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Our view of how adipose tissue 
metabolism is regulated recently 

experienced a change in focus and 
breadth, meaning that some of the key 
controlling factors were not fully in 
the picture. The catecholamines of the 
sympathetic nervous system are well-
known activators of β-adrenergic recep-
tors in adipocytes to increase lipolysis. 
They also drive energy expenditure in 
brown adipose tissue and, importantly, 
the “browning” of cells in white adipose 
depots. However, this is clearly not the 
whole story. In earlier work, we estab-
lished a pathway from β-adrenergic 
receptors to p38 MAP kinase to drive 
the transcription of brown adipocyte 
genes and respiratory uncoupling. Now 
we recently discovered that cardiac natri-
uretic peptides (NPs) stimulate a similar 
“browning” of human and mouse adipo-
cytes. NPs activate the guanylyl cyclase 
coupled NP receptor A and activation 
of protein kinase G. Importantly, this 
pathway also depends upon p38 MAPK. 
These two pathways work together, addi-
tively increasing expression of brown 
adipocyte marker genes, as well as 
reflexively controlling each other’s com-
ponents. We discuss these findings and 
how the control of body fat by these car-
diac hormones, in conjunction with the 
sympathetic nervous system, has impli-
cations for obesity as well as cardiovascu-
lar disease, including hypertension and 
heart failure.

The pathway from the sympathetic ner-
vous system to β-adrenergic receptors 
(βARs) and protein kinase A (PKA) was 
well established in earlier decades to be the 
key controlling element for activating the 
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enzymatic apparatus to hydrolyze stored 
triglyceride in adipocytes1-3 (see upper 
part of Fig. 1). With the realization that 
brown adipose tissue was a thermogenic 
form of fat4-6 due to the unique “uncou-
pling protein” (UCP1) of the brown adi-
pocyte7 (see ref. 8 for further details), it 
was subsequently shown that the βAR-
PKA pathway was also responsible for the 
gene expression changes and expansion of 
brown adipocytes for respiratory uncou-
pling and energy expenditure. Interest in 
studying brown adipose tissue as a sink 
for excess calories has experienced sev-
eral waves of enthusiasm and disdain over 
the decades, falling in and out of fash-
ion depending upon whether it was con-
sidered clinically relevant or not. At the 
moment, brown adipocytes in humans 
are in vogue again as a result of radiology 
studies showing cold-stimulated bilateral 
glucose uptake in adult humans and biop-
sies from subjects demonstrating UCP1-
positive brown adipocytes.9-13

Our lab has studied the βARs and 
their signaling mechanisms in adipocytes 
for several years, focusing on cAMP, PKA 
and downstream targets of the kinase such 
as enzymes and transcription factors.14,15 
We became particularly interested in the 
transcriptional activation of the Ucp1 
gene in response to β-agonist stimula-
tion. Although the Ucp1 genes from vari-
ous species had been isolated in the early 
1990s and regulatory regions responsive 
to elevations in cAMP were identified,16-18 
it seemed curious that relatively little 
progress had been made in identifying 
the transcription factors that controlled 
cAMP-dependent Ucp1 expression. It was 
only when we stumbled upon the PKA 
dependent activation of p38 MAPK19,20 
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We discovered that mice lacking 
NPRC were exceedingly lean and chock-
full of brown adipocytes. By culturing 
their white and brown adipocytes it was 
easily observed that these murine cells 
could readily respond to ANP to increase 
lipolysis as well as turn on the brown adi-
pocyte gene program. Our collaborator 
Nobu Takahashi provided his findings 
that Npra-/- mice tended to be obese. Thus 
we knew that it was not simply a primate-
specific signaling mechanism, rather it is 
the ratio of NPRA/NPRC that dictates the 
response to NPs in adipocytes. As we went 
on to show and discuss below, the levels of 
these receptors and their response to NPs 
are quite dynamically regulated in mice as 
a normal course of their physiology. There 
may also be differences in responsiveness 
among different inbred strains of mice.

In order to better provide some physio-
logical evidence of the role of NPs in driv-
ing both the “browning” of adipocytes 
within the white adipose tissue (WAT) 
depots and thermogenesis in brown adi-
pose tissue (BAT), we set up a cold chal-
lenge experiment using wild-type mice. 
Part of the idea was that if fasting in mice 
was associated with a decrease in adipose 
tissue levels of NPRC,27 and blood pres-
sure is increased in response to cold expo-
sure,33-36 then maybe we would see an effect 
on the NP system in this experiment. This 

and humans26 and, interestingly, levels of 
NPRC in rat adipose tissue were found 
to be sharply decreased by fasting.27 
Together, these were some of the first 
results to suggest that perhaps cardiac 
NPs have a metabolic role in adipocytes, 
including a putative role for adipose tis-
sue in the clearance of these peptides from 
the circulation.28 It was then reported that 
ANP could increase lipolysis in human 
adipocytes, but that this property did 
not exist in rodent adipocytes.29 Why 
did this process not exist in rodent adi-
pocytes? Experimental observations as 
well as inspecting the Novartis Institute 
gene expression database (www.biogps.
org) showed that mouse adipose tissue 
expresses vastly more NPRC than human 
adipocytes. What if these levels could 
be modulated? Would that affect the 
response? Mice with targeted disruptions 
of the Npra and Nprc genes had been 
generated more than a decade earlier.30,31 
However they had not been studied from 
the point of view of body composition 
and adipose tissue. We did notice in the 
literature, however, that mice with spon-
taneous loss-of-function mutations in the 
Nprc gene32 were referred to by names 
like “longjohn” and “strigosus,” the latter 
from the Latin meaning “long and emaci-
ated.” We decided to obtain these mice, 
which proved valuable to our studies.

that pieces of the puzzle began to be put 
into place. Discovering that p38 MAPK 
activation by βARs and PKA was neces-
sary for driving Ucp1 gene transcription19,21 
was a breakthrough in beginning to crack 
the code for how the SNS could stoke 
UCP1-dependent adaptive thermogenesis.

As shown in Figure 1, p38α MAPK 
(p38) is activated by a cascade down-
stream of PKA. The exact players in this 
cascade are not fully understood and 
their identity is a topic of ongoing work. 
However, functionally it is clear that p38 
plays an important role at several lev-
els: by phosphorylating PGC-1α, which 
boosts it co-activator function,22 as well 
as phosphorylating the CRE-binding fac-
tor ATF2 in order to drive expression of 
PGC-1α itself. There are several other 
known and suggested transcription fac-
tors involved in orchestrating Ucp1 gene 
transcription at this rich enhancer region 
of the gene (not shown here), but whether 
p38 or other kinases are involved in their 
control has not been fully investigated. 
Indeed the full picture of all the factors 
and the signals that promote their assem-
bly at this gene has yet to be constructed.

Our recently published study dem-
onstrating that cardiac NPs ANP (atrial 
NP) and BNP (B-type-NP) increase the 
expression of brown adipocyte genes and 
uncoupled respiration,23 which is the topic 
of this commentary, arose from intersect-
ing interests: one of us (S.C.) was focused 
on the SNS and molecular signaling and 
the other (M.B.) comes from a more clini-
cal research background on obesity and 
hypertension.

The discovery of the natriuretic pep-
tides produced and secreted from the 
heart was a major change in the mind-set 
about the function of the heart: it was 
not only a contractile “pump” for blood 
circulation but a bona fide endocrine 
organ.24 The NP system is integral to 
the control of blood pressure through its 
stimulation of fluid and salt release by the 
kidney. Two receptors tightly control the 
response to the NPs: the signaling form 
of the receptor termed NPRA/NPR1/
GC-A and the clearance form of the 
receptor termed NPRC/NPR3/ANPRC 
(Fig. 2). Almost two decades ago, NP 
receptors were unexpectedly found to be 
expressed in adipose tissue of both rats25 

Figure 1. Catecholamines bind the βARs on adipocytes to activate the Gs and increase cAMP. 
cAMP activates PKA, which can phosphorylate proteins to allow lipolysis of stored triglycerides. 
βARs and PKA can also activate a protein kinase cascade, culminating in the activation of p38α 
MAPK, which phosphorylates key transcription factors to promote transcription of the UCP1 and 
PGC-1α genes, mitochondrial biogenesis and thermogenic energy expenditure.
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Obviously there is much additional work 
to be done in the basic research lab as well 
as in the clinical setting to test whether 
such an approach is viable. From another 
perspective, as we noted in our study, con-
ditions such as heart failure could be a sit-
uation where one might want to interfere 
with adipose tissue NP signaling. This 
notion stems from the well-established 
observations of weight loss that occurs in 
heart failure, known as pathological car-
diac cachexia. High levels of NPs are char-
acteristic of heart failure and are used as 
diagnostic markers of disease severity.43,44 
Cardiac cachexia is a commonly encoun-
tered clinical problem45,46 and is associated 
with a poor prognosis.47 Less well studied 
but deserving further investigation is the 
pathological weight loss associated with 
anorexia nervosa (AN), which in some 
reports is correlated with elevated levels of 
circulating NPs,48 and they are reported to 
also have increased diet-induced thermo-
genesis49 and large caloric requirements to 
gain weight.50,51 If such a correlation were 
strengthened, this might be a predispos-
ing factor for AN, or a co-morbid state 
due to the excessive exercise that anorec-
tics engage in. In either of these cases an 
attractive hypothesis that we are now pur-
suing—particularly for heart failure—is 
that the pathological weight loss associ-
ated with high circulating NPs and/or cat-
echolamine levels may involve increased 
brown fat and energy expenditure.

For those of us who have focused for 
many years on the role of the SNS in 
regulating adipose tissue lipolysis and the 
expansion and activity of brown fat for 
adaptive thermogenesis, the realization 
that the NP system has been functioning 
in a parallel manner without our consid-
ering it is like discovering an elephant in 
the room. Now with this elephant clearly 
in our line of sight, our studies of adipose 
tissue metabolism will never be the same.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were 
disclosed.

Acknowledgments

We thank fellow colleagues at SBMRI-
Lake Nona for their continued support 
and sharing of ideas, comments and sug-
gestions, as well as the members of the 

gene expression and function was getting 
activated, and that the longer the stimulus 
the greater the response.23 The notion that 
the SNS and NP systems work together 
was further strengthened by the finding 
that low concentrations of ANP and the 
β-agonist isoproterenol work together in 
culture human adipocytes. So together 
with the in vivo data there seems to be 
a coordinated and dynamic regulation 
between the SNS and the NP systems. 
Whether the reciprocal regulation (i.e., 
NPs regulating SNS components in adi-
pose tissue) exists needs to be investigated. 
Although we indeed observed that delivery 
of BNP itself via minipump (7 d) to mice 
resulted in increased energy expenditure 
and increased expression of all the brown 
adipocyte markers—especially in WAT,23 
we did not examine whether this elevation 
also had effects on receptors and responses 
of the SNS. It will be important to under-
stand this regulation in more detail as 
we tease apart the molecular mecha-
nisms involved in this apparent cross-talk 
between these hormonal systems.

Since these cell culture and animal 
studies demonstrate the parallel pathways 
of the SNS and the NP system to regulate 
fat metabolism (Fig. 3), it may also shed 
some light on earlier perplexing studies in 
genetically modified mice. For example, 
Palmiter and colleagues reported that 
mice with targeted deletion of dopamine 
β-hydroxylase, which lack the ability to 
synthesize epinephrine and norepineph-
rine,39 were not prone to excess weight 
gain on a high-fat diet. The fact that they 
were also hypotensive40 might suggest that 
the NP system at some level is compensat-
ing in their adipocytes for the lack of SNS 
drive.

Thinking more broadly about the 
implications of our findings, there is obvi-
ously a strong connection between obe-
sity and hypertension. Earlier work on 
the NP system identified peptides that 
bound NPRC but not NPRA41 and con-
versely other reagents that favor interac-
tion with NPRA were also identified.42 
If therapeutic approaches could be devel-
oped that target NPRA—or attempt to 
block NPRC—these could serve to both 
promote fat oxidation and weight loss 
by increasing amounts of brown adipo-
cytes, as well as reducing blood pressure. 

was indeed the case.23 In fact, blood lev-
els of BNP were markedly higher in the 
mice kept at 5°C for 6 h. Perhaps this indi-
cates that the SNS is promoting the secre-
tion of these hormones from the heart as 
well as increasing the expression of their 
genes. How this cold-exposure maneuver 
has this effect mechanistically is not clear, 
but it may be related to the cold induced 
increase in blood pressure seen in rodents 
and humans.34,36-38 In these experiments 
we were also gratified to see that in both 
the interscapular BAT as well as in WAT 
depots, such as gonadal and inguinal, 
the expression levels of NPRA increased 
in response to the cold challenge, while 
NPRC levels were decreased. Together 
these results suggests, although certainly 
do not prove, that the SNS is modulating 
the NP system in order to set up condi-
tions that favor enhanced signaling by the 
NPs to coordinate with the SNS to drive 
both fuel mobilization (lipolysis) as well 
as ramping up the machinery for adap-
tive thermogenesis. In conjunction with 
these mouse studies we used human mul-
tipotent adipocytes that can differentiate 
into a cell with both “white” and “brown” 
characteristics, and we quickly saw that 
the whole program of brown adipocyte 

Figure 2. The cardiac hormones ANP and 
BNP released from the heart atria bind to the 
receptor NPRA to activate the intracellular 
guanylyl cyclase domain for the receptor 
to convert GTP to cGMP. Adipocytes also 
express NPRC that mainly removes NPs from 
circulation. The relative ratio of NPRA to 
NPRC is an important determinant of signal 
transduction.
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