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Abstract: Global vaccination against the SARS-CoV-2 virus has proved to be highly effective. How-
ever, the possibility of antibody-dependent enhancement of infection (ADE) upon vaccination remains
underinvestigated. Here, we aimed to theoretically determine conditions for the occurrence of ADE
in COVID-19. We developed a series of mathematical models of antibody response: model Ab—a
model of antibody formation; model Cv—a model of infection spread in the body; and a complete
model, which combines the two others. The models describe experimental data on SARS-CoV and
SARS-CoV-2 infections in humans and cell cultures, including viral load dynamics, seroconversion
times and antibody concentration kinetics. The modelling revealed that a significant proportion
of macrophages can become infected only if they bind antibodies with high probability. Thus, a
high probability of macrophage infection and a sufficient amount of pre-existing antibodies are
necessary for the development of ADE in SARS-CoV-2 infection. However, from the point of view
of the dynamics of pneumocyte infection, the two cases where the body has a high concentration
of preexisting antibodies and a high probability of macrophage infection and where there is a low
concentration of antibodies in the body and no macrophage infection are indistinguishable. This
conclusion could explain the lack of confirmed ADE cases for COVID-19.

Keywords: COVID-19; antibody-dependent enhancement; computational modeling; SARS-CoV-2

1. Introduction

Since 2019, coronavirus disease (COVID-19) has spread all over the world. Severe
forms of COVID-19 are associated with acute respiratory distress syndrome, pneumonia,
renal failure and death [1,2]. Global vaccination is a path to the reduction of the disease’s
severity, as well as its spreading rate [3]. Nevertheless, among the general concerns for
the development and utilization of vaccines is the possibility of antibody-dependent en-
hancement of infection (ADE) [4]. Besides vaccination, ADE is frequently caused by viruses
that have high antigenic diversity and the ability to replicate in immune cells [5], such as
coronaviruses, Ebola virus, dengue virus, human immunodeficiency viruses (HIV) and
influenza [6–10]. ADE mostly occurs when a non-neutralizing or poorly neutralizing anti-
body (Ab) binds to a virus particle [11]. Normally, binding of the Ab to the Fc receptors
(FcRs) on leukocytes leads to the destruction of the virus inside these cells [12]. How-
ever, in the case of ADE, Abs can release the virus and let it replicate in FcR-expressing
cells [13]. Moreover, such infection of immune cells can cause adverse responses [11], such
as enhanced cytokine release by the infected cells, which facilitate tissue damage [14].

ADE can originate from different features of (pre-existing) antibodies. For dengue
infection, it was shown that both non-neutralizing antibodies and antibodies that are

Int. J. Mol. Sci. 2022, 23, 11364. https://doi.org/10.3390/ijms231911364 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms231911364
https://doi.org/10.3390/ijms231911364
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6976-1655
https://orcid.org/0000-0003-4720-7319
https://doi.org/10.3390/ijms231911364
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms231911364?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 11364 2 of 19

properly neutralizing but possess a low affinity to parts of the virus may be associated with
ADE [15]. Specifically, for severe acute respiratory syndrome coronavirus (SARS-CoV-2), it
was shown that ADE-causing antibodies, regardless of their antigen affinity, could bind to
RBDs in two different states, while the neutralizing mAbs, which had no ADE activity, were
only able to bind to RBD in the S trimer in a single state [15]. Another major component of
the antiviral activity of IgG antibodies is their capacity to engage and activate specific FcγR
pathways. There are numerous instances where high-affinity neutralizing antibodies fail to
offer protection in vivo when Fc–FcγR interactions are weak and where antibodies with
poor neutralizing activity in in vitro assays provide robust antiviral protection in vivo [16].

Cases of ADE have been reported upon infection by SARS-CoV [4,17]: non-neutralizing
anti-spike sera can initiate viral entry into non-ACE-2-expressing cells both in vitro [17] and
in vivo [4]. Indeed, specific Abs for the RBD domain of SARS-CoV S-protein can mediate
the entry of the virus into FcR-expressing human cells [18]. Furthermore, vaccination-
induced neutralizing antibodies potentiated infection of B-cell cell culture by SARS-CoV
in an FcR-dependent manner [17]. The same phenomenon has been observed for the
Middle East respiratory syndrome coronavirus (MERS-CoV), where ADE was facilitated
in cases of low antibody titers, while high Abs neutralized the virus [19]. It is noteworthy
that, in SARS-CoV-infected macaques, non-neutralizing antibodies against the S protein
were associated with fatal acute lung injury attributed to alterations in pro-inflammatory
immune responses [20].

Whether ADE could contribute to COVID-19 clinical pathogenesis is controversial [21,22].
On the one hand, there are almost no confirmed clinical cases of ADE in COVID-19; on the
other hand, there are data on SARS-CoV-2 replication in macrophages [23–25], which lead
to ADE. It should be noted that in vitro SARS-CoV-2 does not penetrate primary peripheral
blood mononuclear cells [23]. In some studies, SARS-CoV-2 replication in immune cells
has been shown to be abortive [24,25], as no viable virions were produced [25–27], or
statistically insignificant [28]. Nevertheless, COVID-19 patient autopsy analysis revealed
the presence of SARS-CoV-2 RNA not only in the localized granules but also with large
cytoplasmic volumes in macrophages [29], which can indicate possible viral replication.
Moreover, other coronaviruses can use monocytes and macrophages as hideouts [30] and,
thus, be distributed throughout the organism from the lungs [31]. Despite the number
of published [4,22,32] and pre-printed studies [33] discussing the possibility of ADE in
COVID-19, there are no clinical studies confirming ADE.

In this study, we constructed a set of mathematical models capable of mechanis-
tic description of complex interactions between the virus, lung cells, Abs, B-cells and
macrophages. Analysis of the models demonstrated that ADE can indeed occur in COVID-
19. The affinity of the antigen–antibody complex influenced the course of the disease;
however, its contribution depended on the level of antibodies and the macrophage infec-
tion probability. The required level of the pre-existing antibodies should be high enough
for ADE observation. Under conditions of macrophage infection, pneumocyte survival is
no lower than in the absence of ADE because of the neutralizing activity of high antibodies
doses. These results may explain the lack of reported ADE cases in COVID-19 patients.

2. Results
2.1. Construction of Antibody Response Generation Module (Model Ab)

In order to describe antibody response to the SARS-CoV-2 infection, we constructed
the first model, which takes into account the interaction between virus particles and the
antibody-production system (B-cells). In this model, first, the average dynamics of viral
load [34] were approximated phenomenologically with a function described by Equation
(1) (see Section 4) (Figure 1a), and then the model was adjusted to the experimental data for
the antibody response of each patient by variation of five model parameters: the parameter
βRNA, which describes average number of antigens per viral RNA molecule; the parameter
w3, which describes individual viral load; and the intrinsic parameters of the immune
system (time delay for naive B-cell activation tnaive; plasma cells death rate δpl; and B-cell
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differentiation rate, πpl) (Table S6). A description of a typical individual patient’s antibody
response [34] is given in Figure 1b. The kinetics of free viral epitopes for different βRNA and
w3 are shown in Figure S1 (mild cases) and Figure S2 (severe cases).
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3∙10−5 (APS∙days)−1, βRNA = 264, w3 = 2.62 days, tnaive = 12.8 days, w = 1.04. (d–f) model Cv (d) A typical 
fit to the experimental data (black dots) on viral load in COVID-19 patients [1]. The day of serocon-
version is marked with the grey dotted line and assumed to happen on day 6. The following donor-
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Figure 1. Antibody-response generation (model Ab) and infection propagation (model Cv) outputs.
(a–c) model Ab: (a) approximation of experimental data for viral load dynamics [34]. The follow-
ing parameter values were chosen (Equation (1)): ARNA = 798,292 RNA numbers, x0= 2.998 days,
w1 = w2 = 2.069 days−1, w3 = 2.38 days. (b) Changes in relative numbers of antibodies and dynamic
of viral epitopes for an individual patient [34]. (c) Kinetics of naive B-cells, plasma cells and memory
B-cells for the same patient. The following donor-specific parameters were used: δpl = 0.004 days−1,
πpl = 3 × 10−5 (APS·days)−1, βRNA = 264, w3 = 2.62 days, tnaive = 12.8 days, w = 1.04. (d–f) model
Cv (d) A typical fit to the experimental data (black dots) on viral load in COVID-19 patients [1]. The
day of seroconversion is marked with the grey dotted line and assumed to happen on day 6. The
following donor-specific parameters were used: βinf = 2.21 × 10−6 (Virus·days)−1, δv = 255 days−1,
ac0 = 2.17 × 10−10 (cells·cells·days)−1, Virus0 = 1.32 × 107 particles; (e) The dependence of the viral
response dynamics for different values of the probability on macrophage infection probability ρ.
(f) The dependence of the pneumocytes dynamics for different values on the probability of
macrophage infection ρ.

The following average values of parameters for the given group of patients (6 patients
with mild and 7 patients with severe course of disease) were obtained: βRNA = 532.38,
w3 = 2.378 days, tnaive = 10.5 days, δpl = 0.166 days−1, and πpl = 10−4 (APS·days)−1. Typ-
ical dynamics of naive B-cells, plasma cells and memory B-cells are given in Figure 1c,
Figures S1 and S2. Altogether, model Ab correctly describes antibody response, B-cell dif-
ferentiation and immune system-mediated virus elimination in response to the given viral
load. However, this model does not take into account variabilities in the types of antibodies
and the possible infection of macrophages.
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2.2. The Infection Propagation Model (Model Cv) Suggests Possibilities of ADE Occurrence
in COVID-19

The infection propagation model (model Cv) was developed to describe antibody-
dependent infection of macrophages. The model parameters were adjusted based on
viral replication kinetics in HAE cells [35] (Figure S4) and the viral load data from the
sputum of seven COVID-19 patients from Germany [1] (Figures S3 and 1d). The model
was able to describe viral load data for different patients upon variation of such param-
eters as pneumocyte infection rate βinf, the maximum virus–antibody complex forma-
tion constant αc0, the rate of viral degradation δv and the initial viral load Virus0. After
approximation of seven experiments, the following average parameter values were ob-
tained: βinf = 4.72 × 10−6 (days·Virus)−1, αc0 = 5.99 × 10−4 days−1, δv = 207.6 days−1 and
Virus0 = 2.6 × 107. Other parameters are given in Table S7. The dynamics of the viral load
and the pneumocyte number for different ρ are given in Figure 1e,f.

We define ADE as a drastic drop in the concentration of healthy pneumocytes (more
than 5% in comparison with the course of disease without macrophage infection). Model
Cv could predict conditions for the occurrence of ADE for average antibody level. For this,
we calculated the dependence of the viral load dynamics on the probability of macrophage
infection (ρ) (Figure 1e). At ρ < 10−3, the concentration of viral particles was the same as in
the absence of macrophage infection, and no ADE was observed, while for ρ > 10−3, the
probability of pneumocyte survival decreased and the times of viral clearance increased,
allowing the occurrence of ADE. However, we could not investigate the impact of antibody
parameters on ADE occurrence using only model Cv because the existing experimental
data describe antibodies in terms of optical density and we needed module model Ab to
obtain the absolute concentrations of antibodies.

2.3. The Complete Model Is Capable of Describing Viral Load and Assessing the Influence of
Pre-Existing Antibody Concentration on the Course of Disease

Model Ab described the antibody dynamics and model Cv predicted possible ADE
occurrence. The combined model (complete model) included not only the dynamics of
antibodies and the formation of immune memory but also the death of pneumocytes and
the possible infection of macrophages after absorption of the antigen–antibody complex.
The details of the validation of the complete model are given in the Materials and Section 4
and in Text S2 in the Supplementary Materials.

The complete model described both the viral load dynamics and the antibody re-
sponse. Within the framework of this model, we estimated the initial viral load (V0) impact
on the viral load dynamics (Figure 2a) and on the percentage of infected pneumocytes
(Figure 2b). The increase in the initial antigen concentration led to the earlier appearance
of the viral load peak and a slight increase in its magnitude (Figure 2a). The amount of
surviving pneumocytes at the end of the disease decreased with increasing initial viral load
(Figure 2b).

Then, we estimated the impact of the concentration of pre-existing antibodies (Figure 2c,d).
The model predicted that only the highest concentration (A0 ≈ 1013 particles) of antibodies
could significantly change the course of disease; i.e., the number of surviving pneumocytes
increased drastically (Figure 2d), while the viral load noticeably decreased (Figure 2c). As
discussed above, the dissociation constant (Kd) of the antigen–antibody complex could affect
the course of the desease. To determine the extent of Kd influence, we performed similar
simulations for varied values of Kd (Figure 2e–h). In the absence of pre-existing antibodies,
Kd did not influence the viral load maximum, but larger Kd led to lower pneumocyte
survival (Figure 2f) and prolonged virus elimination (Figure 2e). In the presence of pre-
existing antibodies at the maximum concentration (A0 ≈ 1013 particles), the viral load
decreased with time, all pneumocytes survived for small Kd values (Kd < 10−9 M) and up
to 20% of the pneumocytes died for large Kd values (Kd > 10−9 M). Therefore, the existance
of low-affinity pre-existing antibodies could lead to ADE.
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Figure 2. Influence of initial viral load, pre-existing antibody concentration and dissociation constant
of the antigen–antibody complex (Kd) on the free viral epitope and pneumocyte dynamics in the
complete model. (a,b) Dynamics of free viral epitope (a) and pneumocytes (b) at various initial viral loads.
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(c,d) Dynamics of free viral epitope (c) and pneumocytes (d) at different concentrations of pre-existing
antibodies. Label Ab0 denotes the concentration of pre-existing antibodies in lymphoid organs at the
onset of disease. (e,f) Dynamics of free viral epitope (e) and pneumocytes (f) at various dissociation
constants for the antigen–antibody complex for primary antibodies. (g,h) Dynamics of free viral
epitope (g) and pneumocytes (h) at various dissociation constants for the antigen-antibody complex
for pre-existing antibodies. The initial concentration of pre-existing antibodies equaled 1013 particles
(Ablo = 1013).

2.4. Theoretical Conditions for ADE Occurrence in COVID-19

The next question of interest was whether ADE could occur in primary infection.
To answer this question, we calculated the number of pneumocytes, the viral load and
the number of life macrophages in the absence of pre-existing antibodies (Figure 3). Our
results showed that ADE could occur in the absence of pre-existing antibodies if the
probability of macrophage infection was greater than 10−3. At ρ < 10−3, the concentration
of viral particles was the same as in absence of macrophage infection. Upon an increase in
the probability of macrophage infection, pneumocyte survival decreased and viral load
clearance time increased.
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Figure 3. Influence of macrophage infection probability ρ on the course of disease. (a) The dependence
of the viral response dynamics for different probabilities of macrophage infection ρ. (b) The depen-
dence of the pneumocyte dynamics for different probabilities of macrophage infection ρ. (c,d) The
dependence of the macrophage dynamics for different probabilities of macrophage infection ρ.

In order to determine the sets of conditions in which ADE could occur in the course of
SARS-CoV-2 infection, we performed complete model simulations for sets of parameters
with varied pre-existing antibody concentrations, dissociation constants for the antigen–
pre-existing antibody complex and probabilities of macrophage infection (Figures 3–5).
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Figure 4. Influence of pre-existing antibodies with different macrophage infection probabilities on
possible ADE occurrence. (a–c) Viral load dynamics (a), pneumocyte number (b) and macrophage
kinetics (c) with different macrophage infection probabilities (Abold = 109). (d–f) Viral load dynamics
(d), pneumocyte number (e) and macrophage kinetics (f) with different macrophage infection proba-
bilities (Abold = 1011). (g–i) Viral load dynamics (g), pneumocyte number (h) and macrophage kinetics
(i) with different macrophage infection probabilities (Abold = 1013). (j–l) Viral load dynamics (j), pneu-
mocyte number (k) and macrophage kinetics (l) with different macrophage infection probabilities
(Abold = 1015).

First of all, we investigated the influence of pre-existing antibody concentration on
the course of disease (Figures 4 and S5) for a given probability of macropage infection (ρ).
For ρ < 3 × 10−4, ADE was not observed (the percentage of dead pneumocytes did not
exceed levels 3% higher than with the course of disease without macrophage infection; this
situation occurred with extremely high antibody concentrations 1014 < Abold < 1015). For
ρ > 3 × 10−4, ADE occurred only if the concentration of pre-existing antibodis was high
enough (Abold > 1010).

Secondly, we estimated the role of the antigen–pre-existing antibody complex dis-
sociation constant (Kd) in possible ADE occurrence (Figures 5 and S6). Interestingly, the
influence of Kd on the course of disease was depended on the macrophage infection proba-
bility ρ (see Texts S3 and S4 in the Supplementary Materials for details). For ρ < 3 × 10−4,
the proportion of surviving pneumocytes increased upon a decrease in Kd. In this case, the
maximal number of dead pneumocytes was no greater than their amount in the absence
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of antibodies and possible macrophage infection (Figure 5). For ρ > 3 × 10−4, the highest
level of pneumocyte death was observed at the lowest Kd. In all these cases, the degree of
Kd impact on pneumocyte survival depended on the pre-existing antibody concentration
(Figure 5).
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ble ADE occurrence. (a–c) Viral load dynamics (a), pneumocyte number (b) and macrophage kinetics
(c) with different Kdold (Abold = 109). (d–f) Viral load dynamics (d), pneumocyte number (e) and
macrophage kinetics (f) with different Kdold (Abold = 1011). (g–i) Viral load dynamics (g), pneumocyte
number (h) and macrophage kinetics (i) with different Kdold (Abold = 1013). (j–l) Viral load dynamics
(j), pneumocyte number (k) and macrophage kinetics (l) with different Kdold (Abold = 1015).

3. Discussion

The goal of our study was to theoretically determine the conditions for ADE occurrence
in COVID-19.

First of all, we constructed an antibody response generation model that could describe
antibody dynamics in COVID-19. We modified the mathematical model [36] for ADE in
Dengue fever using parameters corresponding to SARS-CoV-2 infection to describe the
observed viral load kinetics. The constructed model was able to describe the experimental
viral load dynamics [1], seroconversion times and antibody concentrations [34]. We ana-
lyzed the influence of key parameters on the course of the disease (Figure 2). We found
that an increase in the initial viral load induced an increase in the maximum viral load
and caused an earlier rise and decline in the viral load. This result corresponds with the
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predictions of other SARS-CoV-2 mathematical models [37]. For other type of virus (in-
fluenza), an increase in the initial viral load led to a time-shift of the peak without changing
its magnitude [38]. This difference could be explained by differences in the assumed host
cell behavior; specifically, in our model, there was no mechanism for pneumocyte recovery
after infection, unlike other mathematical models for respiratory infections [38,39].

In this study, we assumed that ADE occurs if the amount of dead pneumocytes is
higher in the presence of pre-existing antibodies. It should be noted that, in contrast to pre-
viously published models [36], in the mathematical model constructed ere the pneumocyte
damage varied from patient to patient (10–90%) and never reached 100%.

Using the complete model, we found that the probability of macrophage infection
regulated the impact of antibody concentration over the course of disease (Figures 4 and 5).
At any probability of macrophage infection, the concentration of pre-existent antibodies
played a key role in antibody-mediated enhancement of disease. This result corresponded
with a previously predicted high impact of antibody concentration on ADE occurance [39],
although in that work no explicit immune cells were included. Our calculations demon-
strated that, with moderate macropage infection probabilities, ADE was possible only
for the highest antibody concentrations (Figures 4 and S5). Similar results were obtained
experimentally for dengue disease [40]. The lower the concentration of antibodies in the
body was, the higher the probability of macrophage infection required in order to cause
significant changes in the kinetics of the viral load and survival of pneumocytes. When the
concentration of antibodies was high, the proportion of infected macrophages increased.
However, in such cases, antibodies began to have a neutralizing effect. As a result, the
number of dead pneumocytes in cases with possible infections of macrophages and a high
antibody titer was no greater than the number of dead pneumocytes in cases where the
level of antibodies was low and there was no antibody-mediated infection of macrophages.
Thus, even if an antibody-dependent macrophage infection is detected, it is most likely that
the lungs will not be more affected than in the course of the disease in the absence of ADE.

The antigen–antibody affinity can affect the initiation of ADE, but its influence on the
course of the disease is controlled by the level of antibodies in the body. A marked decline
in pneumocyte survival will only be observable when the binding affinity between the viral
epitope and the antibody is very high. This suggestion is indirectly supported by a clinical
case in which an acute myeloid leukemia patient might have suffered ADE shortly after
being treated with high-affinity anti-COVID-19 therapy [41].

However, a situation in which the antigen–antibody affinity for the newly synthesised
antibodies is lower than for pre-existing antibodies seems extremely unlikely, significantly
lowering the probability of ADE after vaccination. Indeed, consistent with [42,43], it can
now be assumed that anti-SARS-CoV-2 vaccination does not aggravate the disease course
in COVID-19.

There is a set of experimental findings that were not taken into account by the de-
veloped model and which could have possibly made it underestimate the effect that
non-neutralizing antibodies have on the course of disease. First, it is noteworthy that
lung epithelial cells also express high levels of FcγRIIa, and non-neutralizing antibodies
might facilitate their infection [44]. In addition, COVID-19 patients have been reported
to have a strong IgG antibody response to the nucleocapsid protein, which cannot neu-
tralize SARS-CoV-2 at all, resulting in delays in virus clearance and an increased severity
of infection [44].

Another point to be discussed is the development of ADE upon treatment with con-
valescent plasma. Although the mathematical model proposed here cannot be directly
applied in this case, some data can be obtained from such studies. Altogether, the model
results are in accordance with the data from [45], where it was shown that, in a cell culture,
donor and patient plasma could induce ADE, but its probability did not differ between
plasma samples from convalescent, mild, moderate and severe patients. In contrast to this
data, a study on the transfer of neutralization activity with COVID-19 convalescent transfu-
sion [46] demonstrated the absence of ADE upon transfusion. Based on our calculations,



Int. J. Mol. Sci. 2022, 23, 11364 10 of 19

we speculate that convalescent plasma transfer is not likely to change the course of disease,
but other plasma transfusion risks, such as hemolytic transfusion reactions, anaphylactic
reactions, transfusion-related acute lung injury and allergic reactions, might occur [47].

4. Materials and Methods
4.1. General Principles for the Construction of the Mathematical Models

The models contained several compartments, with the assumption of well-mixing
of species inside each compartment (homogeneous models). The models were based on
ordinary differential equations derived from the laws of chemical kinetics (the mass action
law, Michaelis–Menten kinetics or Hill equation). The schemes of the models are given in
Figure 1. Model parameters were taken from the literature data or estimated based on the
available experimental data, as explained in the Supporting Information.

In order to describe the ADE phenomenon through mathematical modeling, we
defined ADE in the text as a drastic drop in the concentration of healthy pneumocytes
(more than 5% in comparison to the course of disease without macrophage infection).

4.2. Model Ab—The Antibody Response

Model Ab was constructed to describe interactions between the pathogen (a virus
particle) and the antibody-production system (Figure 6a). It included induction of Ab
synthesis in lymphoid organs, binding of the Abs to viral particles and Ab-dependent
degradation of viruses. Model Ab comprised two different compartments: lungs and
lymphoid organs. B-cell activation, proliferations, differentiation and antibody-production
occur in lymphoid organs, whereas viral interaction with antigen-presenting cells and
antibodies takes place in the lungs. We assumed that the virus–antibody complex formed
between a single viral protein (epitope) and an antibody independently of steric interference
between the proteins on the viral surface.

In model Ab, it was assumed that the number viral particles (Virus) was proportional
to the number of SARS-CoV-2 RNA in patient samples. The kinetics of the SARS-CoV-2
RNA number in saliva was set analytically as:

FRNA = ARNA ∗
1

1 + e−
t−x0+

w1
2

w2

∗ (1− 1

1 + e−
t−x0−

w1
2

w3

), (1)

where FRNA is the concentration of SARS-CoV-2 RNA, t is the model time and ARNA, x0,
w1, w2 and w3 are parameters required to better fit the experimental data [34]. Numerical
values of these parameters are represented in Table S1. It was assumed that the parameter
w3 was specific for individual patients. Individual parameter values are represented in
Table S6.

In the frame of model Ab, we assumed that each SARS-CoV-2 virus particle had
exactly 25 S proteins on its surface and each protein on the virus could bind antibodies
independently [48]. Thus, the number of viral particles was proportional to the sum of the
viral epitope bound with the antibody (Va) and the free viral epitope (Vf). Subsequently,
the number of free viral epitope could be described with the following formula:

Vf = βRNA ∗ FRNA −Va, (2)

where βRNA is the constant of proportionality between the SARS-CoV-2 RNA number and
the amount of free viral epitopes. It was assumed that this parameter implied the specificity
of the viral kinetics in individual patients. Individual parameter values are represented in
Table S2.
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Figure 6. Schematic representations of the models. (a) The scheme of model Ab—antibody generation.
The model describes the stimulation of the antibody-producing system after an interaction with a
pathogen. Activation of B-cells by some antigen-presenting sites (APSs) and their differentiation
into antibody-secreting plasma cells and memory B-cells occur in lymphoid organs. The APSs occur
in response to the infection. In the absence of pathogens, APSs are in the inactivated state (yellow
cycle), and they change the activated state (orange cycle) after infection of the body. (b) The scheme
of model Cv—viral infection of the alveolus. The model describes the processes of pneumocyte
and macrophage viral infection and virus degradation through the immune system and thermal
degradation. (c) The scheme of the complete model, which is the combination of model Ab and
model Cv. Black solid arrows denote transitions between different states and grey dashed arrows
denote indirect interactions.
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In model Ab, it was assumed that the clearance rate of the epitope–antibody complex was
approximated by the Michaelis–Menten formula, as described in the following equation:

dVa
dt

= kv1 ∗Vf ∗ Ablung − kv−1Va− Cv1

Cv2 + Va
Va (3)

where Ablung is the concentration of antibodies in the lungs; kv1 and kv−1 are the epitope–
antibody association and dissociation rates, respectively; cv1 is the maximal rate of clearance
of viral protein–antibody complexes; and cv2 is the half-decay constant.

The next equations for the model describe the Ab production in the response to a
viral load. Formation of the long-term immune response is a complex process governed
by multiple factors, such as the number of antigen-presenting cells, T-cell help, the area
of contact between T- and B-cells on the border of lymph nodes, etc. [48]. In order to
avoid excessive complexity, we unified all of these factors through the introduction of
antigen-presenting sites (APSs). APSs are represented for the lungs and lymphoid organs.
Lung APSs can exist in two states: neutral (Ap) and activated (APSlung). Activation of APSs
occurred in the lungs when viral epitopes interacted with antigen-presenting cells. B-cells
could be activated in the lymphoid organs. Transition of activated antigen-presenting sites
in the lung (APSlung) into activated antigen-presenting sites in lymphoid organs (APSlo)
occurred in accordance with the law of mass action. In the absence of a pathogen, all sites
were assumed to be in a neutral state, Ap, and they could not affect B-cell functioning.
The dynamics of neutral APSs and activated APSs in lungs and lymphoid organs can be
described by the following equations:

dAp
dt

= χap(Ap0 − Ap)− Ap ∗
βapm ∗Vf

ϕ + Vf
(4)

dApslung

dt
= Ap ∗

βapm ∗Vf

ϕ + Vf
− ν

(
ks1 ∗ Apslung − ks−1 ∗ Apsl0

)
− δap Apslung (5)

dApslo
dt

= ks1 ∗ Apslung − ks−1 ∗ Apsl0 − δapm Apslo (6)

where χb is the generation and degradation of neutral APSs in the absence of the virus
(homeostasis rate of neutral APSs); Ap0 and Ap are the initial and transient concentrations of
neutral APSs; δap and δapm are the rates of APSlung and APSlo deactivation, correspondingly;
the terms βapm ∗ Ap ∗ Vf/(ϕ + Vf) indicate the rate of APSlung activation, βapm is the maximal
activation rate; and ϕ is the half-saturation constant for APSlung activation. ϕ was estimated
from an existing model [49,50]. The terms ks1 and ks−1 denote rates of APS transition
between two compartments: lungs and lymphoid organs. ν is the conversion coefficient
reflecting the lymphoid organ:lung volume ratio.

Activation of B-cells was assumed to occur in a separate compartment in lymphoid
organs, such as the spleen or lymph nodes [48]. After interaction with activated sites (APSlo),
naive B-cells (B) proliferated and differentiated into short-lived IgM-producing plasma
cells, long-lived IgG-producing plasma cells (Pl) and memory B-cells (Bm) (Figure 5a).
We focused on B-cells, which produce high-affinity class-switching IgG-antibodies. The
possibility of B-cell differentiation into short-lived IgM-producing plasma cells was also
included in the model. In the frame of the model, we assumed that B-cell proliferation and
differentiation into short-lived plasma cells occurred after their contact with APSs, whereas
differentiation into long-lived plasma cells and memory B-cells occurred after a time delay.
The complete equation for the concentration of B-cells is the following:

dB
dt

= χb(B0 − B) + πb ApsloB− ApsloB
(

τn ∗ πpl + τn ∗ πbm + πps

)
(7)

τn = {1, i f (t− t0) > tnaive 0, i f (t− t0) ≤ tnaive
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where B0 and B are the initial and transient concentrations of B-cells; χb is the B-cell
generation and degradation in the absence of the virus (homeostasis rate of B-cells); πb
is the naive B-cell proliferation rate (reflecting the increase in B-cell proliferation upon
contact with APSs) [51]; the π parameters reflect probabilities of different B-cell fates upon
contact with the APSs: πpl—into plasma cells, πbm—into memory cells and πps—into
short-lived Ig-M-producing plasma cells; τn is used to introduce a time delay between the
appearance of APSs and the initiation of naive B-cell differentiation into long-lived plasma
cells and memory B-cells [48]; t0 is the moment when APSlo becomes positive; and tnaive is
the lag-time required for B-cell differentiation.

The next equation for model Ab described the dynamics of IgG-producing plasma
cells (Pl):

dPl
dt

= τn πpl ApsloB + τmemπml ApsloBm − δpl Pl (8)

τmem =
{

1, i f (t− t0) > tmemory 0, i f (t− t0) ≤ tmemory

where δpl is the rate of plasma cell degradation and τmem reflects the time lag (tmemory)
between the appearance of APSs (at t0) and the initiation of memory B-cells differentiation
and proliferation [48].

As well as the formation from B-cells and production of plasma cells, the memory
B-cells were assumed to be capable of reproduction with saturation [48]. Thus, the memory
cell dynamics were described by the following equation.

dBm

dt
= kbm1Bm

(
1− Bm

kbm2

)
+ τnπbm ApsloB− τmem πml ApsloBm (9)

where kbm1 and kbm2 represent the Bm growth rate and the lymphoid organ maximum
capacity, respectively.

The concentration of antibodies in the lymphoid organs and body fluids (Ab) could be
described with the following equation:

dAblo
dt

= αpl Pl − ka−1 ∗ Ablo + ka1 Ablung − δA Ablo (10)

where αpl denotes the rate of IgG generation by long-living plasma cells [52] and δa is the
natural decay rate of antibodies (Alo and Alung) [38,51]. The terms ka1 and ka−1 denote rates
of antibody transition between two compartments, the lungs and lymphoid organs.

dAblung

dt
= −kv1Vf ∗ Ablung + kv−1Va + ν

(
ka−1 ∗ Ablo − ka1 Ablung

)
− δA Ablung (11)

To compare the model predictions with experimental data on serum antibody lev-
els [34], we introduced into the model Ab parameters ω and Ig0, which indicate the
background level and a scaling coefficient that depended on the type of antibody test. Thus,
the relative IgG equaled ln(Ablo/Ig0+ω).

4.3. Model Cv—Propagation of Infection

Model Cv was constructed to describe the elimination of viral particles by alveolar
macrophages, viral entry and replication in pneumocytes and antibody-mediated viral
entry into macrophages (Figure 6b). Model Cv described events localized in a lung alveolus;
therefore, the parameters differed from model Ab.

The antibodies were assumed to be produced by plasma cells, the concentration of
which could be described by a simplified version of Equation (8):

dPlmod
dt

= κb + αBPlmod ∗Virus− µBPlmod (12)
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where κb and µB are the plasma cell production and degradation rates and αB is the
rate of plasma cell proliferation upon contact with viral particles [36]. As antibodies are
produced by plasma cells, in model Cv we assumed the concentration of antibodies to be
proportional to the concentration of plasma cells and, in the following equations, Plmod is
used to indicate Ab concentration and Plmod * Virus is used to indicate the concentration of
virus–antibody complexes.

In model Cv, macrophages were assumed to be in two states: healthy (MA) and
infected (M*). Healthy macrophages engulfed viral particles without changing their con-
centration or engulfed virus–antibody complexes and became infected. In the model, it was
assumed that the infected macrophages could recover [36] and both healthy and infected
macrophages could degrade. With the described assumption, the equations for MA and M*
were the following:

dMA
dt

= χM(M0 −MA) + σM∗ − ραcPlmod ∗Virus ∗MA (13)

dM∗

dt
= ραcPlmod ∗Virus ∗MA − (σ + δI)M∗ (14)

where χM is the macrophage generation and degradation in the absence of a virus (home-
ostasis rate of macrophages); δI is the death rate of infected macrophages (δI ≥ χM); σ
is the rate of infected macrophage recovery; ρ denotes the probability of macrophages
becoming infected; and αc is the rate for antibody–virus complex formation and subsequent
engulfment, expressed as a step function:

ac = ac0 ∗
t5,5

t5,5 + (tser ∗ 2)5,5

where αc0 is the maximal constant rate, t is the model time and tser is the day of seroconver-
sion. The function of the rate for antibody–virus complex formation and the corresponding
parameters were chosen to allow approximation of antibody kinetics with model Ab. We
used tser ∗ 2 to acquire a better approximation of the antibody kinetics.

Healthy pneumocytes (Pn) were assumed to be the main virus-producing cell. They
could engulf the virus, become infected (Pi) and, consequently, die [53]:

dPn

dt
= −βin f Pn ∗Virus (15)

dPi
dt

= βin f Pn ∗Virus− δpPi (16)

where βinf is the rate of infection of pneumocytes and δp is the death rate of
infected pneumocytes.

Thus, viral concentration was described with the following equation:

dVirus
dt

= pPi − αcPlmod ∗Virus ∗MA − (αv MA + δv) ∗Virus (17)

where p is the rate of virus production in pneumocytes, αv is the rate of viral phagocytosis
by the macrophages and δv is the rate of macrophage-independent viral clearance.

We assumed that the number of viral particles was proportional to the RNA concen-
tration obtained by PCR in COVID-19 patients. Parameter αRNA was added to connect
viral RNA concentration in sputum to the actual virus concentration in the lungs. It was
individually chosen simultaneously for all patient data and selected to be in the range from
100 to 0.001.
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4.4. Complete Model—A Combination of Model Ab and Model Cv

The complete model was designed to combine the antibody production from model
Ab and the production of viruses and infection of macrophages from model Cv. The
scheme of the model is given in Figure 6c. The required modifications of the models
included scaling of the volumes and concentrations, addition of macrophage-independent
degradation of both free and antibody-bound virus epitopes, conversion of viral particle
concentrations (Viral) from model Cv into viral epitope concentration (V) from model Ab
and direct inclusion of the virus–antibody complexes (Va) with the equations for MA and
M*. Therefore, Equations (2), (3), (13) and (14) were modified as follows:

dV
dt

= π∗V Pi − kv1V ∗ Ablung + kv−1Va− (αv ∗MA +
Cv1

Cv2 + V
)V (18)

dVa
dt

= kv1V ∗ Ablung − kv−1Va− α∗c ∗MA ∗Va (19)

dMA
dt

= χM(M0 −MA)− ρ∗α∗c VaMA + σM∗ (20)

dM∗

dt
= ρ∗α∗c Va ∗MA − (σ + δI)M∗ (21)

Parameters πV* and ρ* were recalculated from p and ρ by dividing them by the
number of S proteins on the viral particle. Here, we did not include viral production by
macrophages in Equation (18). In some studies, SARS-CoV-2 replication in immune cells
has been shown to be abortive, as no viable virions were produced [25–27].

In the complete model, the infection probability was linked to the features of the anti-
bodies indirectly because it is currently assumed that a set of antigen–antibody interaction
properties are suspected to cause ADE [15,54], and one of the most important properties of
IgG antibodies is their capacity to engage and activate specific FcγR pathways, which does
not depend on their affinity [16].

4.5. Model Integration, Analysis and Parameter Estimation

The systems of ordinary differential equations were integrated using the LSODA
method [55,56] in COPASI software (http://www.copasi.org, accessed on 1 January 2020).

Estimations of model parameters were undertaken separately for model Ab and model
Cv based on experimental data or previously published models, as described below and in
the Supporting Information (Texts S1 and S2). Additional parameter adjustment for the
complete model was based on experimental data [1,35,57].

For model Ab, values for naive B-cell proliferation, antibody secretion by plasma
cells and antibody death rates were taken from published mathematical models and the
literature [38,51,58], as indicated in Tables S1–S4. Parameters for the antigen–antibody
complex formation were obtained from the average values for binding with monoclonal
antibodies [59]. The ranges for time lags tmemory and tnaive were calculated from known
data on lymphocyte physiology [60,61] and experimental results [34] (see Text S1 for the
calculation details).

For model Cv, parameters were either fitted for personal patient data [1] or taken
from [36] (Table S4).

For the complete model, the parameters πV* and δp were estimated from the data on
SARS-CoV-2 replication in human airway epithelial (HAE) cells [35]. The set of equations
for HAE cell infection is represented in Text S3 in the Supplementary Materials. The
parameters for the macrophage activity were calculated based on experimental data and
published models [1,38,57], as described in Text S2 in the Supplementary Materials.

The analysis of the models consisted of time-course simulations, analysis of steady
states performed using Newton’s method [55] in COPASI and sensitivity analysis [55,62,63].

http://www.copasi.org
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For the latter, we calculated sensitivities using the “one-at-a-time” approach and the
following formula:

Si
j =

∆lnln Ri
∆lnln pj

(22)

where Ri indicates the model response (Va, Sa, Ab, B, Lp, Bm at time 30 days for model Ab)
and pj-s are the models parameters. The detailed results are represented in Table S5.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231911364/s1. References [1,34–36,38,49,51–53,57–61,64–78]
are cited in the Supplementary Materials.
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