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Abstract

Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is
especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We
characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction
network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and
confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant.
Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced
modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time
autocorrelation function (ACF) of concentration fluctuations around a non-equilibrium steady state of the reaction network.
Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and
confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear
Fokker–Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced
modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic
simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from
its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy
(FLIM) or fluorescence-correlation spectroscopy (FCS) to measure confinement and burst in systems with known reaction
rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.
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Introduction

The workhorse of much research on chemical kinetics has been

macroscopic reaction-rate equations. These are deterministic,

mean-field descriptions that treat molecular populations as

continuous and use macroscopically determined rate constants.

Hence they do not always provide an accurate description of

reaction kinetics [1,2]. This lack of accuracy occurs for nonlinear

reactions if the population (copy number) of the various chemical

species is small enough such that standard errors are not negligible

[3–9]. These conditions are found, for example, in confined

systems that fall short of the thermodynamic limit [10], and in

driven reaction systems [11–13]. In them, the noise due to

molecular discreteness becomes apparent and acquires correla-

tions to give a departure from the behaviour predicted by

macroscopic reaction-rate equations [1,12,14–16].

In this paper we study a representative model of non-linear

reaction networks, kept at a non-equilibrium steady state by

exchanging input and output with an external reservoir. The input

is done in bursts. In a reaction system with burst input

=0
k

bA into a reactor of finite volume V (k is the

macroscopic reaction rate), the variance at a non-equilibrium

steady state is O(b=V) (see Eq. (18) in ‘‘Effect of volume and burst on

the concentration variance’’ in ‘‘Materials and Methods’’). Several

environments might host mechanisms of the type burst-input–non-

burst-output by non-diffusive, driven processes, such as vesicular

traffic in the biological cell [17]. The input–output may be to and

from compartments that have physical walls or intersticies caused

by excluded volume [18]. In particular, this mechanism occurs in

the dynamics of membrane-protein domains (rafts) in contact

with a metabolic network [19,20]. Reaction-rate equations do

not discriminate (i) between a stoichiometric (burst) input

=0
k

bA and a non-stoichiometric input =0
bk

A, or

(ii) the volume V of the compartment.

We account for these effects via chemical master equations,

which can be solved using analytical approximations [6,21,22] or

generating exact trajectories using Gillespie-type stochastic

simulation algorithms (SSAs) [23,24]. We use these tools to study

the effects of two noise sources — (i) low copy number as created

by finite volume V and (ii) input stoichiometry b — on the

relaxation kinetics of non-linear reaction networks. Specifically, we
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study the time autocorrelation function (ACF) of concentration

fluctuations around a non-equilibrium steady state via its integral

(lifetime) and derivatives. For this we use (i) a linear-noise, Fokker–

Planck approximation to the master equation via a van Kampen

expansion in the system volume [21,22] and (ii) the full master

equation via the partial-propensity direct method (PDM) [24,25].

We show that the lifetime of chemical species is modulated by

burst input b and volume V (or confinement V{1). We quantify

lifetime by the autocorrelation time of the concentration

fluctuations. This autocorrelation is measured in fluorescence-

lifetime imaging microscopy (FLIM) or fluorescence-correlation

spectroscopy (FCS) [26]. Analysis of FLIM and FCS spectra,

however, is based on deterministic reaction rate equations, which

are only valid in large volumes and do not reflect the effect of burst

input. We show that confinement increases the lifetime of all

reactants in a non-linear reaction. Burst either increases or

decreases the lifetime. Furthermore, we show that the derivatives

of the ACF of the concentration fluctuations are affected in

opposite ways by burst b and confinement V{1, thus discriminat-

ing between the two noise source. This directly links the present

results to experimental application in two ways: (i) Knowing the

lifetime modulation introduced by confinement and burst allows

accurately measuring reaction rates in experimental systems.

Lifetime is a measure of reaction flux, which is a function of the

reaction rates. (ii) Derivatives of the ACF can be used to

discriminate between the confinement- and burst-induced effects.

We hence believe that our findings are useful in order to (i) Use

FLIM or FCS to measure input stoichiometry b and volume V when

reaction rates are known. (ii) Correct for the effects of burst input

and volume when experimentally measuring reaction rates. (iii)

Understand the mechanisms that deviate stochastic kinetics from its

deterministic counterpart and choose the right level of description

when modelling non-linear reaction networks. (iv) Account for the

influences of confinement and burst in formulating coarse-grained

governing equations of non-linear reaction models.

We are not aware of previous works tackling the relaxation

kinetics of stochastic non-linear reaction networks around a non-

equilibrium steady state at arbitrarily low copy number as created

by finite volume and driven by a burst input mechanism.

In Section ‘‘Model’’ we introduce the model and its assump-

tions. Section ‘‘Low confinement: the linear-noise approximation’’

expands the master equation in a van Kampen volume expansion

in the linear-noise approximation. From this we study time

autocorrelations, which show modulation by the burst b alone. In

Section ‘‘Beyond the linear-noise approximation: the full master

equation’’, using the PDM SSA we numerically generate

population trajectories of the full master equation as system

volume V is shrunk and burst b is increased. The autocorrelations

of these trajectories have those of the linear-noise approximation

as a baseline. Section ‘‘Discuss’’ provides analysis and concludes.

Results

Model
As a representative model of non-linear reaction networks out of

equilibrium we consider driven colloidal aggregation, for three

reasons: First, it is a complete model since this reaction network

comprises all three types of elementary reactions: bimolecular,

source (input), and unimolecular [27], rendering the results

obtained here valid also for other reaction networks. Second, it

is a well-characterised model as it has been studied for decades,

notably from the 1916 works of Smoluchowski on coagulation and

fragmentation. Third, it is a relevant model for many real-world

phenomena of practical importance, e.g., in the biological cell

(receptor oligomerisation, protein and prion-peptide aggregation,

cytoskeletal actin & tubulin polymerisation), in nanotechnology

(nano-particle clustering, colloidal crystallisation), in food engi-

neering and the oil industry (emulsion stabilisation, emulsification

in porous media), and in metallurgy (dealloying).

We use the chemical master equation to solve the reaction

kinetics, neglecting molecular aspects underlying nucleation and

growth. Our system is spatially homogeneous (well-stirred) as we

disregard structural, spatial, or solvent effects. We also factor out

the role of (i) densification upon decrease in system volume, as the

total volume fraction is kept constant, and (ii) conformational

kinetics, as we do not consider intra-molecular degrees of freedom.

In addition, we study our system at a steady state that may be

arbitrarily far away from thermodynamic equilibrium as our

results do not impose any (semi-)detailed balance condition on the

SSA’s Markov chain.

Denoting aggregates containing n particles as species Sn the

aggregation reaction network is:

1
kon

bS1 b~1,2, . . .

SnzSm

k
Snzm nzm~2, . . . ,N

Sn

koff

1 n~1, . . . ,N, ð1Þ

where the k’s are macroscopically measurable reaction rates as

opposed to specific probability rates [23,24]. This system describes

the aggregation of monomers S1 into multimers Sn of maximum

size N. Monomers are input into the finite reaction volume in

bursts of arbitrary size b. They then form dimers, which can

further aggregate with other monomers or multimers to form

larger aggregates. Aggregation of multimers happens at a constant

rate k for all possible combinations of multimer sizes n and m. In

addition, aggregates of any size are taken out of the reaction

volume at constant rate koff , enabling the system to reach a non-

equilibrium steady state. For simplicity we consider constant k’s.

The model could readily be generalized to reaction rates knm that

depend on the aggregate sizes [21,28]. We chose not to include

this generalisation in order to keep the presentation and notation

simple, and to establish the baseline effects of volume and burst in

the absence of size dependence. Our results will remain valid also

in models that explicitly account for size-dependent reaction rates.

If Xn is an extensive variable denoting the number of aggregates

of size n (population of Sn) contained in the system volume V, the

concentration is xn:Xn=V. The master equation and its

macroscopic counterpart for our model system are then given by

Eqs. (20) and (21), respectively (see ‘‘Chemical master equation

and its macroscopic counterpart for burst-input aggregation’’ in

‘‘Materials and Methods’’). We impose that the average total

volume fraction w:
PN

n~1 nvSxnTs should not vary in time, where

v is the volume of each particle and S:Ts denotes average at steady

state. This is satisfied if particle (monomer) influx bcon and particle

efflux V
P

n nSxnTsc
off balance each other, where the c’s are

specific probability rates, con~Vkon and coff~koff . This leads to

the mass-balance condition

vbkon=koff~w: ð2Þ

We isolate the role of V from that of densification by keeping w
constant as we vary V across systems of fixed b, v, and koff . We

Confinement and Burst Modulate Reaction Kinetics
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isolate the role of stoichiometry b from that of influx bkonV by

keeping bkon constant as we vary b and V across systems of fixed v
and koff . Under mass balance and bkon~const., the macroscopic

Eq. (21) (see ‘‘Chemical master equation and its macroscopic

counterpart for burst-input aggregation’ in ‘‘Materials and

Methods’’) is insensitive to burst b and confinement V{1 for a

fixed k. Hence the deviation in our stochastic kinetics from the

macroscopic kinetics arises solely due to noise sources b and V{1.

The master equation associated with the reactions in Eq. (1)

provides the time evolution of the probability distribution P(X,t)
of the population vector X: X1, . . . ,XNð Þ (see Eq. (20) in

‘‘Chemical master equation and its macroscopic counterpart for

burst-input aggregation’ in ‘‘Materials and Methods’’). We solve it

approximately using (i) a van Kampen expansion at the linear-

noise, Fokker–Planck level, and (ii) numerically generating exact

trajectories of the master equation using an SSA. We compute the

ACF of the concentration of species Sn at steady state as

Cnn(t):S exnxn(0) exnxn(t)Ts=s2
xn
: ð3Þ

Here, 0 is a time origin at steady state, i.e. after the initial

relaxation period {?vtv0, where {? represents an arbitrary

origin in the past. S:Ts is an average at steady state over time

origins and independent stochastic trajectories, exnxn:xn{SxnTs is

the fluctuation, and s2
xn

~S exnxn(0) exnxn(0)Ts is the variance.

We compute the correlation time of an aggregate of size n as

tn:
ð?

0

Cnn(t)dt&
ðt|n

0

Cnn(t)dt, ð4Þ

where t|n is the first zero crossing. This is a measure of the average

decay time and we shall refer to it as lifetime of species Sn. We

shall show (in ‘‘Low confinement: the linear-noise approximation’’

in ‘‘Results’’) that the ACF may become negative due to

oscillations, which may make Eq. (4) unsuitable as a measure of

a correlation time. The frequency of these oscillations, however, is

small enough for our SSA trajectories to justify the approximation

in Eq. (4).

We also compute the decay-rate function of the ACF as

xn(t):{
d

dt
Cnn(t) ð5Þ

and the initial curvature of the ACF

Zn:
d2

dt2
Cnn(0): ð6Þ

These quantities serve as (curve) characteristics to study the effects

of b and V on the kinetics. In addition, they provide a connection

with experiments since they can directly be calculated from

standard FCS or FLIM read-outs.

In the following, we limit ourselves to a trimer system (N~3) as

the simplest aggregation reaction network that comprises all

elementary reactions: source reactions, unimolecular reactions,

and the two types of bimolecular reactions: homodimerisation and

heterodimerisation. This makes the characteristics of the ACF as a

function of burst and confinement applicable also for Nw3 and

for other non-linear reaction networks around a non-equilibrium

steady state. In our model, we set koff~1, v~0:01, k~1, and

w~0:1. We also limit ourselves to (b,V)-regimes where population

fluctuations are not larger than their mean. We estimate the

bounds of this regime as follows: The mean number of particles at

steady state is wV=v~10V. From Eq. (18) we see that the standard

deviation at steady state without any aggregation, i.e. for a system

containing only monomers, is proportional to (bwV=(2v))1=2 (see

‘‘Effect of volume and burst on the concentration variance’’ in

‘‘Materials and Methods’’). We impose the mean as an upper

bound for twice the standard deviation. This imposes a b-

dependent lower bound on the system volume: wV=vw2b.

Low confinement: the linear-noise approximation
In this section we analytically approximate the master equation

associated with the reactions in Eq. (1) by a linear-noise (LN)

Fokker–Planck equation [22]. The LN approximation of the

master equation is valid at low confinement, i.e., for finite but large

enough system volumes. We do this in order to (i) obtain a baseline

kinetics on top of which to lay out the full-master-equation kinetics

provided in the next section (see ‘‘Beyond the linear-noise

approximation: the full master equation’’), (ii) obtain analytical

functions for the ACF, and (iii) reach the large-volume, low-

confinement limit where modulation of the ACF by V vanishes,

thus isolating the dependence on b.

For the sake of conciseness we provide details of the procedure

in ‘‘Materials and Methods’’ (see ‘‘Linear-noise approximation of

the chemical master equation for burst-input aggregation’’). The

approximation consists of retaining leading-order terms in a

Taylor expansion of P(X,t) in the small parameter V{1=2. The

latter enters after assuming that the noise scales with system

volume V as exnxn~V{1=2en, where en is a random variable evolved

by a master equation [15,21,22].

In the LN approximation, (i) the noise en is Gaussian, (ii) the

mean SxnT obeys a macroscopic reaction-rate equation, and (iii)

the moments of P(X,t), including the ACF, do not depend on V
[22]. Despite this, the LN approximation remains useful as there

the moments do depend on the burst b, as we show in this section.

For the sake of simplicity we restrict ourselves to N~3.

Considering that in the LN approximation the covariances

S exnxnfxmxmTs coincide with the second moments SxnxmTs because

the mean noise is zero, we solve the time evolution of the first and

second moments (See Eqs. (28), (29) in ‘‘Linear-noise approxima-

tion of the chemical master equation for burst-input aggregation’’

in ‘‘Materials and Methods’’) around steady state to obtain the

ACF at steady state,

C11(t)~f1,1e{C1tzf1,2e{C2t

C22(t)~f2,1e{C1tzf2,2e{C2t

C33(t)~f3,1e{C1tzf3,2e{C2tzf3,3e{C3t: ð7Þ

The coefficient fi,j ,i,j~1, . . . ,N, is a ratio of two functions that are

linear in the covariances. The rates Cj , j~1, . . . ,N, are

2C1:2koffz3kxs
1zkxs

2{k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{3xs2

1 z6xs
1xs

2zxs2
2

q

2C2:2koffz3kxs
1zkxs

2zk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{3xs2

1 z6xs
1xs

2zxs2
2

q

C3:koff , ð8Þ

Confinement and Burst Modulate Reaction Kinetics
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where �xxs
n is the steady-state macroscopic concentration of species

Sn obtained by solving Eq. (21). Note that C1 and C2 may have an

imaginary part, which will give the ACF an oscillatory

contribution introducing anticorrelation at late times. By integrat-

ing Eq. (7) over ½0,?) we get the lifetimes,

t1~f1,1C
{1
1 zf1,2C

{1
2

t2~f2,1C
{1
1 zf2,2C

{1
2

t3~f3,1C
{1
1 zf3,2C

{1
2 zf3,3C

{1
3 , ð9Þ

where the integrals of Eq. (7) from their first zero-crossings up to

infinity are negligibly small (ReCn *> 4ImCn). The corresponding

integrals over ½t|n ,?) for the SSA-computed ACFs remain small,

as mentioned in the Section ‘‘Model’’.

The pre-factor fi,j ,i,j~1, . . . ,N, is a ratio of two functions linear

in the burst b because each covariance is linear in b. This is seen

by solving Eq. (29) (see ‘‘Linear-noise approximation of the

chemical master equation for burst-input aggregation’’ in

‘‘Materials and Methods’’) at steady state under mass balance

Eq. (2). As a consequence, fi,j ,i,j~1, . . . ,N , becomes b-indepen-

dent at large enough b, and so do the lifetimes. Figure 1(a) shows

how the lifetimes depend on burst. As burst increases from the no-

burst case b~1, monomer lifetimes decrease and multimer

lifetimes increase. As seen from Eq. (9), the lifetimes become b-

independent at large enough b, Fig. 1(b). This thus defines a high-b
region above b&300. It can also be seen from the general form of

Eq. (9) for N species that, for a non-linear reaction network at a

non-equilibrium steady state, tn will either increase or decrease

with b, except in zero-measure regions of parameter space where

tn stays constant.

Figure 2 shows the decay-rate function xn(t) for several burst

values. For monomers, x1(t) remains monotonic as burst increases,

with its maximum at t~0. For dimers, x2(t) becomes non-

monotonic above a threshold burst b&10, while for trimers the

threshold sets in before, at b&6. In other words, the decay-rate

function of the non-aggregating multimers (trimers) is more

sensitive to burst than that of the aggregating multimers (dimers).

Note that the maximum that develops shifts from being at t~0
towards later times as burst increases the time tx,max

n at which xn(t)
reaches its maximum. We define tx,max

n as the time of fastest decay

since the (absolute value of the) ACF slope is maximum at this

time.

In this section we have calculated the ACF from the linear-noise

approximation of the master equation, from which we obtained

the lifetimes. We observed that the ACF is a superposition of

exponentials with pre-factors modulated by the driving, thereby

obtaining the baseline of the burst-induced modulation of the

kinetics.

Beyond the linear-noise approximation: the full master
equation

We showed in the previous section how the ACF depends on

burst in the low-confinement limit. In this section we show how

higher confinement further modulates this ACF. We compute the

stochastic trajectories of the populations Xn as given by the full

master equation to show that shrinking the volume at high-enough

confinement further modulates lifetimes and the time of fastest

decay. In addition, we introduce the ACF’s initial curvature as a

further characteristic.

To generate stochastic trajectories from the full master equation

we use an efficient SSA [24]. For each parameter set we generate

an ensemble of 20000 independent trajectories at steady state.

Each trajectory is roughly 20(koff ){1 long, about 4 000 time steps

of step length 0:005(koff ){1. The initial condition for each

trajectory is Xn({?)~0, where {? represents an arbitrary

origin in the past and {?vtv0 is a period of relaxation to

steady state.

Lifetime
Figure 3 shows the lifetimes tn(V) as a function of volume V for

both no burst b~1 and a burst value in the high-burst region

observed in the LN limit, b~500. We see that shrinking V
increases t1 and t2, but not t3, and that this effect is more

appreciable at larger V as burst b increases.

Figure 1. Lifetime from the linear noise Fokker–Planck
approximation at low confinement. Lifetime (correlation time) as
a function of burst for (a) small and (b) large bursts, normalised to the
no-burst, unit-stoichiometry case b~1 for monomers n~1, dimers n~2
and trimers n~3. The region above ca. b~300 defines the high-b
region, where lifetimes become insentitive to b. Note that the lifetime
of monomer decreases whereas that of the dimer and trimer increases.
doi:10.1371/journal.pone.0016045.g001

Confinement and Burst Modulate Reaction Kinetics
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Figure 4 shows maps of lifetime versus volume for a burst range.

The trimers’ map shows that volume does not affect lifetime, as

also seen in Fig. 3. Figure 4 shows that for monomers and dimers,

increasing burst b extends the V-interval over which the lifetime

varies with V. This can also be seen in Fig. 3. In other words, burst

seems to act as an amplifier (multiplicative-noise parameter) for

confinement-induced lifetime modulation.

The monomer lifetime t1 deserves special attention because it is

the only lifetime that is non-monotonic in the burst b, see Fig. 4(a).

For any V fixed in the interval 100=V=1000, t1 decreases with b
and then increases back for b beyond some threshold bt

1. The

threshold bt
1, in turn, decreases with confinement V{1. The non-

monotonicity of t1(b) is a high-confinement effect because it does

not occur in the linear-noise Fokker–Planck limit, see Fig. 1. The

existence of the threshold bt
1, nonetheless, is not surprising because

Figure 2. (Colour) Decay-rate function from the linear noise
Fokker–Planck approximation at low confinement. Decay-rate
function xn(t) for several burst values b. (a) Monomers n~1. (b) Dimers
n~2. (c) Trimers n~3. For dimers and trimers there is a threshold burst
above which the xn(t) becomes non-monotonic in t. Furthermore, it
develops a maximum and it appears at later times with increase in burst b.
doi:10.1371/journal.pone.0016045.g002

Figure 3. Lifetime from the full-master-equation trajectories.
Lifetimes as a function of system volume V for constant burst b, each
normalised to its corresponding V~1000 system. (a) No burst, b~1. (b)
Higher burst, b~500 for monomers n~1, dimers n~2 and trimers n~3.
Note that the system becomes insensitive to V at large enough V, as
the linear-noise approximation predicts (see ‘‘Low confinement: the
linear-noise approximation’’ in ‘‘Results’’). As volume decreases, the
system departs from linear-noise behaviour. Note that trimers are
insensitive to volume as they are not a reactant in a non-linear reaction.
doi:10.1371/journal.pone.0016045.g003

Confinement and Burst Modulate Reaction Kinetics
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for monomers, confinement and burst cause opposing modula-

tions: confinement increases lifetime whereas, as seen from the LN

limit, burst decreases it. Since burst amplifies the confinement-

induced modulation of the lifetime, it acts as a {=z switch for it.

We can also view the problem from the perspective of how

confinement affects burst-induced lifetime modulation: varying b
while we fix V below the LN limit, see Fig. (4). In other words, by

looking into a hypothetical volume-dependent, high-confinement

version of Eq. (9). Note also that the lifetimes t2(b) and t3(b) are the

only lifetimes increasing with burst b in the LN limit. Recall that

further confinement V{1 allows the decreasing function t1(b) to

acquire a slope of the same sign of that of t2(b) and t3(b) for large

enough burst b. This suggests that confinement V{1 is an amplifier

of burst-induced lifetime modulation. This amplification, in turn,

must result from O(V{a) terms entering fi,j ,i,j~1, . . . ,N, and/or

O(Va) terms entering Cj ,j~1, . . . ,N, in Eq. (9) for some aw0.

In summary, we have shown that confinement V{1 increases

the lifetime of all species that are reactants in a bimolecular

reaction, i.e., trimers are insensitive to confinement. Confinement-

induced modulation lays on top of the burst-induced modulation

seen in the LN limit. It provides an effective modulation that may

lead to non-monotonic behaviour.

Derivatives of the ACF
Figure 5 shows representative samples of how the decay-rate

function xn(t) responds to volume shrinking at burst b~500. This

burst value corresponds to a monotonicity post-threshold value for

the multimers (n~2,3) at low confinement, see Fig. 2. Our aim

here is to study how confinement alters this low-confinement

behaviour. We look for qualitative features that correlate with

changes in volume V and stoichiometry b. These features may

possibly be used to develop quantitative methods to characterise

local volume and stoichiometry from FCS-sampled ACFs.

From Fig. 5 we can see that for monomers, x1(t) is monotonic.

For multimers (n~2,3), xn(t) is non-monotonic, making tx,max
n w0.

This change in monotonicity is a purely burst-induced modula-

tion, as opposed to confinement-induced, and exists already in the

LN limit (see ‘‘Low confinement: the linear noise approximation’’).

Note that confinement reduces tx,max
n , as opposed to burst, which

increases it, see Fig. 2.

Up to now we have studied two-dimensional datasets f(t,xn)g.
To facilitate feature detection in an FCS experiment, it would be

desirable to reduce dimensionality from two dimensions to one. To

this end we now study the ACF initial curvature Zn. Since

Zn~{
d

dt
xn(0), from Fig. 5 we see that Zn is monotonic for all

species as the volume shrinks.

Figure 6 shows the ACF initial curvature Zn for burst and

volume ranges. For monomers, confinement increases Z1, more

noticeably at larger burst. Moreover, Z1w0, reflecting the

monotonicity of x1(t). For multimers (n~2,3), on the contrary,

confinement reduces the ACF initial curvature from a positive to a

negative value as we go from the small-b–large-V region to the

large-b–small-V region. This reflects the non-monotonicity of

xn(t),nw1, beyond a burst threshold. In other words, the change

of monotonicity is a purely burst-induced modulation also at high

confinement. There is no qualitative difference between aggregat-

ing (n~2) and non-aggregating (n~3) multimers.

Discussion

In Table 1 we summarise the behaviour of the most relevant

characteristics we studied, which can be obtained a posteriori from

standard FCS or FLIM read-outs. This table may serve as a

reference for contrasting burst-induced and confinement-induced

modulations and be useful for later studies of the mechanisms

behind them. An immediate use may be to help discern whether

the noise source is burst-induced or confinement-induced.

The presence of oscillations implies that care must be taken

when calculating lifetimes. We have calculated them by integrating

the ACF up to its first zero crossing. This is only justified if the

frequency of the oscillations is low enough, as is our case, see Eq.

(4). For reaction networks showing non-negligible frequencies,

calculating lifetimes as the mean of the lifetime distribution could

be considered. This distribution could be obtained from the

distribution of the so-called ‘‘time to the next reaction’’, as

generated by the SSA [23,24], however requiring a suitable

definition for lifetime as a function of it.

Finally, including scission as a backward reaction in Eq. (1)

would not modify the qualitative behaviour presented in this

paper. This is because scission is a unimolecular reaction, whose

reaction degeneracy, and hence its propensity, is linear in the

population while the degeneracy for aggregation is non-linear

[23,24]. Consequently, scission would modify the populations at

the same rate for all reactants Snzm and would not introduce any

additional non-linearities. This is also confirmed by SSA

simulations (data not shown). Note that scission is not negligible

Figure 4. (Colour) Lifetime from the full-master-equation trajectories. Lifetimes normalised to their value at (b,V)~(1,1000). (a) Monomers
n~1, (b) dimers n~2, (c) trimers n~3. N.B.: The void region for small V corresponds to population fluctuations becoming larger than the mean.
Shown is an interpolation of data sampled at intervals (Db,DV)~(10,10).
doi:10.1371/journal.pone.0016045.g004
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for aggregates of low enough interfacial tension, whose equilibrium

in the absence of driving is not totally displaced to the right.

In summary, we have characterised fundamental properties of

the relaxation kinetics of a non-linear stochastic reaction network

around a non-equilibrium steady state. We have chosen as a model

a confined, open colloidal aggregation system of finite volume V.

The system is driven by a monomer influx in bursts of b monomers

and a non-burst multimer outflux. Specifically, we studied the

trimer aggregation network as the simplest aggregation network

comprising all types of elementary reactions. This makes our

observations on the relaxation kinetics applicable also to larger

aggregation networks and to other non-linear reaction networks

around a non-equilibrium steady state. We studied the role of (i)

low copy number created by confinement V{1 at constant volume

fraction, and (ii) burst influx b. Both of these are noise sources that

increase concentration fluctuations.

We accounted for these stochastic effects using (i) a linear-noise,

Fokker–Planck approximation, valid in the low-confinement limit,

and (ii) exact trajectories of the master equation from a stochastic

simulation algorithm, modelling high confinement. We used the

time autocorrelation function (ACF) of species concentrations to

study the relaxation kinetics towards the non-equilibrium steady

state.

We have proposed the following curve characteristics to study

the response of the ACF of a species n to confinement (inverse

volume) and burst: (i) the lifetime tn~

ð?
0

Cnn(t)dt, (ii) the decay-

rate function xn(t)~{
d

dt
Cnn(t), and (iii) the ACF’s initial

curvature Zn~
d2

dt2
Cnn(0).

We observed that increasing burst b monotonically increases or

decreases the lifetimes of all species, except in zero-measure

regions of parameter space where they stay constant. On the other

hand, confinement V{1 increases the lifetime of those species

undergoing bimolecular reactions (monomers and dimers), but

does not modulate those undergoing only unimolecular reactions

(trimers). This can lead to a competition between confinement-

induced and burst-induced modulations. From these observations

we hypothesise that the ACF is modulated through terms of the

form baV{b for some a§0,b§0.

Burst alone is responsible for making xn(t) non-monotonic for

some species. The peak in the non-monotonic xn(t), reflected by Zn,

is shifted in opposite directions by burst b and confinement V{1.

We believe that our results are useful to measure volume and

burst in systems with known reaction rates, or, alternatively, correct

for the effects of volume and burst when experimentally measuring

reaction rates using fluorescence-lifetime imaging microscopy

(FLIM) or fluorescence-correlation spectroscopy (FCS). Further-

more, our results help understand the mechanisms that deviate the

stochastic kinetics of non-linear reaction networks at high

confinement and burst from their deterministic counterpart.

Materials and Methods

Effect of volume and burst on the concentration variance
Consider the following chemical reaction

1
kon

bS1

Figure 5. (Colour) Decay-rate function from the full-master-
equation trajectories. Decay-rate function xn(t) for (a) monomers
n~1, (b) dimers n~2, and (c) trimers n~3 as volume shrinks at b~500.
t
x,max
2 is defined as the position of the maximum. Shrinking volume

alone reduces t
x,max
2 , as opposed to increasing b, see Fig. 1. Similar trend

is also shown by the trimers.
doi:10.1371/journal.pone.0016045.g005
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S1

koff

=0: ð10Þ

Also consider the step operator r acting on a function g of the

population X of S1 such that rg(X )~g(Xzr). The master

equation for the stochastic evolution of reaction (Eq.10) can then

be written as

LP(X ,t)

Lt
~Vkon( {b{1)Pzkoff ( {1)(XP) ð11Þ

where V is the volume in which the reaction takes place and

P(X ,t) is the probability distribution for having X molecules of S1

at time t.

Multiplying Eq. (11) by X and summing over all possible values

of X we get the evolution of the mean

dSXT
dt

~Vkonb{koffSXT: ð12Þ

We obtain the steady-state mean by setting the time derivative to

zero

SXTs~
Vkonb

koff
: ð13Þ

By multiplying Eq. (11) by X 2 and summing up over all possible

values of X we get

dSX 2T
dt

~Vkonb(bz2SXT){koff (2SX 2T{SXT): ð14Þ

By setting the time derivative to zero we see that at steady state

SX 2Ts{SXT2
s ~

kon

2koff
b(bz1)V, ð15Þ

which is the population variance. Hence the variance of the

concentration, x~X=V, at steady state is

s2
s ~

kon

koff

b(bz1)

2V
: ð16Þ

Note that s2
s*b2=V.

Imposing that the average volume fraction w~vSxTs is constant

at steady state, where v is the volume of a monomer, leads to the

mass-balance condition

vbkon=koff~w, ð17Þ

see Eq. (2). Fixing koff , v, and w hence fixes the product bkon,

which appears in the macroscopic rate equation. The condition

Figure 6. (Colour) ACF initial curvature from the full-master-equation trajectories. ACF initial curvature, Zn:
d2

dt2
Cnn(0)~{

d

dt
xn(0),

normalised by its absolute value at (b,V)~(1,1000). (a) Monomers n~1, (b) dimers n~2, (c) trimers n~3. This quantity serves as a lower dimensional
read-out of the decay-rate function xn(t). N.B.: The void region for small V corresponds to population fluctuations becoming larger than the mean.
Shown is an interpolation of data sampled at intervals (Db,DV)~(10,10).
doi:10.1371/journal.pone.0016045.g006

Table 1. ACF characteristics upon increasing burst b and
confinement V{1.

Characteristic LN approx. Full master equation

(Db,DV{1 ) (Db,DV{1 )

t1 ({,0) (^, +)¤

t2 (z,0) (z,z)

t3 (z,0) (z,0)?

Z1 (z,0) (z,z)

Z2 (2,0)m (2,+)m&

Z3 (2,0)m (2,+)m&

t
x,max
1

(0,0) (0,0)

t
x,max
2

(z,0) (z,{)

t
x,max
3

(z,0) (z,{)

Characteristics upon increasing burst b and confinement V{1 , encoded as pairs
(Db,DV{1 ), where Db,DV{1[fz,{,0, ^g is the modulation of the relevant
characteristic as b or V{1 increases, respectively, while keeping the other
constant. Here tn is the lifetime, Zn is the initial curvature of the ACF and tx,max

n

is the time at which the decay rate of the ACF is maximum for monomers n~1,
dimers n~2 and trimers n~3 (see ‘‘Model’’ in Section ‘‘Results’’) The
modulation states are positive (z), negative ({), negligible or zero (0), and
decreasing-then-increasing (^). ¤: ^ because there exists a competition of
burst-induced versus confinement-induced modulation. ?: DV{1 tn:0 for
species reacting only unimolecularly. m: DbZn decreases from positive to
negative, reflecting the role of burst in changing xn(t) monotonicity. &: DV{1 Zn

does not change sign, hence V{1 does not change xn(t) monotonicity.
doi:10.1371/journal.pone.0016045.t001
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(Eq.17) leads to the concentration variance

s2
s ~

w

v

(bz1)

2V
ð18Þ

and the mean concentration

SxTs~w=v: ð19Þ

Imposing mass balance thus modifies the scaling of the steady-state

variance to b=V.

Having a non-linear reaction in Eq. (10) would leave this scaling

unchanged as long as the mass-balance condition holds.

Chemical master equation and its macroscopic
counterpart for burst-input aggregation

The master equation associated to reactions (Eq. 1) is:

LP

Lt
~Vkon( {b

1 {1)P

zV{1k
XtN=2s

n~1

(( 2
n

{1
2n {1)(

1

2
Xn(Xn{1)P)

z
XN{n

m~nz1

( 1
n

1
m

{1
nzm{1)(XnXmP))

zkoff
XN

n~1

( 1
n{1)(XnP), ð20Þ

where P~P(X,t) is the joint probability distribution of the

population vector X:(X1, . . . ,XN ) at time t. V is the volume of

the reaction compartment and r
n is the step operator acting only

on functions of Xn such that r
ng(Xn)~g(Xnzr), where g(Xn) is

some function of Xn. Note that imposing that the average volume

fraction w~
PN

n~1 nvSxnTs is constant at steady state, where v is

the volume of a monomer, again leads to the mass-balance

condition in Eq. (17).

The macroscopic (i.e., deterministic) counterpart of Eq. (20),

valid in the limit of very large volumes [10], is given by

dxn

dt
~konbdn,1

z
k

2

XtN=2s

p~1

XN{p

q~p

xpxq 2{dp,q

� �
(dpzq,n{dp,n{dq,n)

{koff xn, ð21Þ

where xn is the macroscopic concentration of the aggregate of size

n.

Linear-noise approximation of the chemical master
equation for burst-input aggregation

Analytically solving Eq. (20) for P~P(X,t) is intractable since

the right-hand side of the equation is non-linear in the

populations. This is almost always true for systems involving

bimolecular reactions, save very few exceptions. We can, however,

follow van Kampen to volume-expand the master equation in the

small parameter 1=
ffiffiffiffi
V
p

[15,21,22].

We consider the stochastic quantity xn:Xn=V to fluctuate

around the mean macroscopic concentration xn. This is satisfied by

the following ansatz

Xn:Vxnz
ffiffiffiffi
V
p

en, ð22Þ

where en is random, and of non-zero mean in general. From Eq.

(22) we see that any function of Xn satisfies g(Xnzr)~

g(enzr=
ffiffiffiffi
V
p

), which allows introducing the volume expansion

r
n~

X?
i~0

1

i!
(

rffiffiffiffi
V
p )i Li

Lei
n

: ð23Þ

From Eqs. (22) and (23), Eq. (20) becomes

LP
Lt

{V1=2
XN

n~1

dxn

dt

LP
Len

~V1=2a1PzV0a2P

zO(V{1=2), ð24Þ

where P(EE,t)~P(X,t), EE:(e1, . . . ,eN ), and a1,a2 are differential

operators.

To make Eq. (24) a proper expansion in 1=
ffiffiffiffi
V
p

we impose that

terms proportional to V1=2 on both sides are equal. Subsequently,

equating terms proportional to
LP
Len

gives Eq. (21). Then, at O(V0),

we are left with

LP
Lt

~a2P, ð25Þ

where a2 is the operator

a2:
XN

n~1

XN

m~1

({An,m
L

Len

emz
1

2
Bn,m

L2

LenLem

), ð26Þ

with An,m:Bn,m:0 if nzmwN, otherwise

An,m:k
XN

p~1

xp(dpzm,n{dn,p{dm,n){dn,mkoff

Bn,m:
k

2

XN

p~1

XN

q~1

xpxq(dpzq,n{dp,n{dq,n)|

(dpzq,m{dp,m{dq,m)

zdn,m(konb2dn,1zkoff xn):

ð27Þ

Equation (25) is a linear Fokker–Planck equation, which describes

the linear-noise approximation, where P is a Gaussian. Note that

the matrix entries An,m and Bn,m are not functions of V. From Eq.

(25) we obtain the time evolution of the first and second moments

of the fluctuation,

LSEET
Lt

~A:SEET ð28Þ
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LSEEEET
Lt

~A:SEEEETzSEEEET:ATzB: ð29Þ

Equations (28) and (29) are used in ‘‘Low confinement: the linear-

noise approximation’’ in Section ‘‘Results’’ to analytically compute

the autocorrelation function.

The solution of Eq. (28) with initial condition SEET(0)~0 is

SEET(t):0. Hence

dSxnT
dt

~konbdn,1

{
k

2

XtN=2s

p~1

XN{p

q~p

SxpTSxqT(2{dp,q)|

(dp,nzdq,n{dpzq,n)

{koffSxnTzO(V{1): ð30Þ

I.e., in the linear noise approximation the mean obeys the

macroscopic rate equation.
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