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Protozoan parasites have led to worldwide devastation because of their ability to cause
infectious diseases. They have evolved as successful pathogens in part because of their
remarkable and sophisticated ways to evade innate host defenses. This holds true for
both intracellular and extracellular parasites that deploy multiple strategies to circumvent
innate host defenses for their survival. The different strategies protozoan parasites use
include hijacking the host cellular signaling pathways and transcription factors. In
particular, the nuclear factor-kB (NF-kB) pathway seems to be an attractive target for
different pathogens owing to their central role in regulating prompt innate immune
responses in host defense. NF-kB is a ubiquitous transcription factor that plays an
indispensable role not only in regulating immediate immune responses against invading
pathogens but is also a critical regulator of cell proliferation and survival. The major
immunomodulatory components include parasite surface and secreted proteins/enzymes
and stimulation of host cells intracellular pathways and inflammatory caspases that
directly or indirectly interfere with the NF-kB pathway to thwart immune responses that
are directed for containment and/or elimination of the pathogen. To showcase how
protozoan parasites exploits the NF-kB signaling pathway, this review highlights recent
advances from Entamoeba histolytica and other protozoan parasites in contact with host
cells that induce outside-in and inside-out signaling to modulate NF-kB in disease
pathogenesis and survival in the host.
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INTRODUCTION

Protozoan parasites have been a major concern due to their ability to cause considerable mortality
and morbidity in both humans and animals worldwide (Dorny et al., 2009; Dixon et al., 2011;
Fletcher et al., 2012; Kelly, 2013). They are responsible for affecting more than 500 million people
across the globe (Monzote and Siddiq, 2011). Although parasitic infection and death are a major
cause of concern in developing countries, they are also responsible for causing significant illness in
developed countries (Fletcher et al., 2012). The burden of human protozoan parasitic infections has
been aggravated because of the lack of a licensed vaccine against any of the diseases these parasites
cause. Moreover, prophylaxis and treatment are dependent on drugs, which are rendered ineffective
in many cases due to the emergence of drug resistance warranting the search for replacements
(Andrews et al., 2014).
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Protozoan parasites are unicellular eukaryotic that either reside
extracellularly or intracellularly in host cells. They have evolved as
successful pathogens due to their remarkable ability to evade immune
responses allowing them to escape adaptive humoral and cellular
immunity (Sacks and Sher, 2002). For instance, Toxoplasma gondii
(Lima and Lodoen, 2019), Leishmania (Gupta et al., 2013) and
Trypanosoma cruzi (Cardoso et al., 2016) evade humoral antibody
response by adopting an intracellular lifestyle, while antigenic
variations, in the case of extracellular pathogens such as Giardia
(Prucca and Lujan, 2009), African trypanosomes (Horn, 2014), and
malarial parasites (Kyes et al., 2001) that express their antigens on the
surface of red blood cells, help them overcome immune destruction.

Although pathogens deploy different strategies for immune
subversion, modulation of the NF-kB pathway critical for
generating an immune response seems to be a crucial target (Tato
and Hunter, 2002). While the NF-kB pathway is critical for
mounting an immune response, pathogens have devised multiple
ways to thwart this pathway to their advantage including, bacteria
(Le Negrate, 2012), viruses (Santoro et al., 2003), and protozoan
parasites (Heussler et al., 2001). Pathogens or their components
have a remarkable ability for interfering with the NF-kB pathway at
multiple levels which includes, membrane-bound receptors to
downstream signaling molecules of the pathway. Host-pathogen
interaction can have multiple outcomes, but pathogens that
circumvent signaling pathways seem to establish a successful
niche for their replication and to cause disease. Both extracellular
protozoan parasites via outside-in-signaling and intracellular
protozoan parasites via inside-out-signaling have devised unique
ways to overcome innate defense barriers by modulating the NF-kB
pathway at multiple levels. To understand the complex interaction
whereby protozoan parasite interacts with the NF-kB pathway, this
review will focus on recent findings on modulation of NF-kB
signaling with the extracellular parasite Entamoeba histolytica
(Eh) and the intracellular parasite, T. gondii.
THE NF-kB PATHWAY

NF-kB activation is a rapid event that occurs within minutes
upon any trigger or stimulation that regulates a myriad of genes
in host cells and does not require protein synthesis which makes
this pathway an attractive target for invading pathogens (Santoro
et al., 2003). NF-kB regulates diverse cellular function (Figure 1)
which includes, promoting inflammation, an early response to
pathogen that plays an indispensable role in cell survival and
proliferation (Karin et al., 2002; Li and Verma, 2002). It
comprises of dimeric transcription factors belonging to the Rel
family. Five Rel proteins belonging to two different classes have
been identified in mammalian cells (Ghosh et al., 1998; Santoro
et al., 2003). c-Rel, RelA (p65) and RelB belong to one class, that
are synthesized as matured form, and contain an N-terminal Rel
homology domain (RHD) responsible for dimerization and
DNA binding, and C-terminus that possess transcription
modulating domains (Verma et al., 1995; Santoro et al., 2003;
Gilmore, 2006). Another class comprise of an N-terminal RHD
and a C-terminal ankyrin repeat domain-containing p105 and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
p100 precursor proteins that require ubiquitin-dependent
processing at the C-terminus. Thus, the mature DNA-binding
proteins of this class contain N-terminal RHD but lack C-
terminus transcription modulating activity (Santoro et al.,
2003; Gilmore, 2006). NF-kB, whose predominant form p50
and RelA subunits, remains inactive in the cytoplasm because of
its association with inhibitor proteins known as inhibitors of NF-
kB (IkBs), including IkBa, IkBb and IkBϵ (Verma et al., 1995;
Ghosh et al., 1998; Santoro et al., 2003). The mechanism of NF-
kB activation is tightly regulated. Different stimuli or trigger,
including bacterial, viral, and protozoan parasite infections may
culminate in phosphorylation of IkB proteins, leading to
ubiquitination and proteasomal degradation of phosphorylated
IkB proteins (Figure 1). The degradation of IkB sets free NF-kB
that translocates to the nucleus and binds to DNA to control the
transcription of different genes including, cytokines, chemokines,
antimicrobial peptides, anti-apoptotic proteins, and stress-
response proteins. The NF-kB pathway is activated by
signaling through multiple receptors on the cell membrane.
Amongst the different sensors, TLRs (Toll-like receptor) are
important pathogen recognition receptors (PRR) that bind
bacterial products and LPS (lipopolysaccharide) to initiate
downstream signaling cascade culminating into NF-kB
activation. Binding of bacterial products/LPS to TLRs initiates
downstream signaling leading to the recruitment of MyD88
(myeloid differentiation primary response gene 88), a death-
domain containing adaptor protein and Toll-interacting protein
Tollip (Silverman and Maniatis, 2001). The pro-inflammatory
cytokine TNF (tumor necrosis factor)-a signals via the NF-kB
pathway. Cognate binding of TNF-a to type 1 TNF-a receptor
(TNFR1) recruits the adaptor protein TNFR-associated death
domain (TRADD) that acts as a docking site for the receptor
interacting protein RIP and TNFR-associated factor TRAF2 that
initiates downstream signaling (Chen and Goeddel, 2002).
Further, downstream are MAP3K- related kinase which are
thought to link receptor-complexes and stimulate an IkB kinase
(IKK) complex. TRADD also binds to Fas-associated death
domain (FADD) that initiate a protease cascade culminating
into apoptosis (Baud and Karin, 2001). Activation of the NF-kB
pathway (Figure 1) by different stimuli involves distinct
scaffolding or signaling proteins, which, in addition to those
mentioned above, include mitogen-activated protein kinase/
extracellular signal-regulated kinase kinase 1(MEKK1), TNFR-
associated factors (TRAFs), protein kinase C (PKC), transforming
growth factor-b (TGF-b)-activated kinase (TAK1), NF-kB-
inducing kinase (NIK), interleukin (IL)-1-receptor-associated
kinases (IRAKs), double-stranded (ds) RNA-dependent protein
kinase (PKR) and several others (Silverman and Maniatis, 2001).
Most of the above-mentioned proteins execute its effect by acting
on another important downstream protein complex, the IkB
kinase (IKK) signalosome complex that plays an indispensable
role in NF-kB activation (Israël, 2000).

The IKK signalosome complex is a multi-subunit complex
comprising of three distinctive subunits IKK-a, IKK-b, and IKK-g
(Figure 1). IKK-a and IKK-b form the catalytic center of the
complex that exist either as a homo- or heterodimers, and with
September 2021 | Volume 11 | Article 748404
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IKK-g or NEMO (NF-kB essential modulator) forms the regulatory
subunit, that acts as a docking site for the other signaling protein or
IKK kinase (Rothwarf et al., 1998; Israël, 2000; Santoro et al., 2003).
Integrity of IKK-g is required for NF-kB activation. The mechanism
of NF-kB activation is well orchestrated by serine phosphorylation
of IKK-b subunit that is mediated by upstream kinases or through
trans autophosphorylation of IKK subunits. Aautophosphorylation
of IKK-b at the C-terminal serine cluster prevents prolonged NF-kB
activation, thus acting as a negative feedback regulation (Delhase
et al., 1999). The phosphorylation of IkB at N-terminal Ser 32 and
Ser 36 (Karin and Ben-Neriah, 2000), mediated by IKK, leads to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
proteasomal degradation of the inhibitory subunit by 26S
proteasome, resulting in NF-kB activation. beta-transducin
repeat- containing protein (b-TrCP) containing SCF (Skp1,
Cdc53/cullin, and F box protein) ubiquitin ligase mediates the
ubiquitination of phosphorylated IkB at Lys21 and Lys22 (Liang
et al., 2004). In general, bacterial and viral infections triggered NF-
kB activation is mediated by IKK-b. In contrast, a unique regulatory
mechanism of the NF-kB pathway via the non-canonical arm
predominantly targets activation of RelB/p52 subunit (Senftleben
et al., 2001). Unlike the canonical pathway that responds to signals
elicited by diverse receptors, the non-canonical pathway is targeted
FIGURE 1 | Schematic representation of the canonical and non-canonical NF-kB signaling pathway. The canonical pathway is activated by a plethora of trigger/
stimuli that includes different pathogens, stress signals, growth factors and inflammatory cytokine exposure which converges on the IKK complex. Activation of the
NF-kB is tightly regulated due to the sequestration of the complex by IkBa in the cytosol. Phosphorylation of IkBa via IKK is a signal for its degradation, which is
mediated by b-TrCP containing SCF-ubiquitin ligase complex. Freed dimers subsequently translocate to the nucleus where they bind to kB elements that controls
the transcriptions of a variety of genes, which includes genes responsible for cytokine, chemokines, cell survival and proliferation. The non-canonical NF-kB pathway
is dependent on the phosphorylation-induced p100 processing triggered by signaling from a subset of TNFR members. This pathway is reliant on NIK and IKKa, but
not on the trimeric IKK complex, and mediates the activation of RelB/p52 complex. The detailed pathway is described in text.
September 2021 | Volume 11 | Article 748404
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by a specific set of receptors (Sun and Harhaj, 2006). The best-
characterized non-canonical NF-kB receptors include a subset of
the TNFR superfamily members, including B-cell-activating factor
belonging to the TNF family receptor (BAFFR; Claudio et al., 2002),
lymphotoxin b-receptor (LTbR; (Dejardin et al., 2002), receptor
activator for NF-kB (RANK; (Novack et al., 2003) and CD40
(Coope et al., 2002). In resting cells, RelB associates with NF-kB2
p100 polypeptide in the cytoplasmwhose C-terminal ankyrin repeat
undergoes degradation upon stimulation, releasing RelB-p52 dimers
that translocate to the nucleus (Senftleben et al., 2001; Figure 1).
Activation of this process is mediated by the IKK-a subunit, unlike
the canonical NF-kB pathway which is primarily mediated by IKK-
b. NIK is a central signaling component of the non-canonical
pathway, which integrates signals from a subset of TNF receptor
family members and activates a downstream kinase, IKKa, for
triggering phosphorylation of p100 and its processing (Sun, 2011).
Following activation, NF-kB translocates to the nucleus where it
binds to DNA consensus sequence 5’-GGGACTTTCC-3’ (kB
elements; Figure 1). NF-kB transcriptional activity is greatly
enhanced by the phosphorylation of RelA by protein kinase A
(PKA) that facilitates its association with the transcriptional
coactivator CBP/p300 (Zhong et al., 1998). Importantly,
acetylation of NF-kB was described as an additional regulatory
mechanism for the activity of NF-kB (Chen et al., 2001).
NF-kB REGULATION DURING
ENTAMOEBA HISTOLYTICA INFECTION

E. histolytica (Eh) is an extracellular protozoan parasite and the
causative agent of the disease amebiasis. Eh infects ~10% of the
world population leading to 100,000 deaths/year (Stanley Jr,
2003). Though the disease is a concern worldwide, it is more
prevalent in developing countries due to poor sanitation and
nutrition (Mahmud et al., 2013). Although multiple factors
contribute to disease pathogenesis, it is primarily determined
by the efficacy and quality of the host immune response. For
undetermined reasons, ~10% of Eh infection sporadically
breaches innate mucosal barriers and invades the lamina
propria. Eh disease pathogenesis is the result of the dynamic
interaction of Eh with different components of the immune
system and the expression of Eh virulence factors (Faust and
Guillen, 2012; Verkerke et al., 2012; Marie and Petri Jr, 2014;
Ghosh et al., 2019; Rosales, 2021). When Eh breaches the innate
protective mucus barrier (Moncada et al., 2003; Mortimer and
Chadee, 2010; Begum et al., 2020a) it comes into direct contact
with mucosal epithelial cells and subepithelial macrophages and
dendritic cells. Here, NF-kB signaling from epithelial and
immune cells plays an indispensable role in shaping the pro-
inflammatory landscape during infection (Kammanadiminti and
Chadee, 2006; Kammanadiminti et al., 2007; Hou et al., 2010;
Begum et al., 2020b). Eh components or live Eh in direct contact
with epithelial cells or macrophages can modulate cellular
functions. For example, Caco-2 and T84 human colonic
epithelial cells cocultured with differentiated THP-1
macrophages for 24h, followed by stimulation with soluble
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
amebic proteins (SAP) augmented Hsp 27 and 72. In this
interaction, Hsp27 played an important role in inhibiting the
NF-kB pathway because of its association with the IKK complex
while Hsp72 inhibited apoptosis (Kammanadiminti and Chadee,
2006). This may in part, explain why colonic inflammation is not
robust in the majority of individuals with intestinal amebiasis. This
interaction is not unique to Eh as the inhibitory effects of heat
shock proteins (Hsp) on NF-kB activation was shown in T-cells
(Guzhova et al., 1997). Curiously, the IKK complex seem to be a
potential target for Hsp inhibition of the NF-kB pathway (Yoo
et al., 2000; Kohn et al., 2002). In another study (Kammanadiminti
et al., 2007), Eh secreted proteins and SAP induced the expression
of the NF-kB dependent cytokine, monocyte chemotactic protein
(MCP) from T84, LS174T and Caco-2 epithelial cells.
Mechanistically, SAP-induced the phosphorylation of NF-kB
p65 subunit and enhanced transcriptional activity that was
dependent on phosphatidylinositol 3-kinase (PI3 kinase)
(Figure 2 and Table 1). Inhibition of PI3 kinase abrogated the
activation of Akt, p65, and MCP-1 mRNA induction. What
remains unclear from these studies is whether PI3 kinase or Akt
directly phosphorylates the p65 subunit in response to
ameba components.

In vivo, the NF-kB p50 subunit played a protective role, as Eh
challenged C57BL/6 and 129/Sv mice with targeted deletion of the
p50 subunit were more susceptible to Eh (Cho et al., 2010). A
unique mechanism of epithelial cell death was also explored during
Eh infection (Kim et al., 2014). Curiously, calpain, a calcium-
dependent cysteine protease, induced protein degradation of pro-
survival transcription factors, including, NF-kB p65, STAT3 and
STAT5 that promoted cell death in response to Eh (Kim et al., 2014;
Table 1). Eh invasion of the colonic mucosa leads to a pro-
inflammatory cytokine burst and recruitment of different immune
cells, which includes neutrophils and macrophages to the site of
infection (Seydel et al., 1997; Mortimer and Chadee, 2010; Nakada-
Tsukui and Nozaki, 2016).

Eh deploy an arsenal of virulence factors, which includes
amoebapore, galactose/N-acetyl-D-galactosamine (Gal/GalNAc)
lectin (Gal-lectin), cysteine proteinases and prostaglandin E2
(Moonah et al., 2013; Marie and Petri Jr, 2014). Eh Gal-lectin is
a major surface molecule that mediates the binding of Eh to host
cells and to Gal and GalNAc colonic MUC2 mucin glycans
(Chadee et al., 1987; Petri et al., 1987). Macrophages are innate
immune cells that are instrumental in mounting a robust pro-
inflammatory response. Stimulation of macrophages with native
Gal-lectin activated NF-kB and MAP kinase signaling pathway
that culminated in the induction of TLR-2 mRNA and surface
expression (Kammanadiminti et al., 2004; Figure 2 and Table 1).
The Eh Gal-lectin, a vaccine candidate for amebiasis, induces
dendritic cell (DC) maturation and activation viaMAPK and NF-
kB pathway leading to Th1 cytokine production (Ivory and
Chadee, 2007). Amongst the different virulence factors, cysteine
proteinases play a major role in the pathogenicity of amebiasis
(Ankri et al., 1999; Tillack et al., 2006; Meléndez-López et al.,
2007). EhCP-A1, EhCP-A2 and EhCP-A5 are highly expressed
cysteine proteinases in axenically cultured Eh (Bruchhaus et al.,
1996; Tillack et al., 2007). The cysteine proteinases repertoire is
September 2021 | Volume 11 | Article 748404
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expressed spatially: EhCP-A1 is confined to intracellular vesicles
while EhCP-A5 is expressed on the cell surface, and EhCP-A2 is
limited to the inner and outer cell membrane (Jacobs et al., 1998;
Que et al., 2002; Meléndez-López et al., 2007). Pro-mature cysteine
proteinase 5 (PCP5) is a major virulence factor of Eh that is
secreted and/or present on the surface of ameba, binds via its RGD
motif to avb3 integrins on colonic cells to trigger NF-kB mediated
pro-inflammatory responses (Hou et al., 2010). PCP5-RGD
binding to avb3 integrins activated integrin-linked kinase (ILK)
that mediated the phosphorylation of Akt-473 that subsequently
bound and induced IKK activation via ubiquitination of NEMO
that phosphorylates IkBa triggering pro-inflammatory responses
(Hou et al., 2010; Figure 2). The Gal-lectin and EhCP-A5 together
also play a central role in contact-dependent activation of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
NLRP3 inflammasome in macrophages for high output IL-1b
secretion (Mortimer et al., 2014; Mortimer et al., 2015). In this
interaction, Gal-lectin activates the NF-kB pathway for
transcriptional activation of the NLRP3 inflammasome to
stimulate TNF-a release (Mortimer et al., 2014). During
primary Eh infection, macrophage secreted TNF-a has a
detrimental outcome leading to increased diarrheal disease.
However, naïve macrophages that are primed with TNF-a and
IFN-g produce high levels of nitric oxide (NO) that kills Eh (Lin
et al., 1994; Seguin et al., 1995; Haque et al., 2007). Several Eh
components can bind macrophage and epithelial TLR to activate
the NF-kB pathway to induce a raging pro-inflammatory
response. Mouse macrophages stimulated with Eh genomic
DNA signaled via TLR9 to activate NF-kB and MAPK that was
FIGURE 2 | Diagrammatic representation of the intriguing relationship between protozoan parasite virulence factors and the NF-kB pathway. The figure represents
the regulation of the NF-kB pathway by the extracellular protozoan parasite Eh and its virulence factors, which includes SAP, EhCP-A1, EhCP -A4 and Eh genomic
DNA (1) and by different intracellular protozoan parasites T. gondii virulence factors, namely, TgESAs, Cathepsin C1, ROP18 and HSP70 (2), L. major/Mexicana live
infection (3), Plasmodium pathogenic component hemozoin (4) and T. cruzi secreted lysosomal peptidase cruzipain (5) at different levels by modulating the inflammatory
response during host-pathogen interaction. Virulence factors and live infection modulates NF-kB signaling at multiple levels. Both intracellular and extracellular protozoan
parasites differentially modulate the NF-kB pathway. Note, purple color arrows indicate activation/promotion while red color arrows depict inhibition. The detailed
mechanisms of action of the virulence factors are described in the text.
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dependent on MyD88 (Ivory et al., 2008; Figure 2 and Table 1).
Lipopeptidophosphoglycan (LPPG), a Eh associated molecular
pattern, activated NF-kB via TLR-2 and -4 resulting in the
release of IL-12p40, TNF-a, IL-10, and IL-8 from human
monocytes (Table 1). Mouse macrophages lacking TLR-2 (TLR-
2-/-) or deficient in TLR-4 (TLR-4d/d) were unresponsive to LPPG
stimulation (Maldonado‐Bernal et al., 2005). Eh induced
inflammation is characterized by the infiltration of neutrophils,
which have been implicated in host defense against amebiasis.
Interestingly, Eh activates neutrophils to induce extracellular traps
that was dependent on the NF-kB pathway (Fonseca et al., 2018).
This suggests the if Eh can suppress the NF-kB pathway in
neutrophils like it does in macrophages, it can ward off potent
innate host defenses.

The forgoing discussion elegantly demonstrates that Eh and its
components can manipulate the NF-kB pathway to elicit a florid
pro-inflammatory response that may play a crucial role in Eh
invasion and shape the outcome of disease. While detailed
experimentations have uncovered many unanswered questions
during Eh-host interaction, there are many questions that still
need to be addressed. For instance, which specific NF-kB protein
subunits play a regulatory role during Eh pathogenesis and what
will be the outcome of NF-kB signaling from different cell types
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
upon contact with Eh. In this regard we recently (Chadha et al.,
2021) uncovered a novel role for inflammatory caspase-1 that
intersected NF-kB signaling during Eh-macrophage contact. In
this interaction, Eh-induced caspase-1 activation rapidly degraded
cullin-1/5 proteins, a central scaffolding component of multi-
subunit E3s ligase that attenuated NF-kB signaling (Figure 2)
inhibiting TNF-a production. Cullin-1/5 degradation was also
observed from colonic epithelial cells following live Eh inoculated
in proximal colonic loops of mice as a short-term infection model.
Cullin-1/5 degradation was dependent on Eh surface cysteine
proteinases EhCP-A1 and EhCP-A4, but not on EhCP-A5,
based on pharmacological inhibition of the cysteine proteinases
and EhCP-A5 deficient parasites. These findings highlight that Eh
suppression of NF-kB signaling induces a predominant NLRP3
dependent IL-1b pro-inflammatory response that may contribute
to disease pathogenesis. Eh in contact with macrophages is also
known to induce the degradation of cytoskeletal-associated
proteins talin, Pyk2 and paxillin that activated the NLRP3
inflammasome by an unknown mechanism (St-Pierre et al.,
2017; Table 1). These findings suggest that Eh in contact with
host cells at the intercellular junction uses several Eh ligands that
couples to multiple putative receptors to activate inflammatory
caspases and the NF-kB pathway that regulates pro-inflammatory
TABLE 1 | Differential regulation of the NF-kB pathway by protozoan parasites.

Parasite (Disease) Pathogen
component

Target Result/outcome Reference

E. histolytica
(Amebiasis)

SAP IKK Complex NF-kB inhibition (Kammanadiminti and Chadee, 2006)
Phosphorylation of p65 MCP-1 cytokine induction (Kammanadiminti et al., 2007)

Calpain Degradation of p65, STAT3/5 Cell death (Kim et al., 2014)
Gal/GalNAc-
lectin

NF-kB and MAPK activation TLR-2 m-RNA and protein
expression

(Kammanadiminti et al., 2004)

EhCP-A5 IKK activation and IkB phosphorylation Enhanced pro-inflammatory
response

(Hou et al., 2010)

LPPG TLR-2 and-4 activation IL-12p40, TNF-a, IL-10, and IL-8
release

(Maldonado‐Bernal et al., 2005)

Eh genomic
DNA

TLR9 NF-kB and MAPK activation (Ivory et al., 2008)

Live Eh Cytoskeletal-associated proteins talin, Pyk2
and paxillin

NLRP3 inflammasome activation (St-Pierre et al., 2017)

Toxoplasma gondii
(Toxoplasmosis)

TgESAs Inhibits NF-kBp65 and TLR2/4 activation Up-regulates IL-10 and TGF-b (Wang et al., 2017)
ROP18 p65 degradation Aborted NF-kB signaling (Du et al., 2014)
ROP16 Inhibits STAT3/6 and NF-kB transcription down-regulates TLR induced

cytokines
(Saeij et al., 2007)

Cathepsin C1 Inhibits p65 phosphorylation Decrease TNF-a, IL-12, IL-6, IL-8,
IL-1 production

(Liu et al., 2019)

HSP70 Inhibits iNOS and NF-kB Decrease host parasiticidal
mechanism

(Dobbin et al., 2002)

Plasmodium (Malaria) GPI NF-kB/c-rel iNOS expression (Tachado et al., 1996)
Hemozoin TLR-9 mediated NF-kB activation Up-regulates pro-IL-1b and

NLRP3 activation
(Coban et al., 2005; Parroche et al.,
2007; Baccarella et al., 2013)

Trypanosoma cruzi
(Chagas)

GPI Activates TLR2/MyD88, MAPK and NF-kB Induction of IL-12, TNF-a, and
NO

(Campos et al., 2001)

Cruzipain Interferes NF-kBp65 signaling Hinders macrophage activation (Watanabe Costa et al., 2016)
Leishmania
(Leishmaniasis)

L. major
infection

Selectively translocate c-Rel/p50 Induces IL-10 expression (Guizani-Tabbane et al., 2004)

gp63 Cleaves NF-kBp65 RelA into p35RelA Induces expression of MCP-1,
MIP-1a, MIP-1b, MIP-2

(Gregory et al., 2008)

L. mexicana
infection

Degrades entire NF-kB pathway (p65RelA,
c-Rel, IkBa, IkBb, JNK and ERK)

Inhibits IL-12 production (Cameron et al., 2004)
Septe
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responses. We are now beginning to decipher some of the salient
features that regulates Eh-host parasite interaction in epithelial
cells, macrophages and neutrophils by teasing out defined
pathways that may be beneficial to the host and/or parasite in
disease pathogenesis.
NF-kB PATHWAY MODULATION DURING
TOXOPLASMA GONDII INFECTION

Unlike extracellular Eh, intracellular protozoan parasites have
devised unique ways to modulate the innate immune response
via inside-out signaling by manipulating the NF-kB pathway. T.
gondii, the causative agent of toxoplasmosis, is an obligatory
intracellular protozoan parasite that can infect all nucleated cells
of warm-blooded animals (Hou et al., 2019; Li et al., 2019; de
Faria Junior et al., 2021) including wild, domesticated and
companion animals (Dubey et al., 2012). It infects about one-
third of the world’s human population (Sasai et al., 2018).
Infection in immunocompromised individuals often leads to
symptomatic and lethal toxoplasmosis (Tenter et al., 2000).
Humans and other animals become infected due to
consumption of under-cooked meat of infected animals or by
ingesting water or food contaminated with oocysts (Jones et al.,
2005; Dubey and Jones, 2008). T. gondii has three infectious
stages known as tachyzoite, bradyzoite and sporozoites (within
oocysts) (Dubey et al., 1998). Mouse models identified three
different strains of T. gondii called type I, type II, and type III
with different virulence factors. Amongst the three strains, type I
is the most virulent strain, while type II and type III are avirulent
(Howe et al., 1996; Mordue et al., 2001).

To counteract the host immune responses, Toxoplasma deploys
multiple strategies to subvert the NF-kB signaling pathway.
Infection of bone marrow-macrophages with RH tachyzoites (RH
strain of T. gondii, which is a type I representative strain) repressed
NF-kB activation by inhibiting nuclear localization of p65 or c-Rel,
while in-vivo infection activated the NF-kB pathway (Shapira et al.,
2002). While the pathogen displays a repertoire of virulence factors,
some play a crucial role in establishing the infection via
immunomodulation of different immune cells. T. gondii
excretory/secretory antigens (TgESAs), a virulence factor,
inhibited nuclear translocation of NF-kBp65 and TLR-2 and -4
activation from LPS-stimulated Ana-1 murine macrophage that
upregulated the anti-inflammatory cytokines IL-10 and TGF-b and
downregulated the pro-inflammatory cytokines TNF-a and IL-1b
(Wang et al., 2017; Figure 2 andTable 1). One of the strategies used
by the parasite to subvert immune responses, is degradation of host
proteins and transcription factors essential for regulating the
immune response. T. gondii releases its protein into the host from
organelles called dense granules and rhoptries (ROPs), thus
manipulating host cell and their transcriptional responses (Lima
and Lodoen, 2019; Tuladhar et al., 2019). ROP18, an effector of type
I strains, is a serine/threonine kinase that modulates the
phosphorylation of host proteins to circumvent cell signaling
pathways. Surprisingly, ROP18 induced the phosphorylation of
p65 at Ser-468 that led to ubiquitin-dependent degradation of p65
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
culminating in aborted NF-kB signaling, thus conferring a survival
advantage (Du et al., 2014; Figure 2 and Table 1). Another protein
ROP16, a putative protein kinase, suppressed IL-12 responses in
infected macrophages stimulated with TLR agonist (Saeij et al.,
2007) and inhibited NF-kB transcriptional activity (Rosowski et al.,
2011), possibly due to the activation of STAT3/6 (Saeij et al., 2007)
that downregulated TLR-induced cytokine production (Table 1). In
contrast, T. gondii strains that express dense granule protein GRA15
directly activates NF-kB through a MyD88-independent
mechanism (Melo et al., 2011). Recently (Liu et al., 2019), T.
gondii cathepsin C1 (CPC1), a member of the GRA (dense
granule) protein family, was shown to inhibit the phosphorylation
of p65 subsequently leading to decreased production of pro-
inflammatory cytokines TNF-a, IL-12, IL-6, IL-8 and IL-1
(Figure 2 and Table 1). CPC1 inhibited NF-kB activation
through positive regulation of HIF (hypoxia-inducible factor)-1a/
EPO (erythropoietin) axis (Liu et al., 2019). While several studies
have indicated the involvement of the NF-kB pathway during T.
gondii infection, it seems to be cell-specific regulation. Heat shock
protein 70 (HSP70) of T. gondii inhibited parasiticidal activity by
inhibiting iNOS, and NF-kB activation from RAW 264.7 and
splenocytes, respectively (Dobbin et al., 2002; Figure 2 and
Table 1). Surprisingly, T. gondii infected macrophage up-
regulated the phosphorylation and degradation of IkB and
blocked the translocation of NF-kB by inhibiting the
phosphorylation of p65/RelA (Shapira et al., 2005) leading to
aborted pro-inflammatory cytokine production (Butcher et al.,
2001; Shapira et al., 2002). While these results are well
documented in murine macrophages it is still debatable if a
similar mechanism occurs in murine fibroblasts (Shapira et al.,
2002; Molestina et al., 2003). LPS induced IL-1b production
inhibition from primary human neutrophils following type 1
strain infection was associated with inhibition of NF-kB.
Although neutrophils infected with T. gondii aborted NF-kB
signaling via reduced IkBa degradation and p65/RelA
phosphorylation, it also showed marked reduction in transcripts
for NLRP3 inflammasome sensor and IL-1b (Lima et al., 2018). To
assess the importance of NF-kB during the infection, mice deficient
in specific genes belonging to the NF-kB pathway have been
assessed. Mice lacking RelB succumb to acute infection, due to
inability to produce IFN-g indicating an indispensable role of RelB
in conferring resistance to T. gondii infection (Caamaño et al.,
1999). During chronic infection, NF-kB2-/- mice have higher
mortality when compared to wild-type (WT) mice due to global
T-cell loss and apoptosis (Franzoso et al., 1998). Previous studies
have shown altered microRNA expression profile by Apicomplexan
parasites (Deng et al., 2004; McDonald et al., 2013; Hou et al., 2019)
indicating the involvement of microRNA during infections. T.
gondii infection perturbed the signaling pathways responsible for
generating host defense responses (Hakimi and Ménard, 2010) by
modulating the expression of host microRNAs, which contributes
to efficient parasite replication (Cong et al., 2017). In agreement
with these observations, T. gondii attenuated the NF-kB pathway by
inducing miR-146a in the host (Taganov et al., 2006). STAT3 and
NF-kB activation in response to T. gondii up-regulated the
expression of miRNAs miR-125b-2, miR-30c-1, miR-17-92 and
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miR-23b-27b-24-1 (Cai et al., 2013). Taken together, these
observations suggest that T. gondii exploits the NF-kB pathway
for successful replication and to evade cell mediated immunity.
ROLE OF NF-kB IN OTHER PROTOZOAN
PARASITES

As NF-kB signaling is crucial for mounting an immediate immune
response against invading pathogens, its manipulation has been
described at multiple levels in response to several protozoan
parasites. Plasmodium is the etiologic agent of the disease malaria.
According to the WHO report 2015, it infects over 200 million
people annually and kills over 500,000 patients a year (World
Health Organization (WHO, 2016). Glycosylphosphatidylinositol
(GPI) of plasmodium activates macrophages and endothelial cells
inducible NO synthase expression that involves NF-kB/c-rel
(Tachado et al., 1996; Table 1). Hemozoin, a malarial pigment,
binds to TLR9 and activates NF-kB and the NLRP3 inflammasome
to increase the levels of pro-IL-1b (Coban et al., 2005; Parroche
et al., 2007; Baccarella et al., 2013; Figure 2 and Table 1). A recent
study (Toda et al., 2020) demonstrated a role for plasma-derived
extracellular vesicles (EVs) from P. vivax patients (PvEVs) that
activated NF-kB translocation from human spleen fibroblasts
(hSFs), which up-regulated the levels of ICAM-1 that resulted in
specific adhesion properties of reticulocytes (from infected patients)
to hSFs (Toda et al., 2020). Trypanosoma cruzi the causative agent of
Chagas disease, infects over 5 million people across the globe and
kills thousands of people each year (Pérez-Molina and Molina,
2018). Cytokines released by immune cells play a decisive role in
disease pathogenesis and invasion by infectious agent. The Y strain
of T. cruzi was shown to activate NF-kB via the TNF pathway that
increased invasion of non-professional phagocytic epithelial cells
demonstrating a negative role for NF-kB activation favoring the
parasite (Pinto et al., 2011). T. cruzi GPI, a pathogen-associated
molecular pattern, is recognized by TLR-2, which stimulates the
TLR-2/Myd88 pathway, MAPK and NF-kB transcription factor
activation (Campos et al., 2001; Takeda and Akira, 2005; Table 1).
In contrast, cruzipain, a T. cruzi secreted lysosomal peptidase,
hindered macrophage activation during the initial stages of
infection by interfering with NF-kBp65 mediated signaling
(Watanabe Costa et al., 2016; Figure 2 and Table 1).
Leishmaniasis, caused by multiple Leishmania species, is
responsible for an estimated 12 million infections across the globe
and thousands of deaths per year (Lozano et al., 2012; Vos et al.,
2016). Different Leishmania species differentially regulate the NF-
kB pathway. For instance, L. major infected monocytes (primary
and PMA-differentiated U937 cells) inhibited nuclear localization of
p65RelA/p50 heterodimers, however, it selectively promoted the
translocation of c-Rel/p50 heterodimers, which induced the anti-
inflammatory cytokine, IL-10 (Guizani-Tabbane et al., 2004;
Figure 2 and Table 1). Infection of murine-BMDM with L.
mexicana amastigotes degraded the entire NF-kB pathway;
degradation of p65RelA, c-Rel, the upstream kinases JNK and ERK
and the inhibitors IkBa and IkBb (Cameron et al., 2004; Figure 2
and Table 1). In contrast, another group showed a novel subversion
mechanism, wherein Leishmania protease, gp63, in vitro cleaved
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NF-kB p65RelA that resulted in a fragment p35RelA that dimerized
with p50, which induced gene expression of the chemokines MCP-
1, MIP-1a, MIP-1b and MIP-2 (Gregory et al., 2008; Table 1). A
comprehensive view of the regulation of the NF-kB pathway by
protozoan parasites is listed in Table 1 and Figure 2 summarizes
the differential regulation of the NF- kB pathway by different
protozoan parasites and their virulence factors.

CONCLUSION AND FUTURE DIRECTION

The immune system is armored with multiple receptors, which are
recognized by invading pathogens culminating in gene expression
associated with the development of an immune response. Parasite
interaction with the innate immune response involves coupling
thoughmultiple receptors that activates the NF-kB pathway. From
an evolution point of view, multiple strategies reflect the selective
pressure this pathway has imposed on different pathogens, while
in turn evolution of different pathogens have led to the
diversification of this pathway (Tato and Hunter, 2002). From
the forgoing discussion it is apparent that parasites deploy
multiple ways to circumvent signaling via the NF-kB pathway.
However, we know very little on the diverse array of parasite
molecules and/or downstream signaling involved in NF-kB
activation and inhibition by extracellular and intracellular
protozoan parasites. NF-kB pathway diversification involves
different protein subunits that form different hetero/homodimers
(Gilmore, 2006). Intriguingly, different combination and
permutation of these dimers have different functional
consequence on gene expression responsible for immune
activation/inhibition. At present, we still do not know which
specific homo/heterodimer subunits are formed during contact
and/or invasion by parasites, and what would be the functional
consequence. The question that is still baffling and needs attention
is, whether NF-kB activation by different parasites favors the host
or the pathogen or both. The dichotomy in NF-kB activation and
inhibition observed by extracellular and intracellular parasites, in
part, may answer why intracellular parasites inhibit this pathway,
while extracellular parasites activates it. It is essential to
understand which specific NF-kB subunit play an indispensable
role during parasitic infection and how different receptor sense
these parasites in a cell-type specific manner. Understanding these
pathways could provide a better appreciation on the complexity of
the disease and thus, help to develop better therapeutic approach
for parasitic infections.
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