figure S1. Maxi-
mum likelihood phylogenetic analysis of the NS3 gene sequences of (a) HCV 1b subtype constructed
with GTR+G+I model and (b) HCV 3a subtype constructed with K2+G+I model. Bootstrap values
between 70 and 100% are displayed at the branch nodes as blue triangles with size corresponding
to magnitude of bootstrap. Branches of two most similar control sequences per each local sequence
obtained by searching the BLAST database and removing duplicates are colored black. Branches
of Croatian sequences without RAS are colored green, sequences with RAS conferring resistance
to DAA are colored red, and sequences with RAS associated with reduced susceptibility to DAA
are colored orange. Reference sequences are colored gray. All identified RAS are positioned on the
phylogenetic tree along with the corresponding sequences. Resistance conferring RAS are marked
with filled symbols, while RAS causing reduced susceptibility to at least one DAA are marked with
open symbols. Identified transmission pairs are highlighted gray, while transmission pairs identified
consistently across all genomic regions are highlighted yellow; Figure S2. Maximum likelihood
phylogenetic analysis of the NS5A gene sequences of (a) HCV 1a subtype constructed with T92+G+I
model, (b) HCV 1b subtype constructed with T92+G+I model, and (c) HCV 3a subtype constructed
with K2+G+I model. Bootstrap values between 70 and 100% are displayed at the branch nodes as blue
triangles with size corresponding to magnitude of bootstrap. Branches of two most similar control
sequences per each local sequence obtained by searching the BLAST database and removing dupli-
cates are colored black. Branches of Croatian sequences without RAS are colored green, sequences
with RAS conferring resistance to DAA are colored red, and sequences with RAS associated with
reduced susceptibility to DAA are colored orange. Reference sequences are colored gray. Clade I
sequences are highlighted blue, while clade II sequences are highlighted pink. All identified RAS are
positioned on the phylogenetic tree along with the corresponding sequences. Resistance conferring
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RAS are marked with filled symbols, while RAS causing reduced susceptibility to at least one DAA
are marked with open symbols. Identified transmission pairs are highlighted gray, while transmission
pairs identified consistently across all genomic regions are highlighted yellow; Figure S3. Maximum
likelihood phylogenetic analysis of the NS5B gene sequences of (a) HCV 1a subtype constructed with
GTR+G+I model, (b) HCV 1b subtype constructed with K2+G+I model, and (c) HCV 3a subtype
constructed with K2+G+I model. Bootstrap values between 70 and 100% are displayed at the branch
nodes as blue triangles with size corresponding to magnitude of bootstrap. Branches of two most
similar control sequences per each local sequence obtained by searching the BLAST database and
removing duplicates are colored black. Branches of Croatian sequences without RAS are colored
green, sequences with RAS conferring resistance to DAA are colored red, and sequences with RAS
associated with reduced susceptibility to DAA are colored orange. Reference sequences are colored
gray. Clade I sequences are highlighted blue, while clade II sequences are highlighted pink. All
identified RAS are positioned on the phylogenetic tree along with the corresponding sequences.
Resistance conferring RAS are marked with filled symbols, while RAS causing reduced susceptibility
to at least one DAA are marked with open symbols. Identified transmission pairs are highlighted
gray, while transmission pairs identified consistently across all genomic regions are highlighted
yellow.
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