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Abstract: To facilitate the rapid development of van der Waals materials and heterostructures, scan-
ning probe methods capable of nondestructively visualizing atomic lattices and moiré superlattices
are highly desirable. Lateral force microscopy (LFM), which measures nanoscale friction based on
the commonly available atomic force microscopy (AFM), can be used for imaging a wide range of
two-dimensional (2D) materials, but imaging atomic lattices using this technique is difficult. Here,
we examined a number of the common challenges encountered in LFM experiments and presented
a universal protocol for obtaining reliable atomic-scale images of 2D materials under ambient en-
vironment. By studying a series of LFM images of graphene and transition metal dichalcogenides
(TMDs), we have found that the accuracy and the contrast of atomic-scale images critically depended
on several scanning parameters including the scan size and the scan rate. We applied this protocol to
investigate the atomic structure of the ripped and self-folded edges of graphene and have found that
these edges were mostly in the armchair direction. This finding is consistent with the results of several
simulations results. Our study will guide the extensive effort on assembly and characterization of
new 2D materials and heterostructures.

Keywords: AFM; TMD; LFM; graphene; transition metal dichalcogenides; atomic-scale imaging

1. Introduction

In recent years, atomically thin layers and heterostructures of van der Waals (vdW) ma-
terials prepared via chemical vapor deposition (CVD) or mechanical exfoliation/stacking
have been intensively studied because of their unique properties and potential applications
in quantum electronics and nanophotonics [1–4]. By changing the number of layers or
controlling the twist angle between adjacent layers [5–7], remarkable quantum phases
and properties have been discovered, including unconventional superconductivity [8,9],
Hofstadter’s butterfly effect [10–12], Mott transition in graphene bilayers [7,13], and quan-
tized exciton states in moiré crystals formed by twisting transition metal dichalcogenides
(TMD) bilayers [14–17]. However, wrinkles and bubbles inevitably exist in stacked vdW
bilayers [18–20], causing undesirable spatial variations in strains and disorder in moiré su-
perlattices. Ultrafast laser nondestructive technology allows the study of strain, stress, and
structural properties currently on the scale of tens to hundreds of nanometers [21–24]. The
possibility of imaging atomic-scale strain-induced lattice distortion [25] or even controlling
the twist angle using scanning probe methods [10] has been demonstrated. Nevertheless,
such experiments remain very challenging in general.
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Different atomic-scale microscopy techniques provide complementary information
and capabilities. Scanning tunneling microscopy (STM) is capable of obtaining infor-
mation on electronic band structures but requires a conducting substrate and ultra-high
vacuum environment. Transmission electron microscopy (TEM) offers chemical identifi-
cation capabilities. However, TEM experiments require an elaborate sample preparation
process [26,27] and often damage the two-dimensional (2D) layers during imaging [28].
Lateral force microscopy (LFM) is an atomic force microscopy (AFM)-based technique op-
erating in the contact mode. It does not require a conducting substrate or time-consuming
sample preparation procedures. Such flexibility makes LFM a versatile tool capable of
characterizing nondestructively a wide range of 2D materials and nanostructures under
ambient conditions [29–34].

A number of challenges, however, have prevented the wide application of LFM in
obtaining accurate images of the atomic lattices of 2D materials routinely [35–37]. LFM
images are often distorted by thermal drift and less-than-optimal scan parameters. In addi-
tion, the authenticity of filtered LFM images (such as inverse fast Fourier transformation
(FFT) images) is questionable, if the quality of the original image is poor or the filtering
procedures are not executed with great care [38]. Contact-mode atomic lattice images of 2D
materials acquired in air have only been reported by a few groups worldwide [32,33,39–51],
and most of them were obtained using special homebuilt or symmetrically-designed
AFMs [28,45–49], functionalized tips [50], or carbon nanotube tips [51] (Table S1). These
specialized approaches are difficult to adopt.

In this paper, we demonstrated a protocol capable of obtaining atomic lattice images
of 2D materials by LFM under ambient conditions. The protocol is based on an in-depth
understanding of how feedback loops of an AFM and various parameters such as scan
rate, scan size, and gain can influence the LFM raw (unflatten and unfiltered) images in the
presence of drifts. In addition, we discussed the effects of load and substrate roughness on
the accuracy and sharpness of atomic lattice images of 2D materials. We drew examples
from TMD monolayers (MoS2 and MoSe2) and graphene. By selecting appropriate scan
parameters, the geometric distortions in the LFM raw images decreased, and the signal-
to-noise ratio in the raw FFT images improved significantly. The protocol allows one
to successfully identify and interpret the crystallographic structures of the torn and self-
folded edges of graphene. This demonstrated that this protocol can be used successfully to
determine the crystalline axes of folded graphene nanoribbons.

2. Materials and Methods
2.1. Sample Preparation

We purchased a piece of SiO2/Si wafer covered with triangular MoS2 monolayers
(6carbon Technology: Shenzhen, China). Graphene and MoSe2 were prepared by exfoliation
using a scotch tape. Each sample thus prepared was attached to a metal disk with a double-
sided carbon tape. The carbon tape was squeezed to minimize the viscoelastic behavior of
the polymer adhesive to avoid associated imaging artifacts [52,53].

2.2. LFM

The LFM technique is commonly used to measure the friction between the AFM tip and
the sample by recording the lateral deflection signal from the backside of the cantilever. The
higher the friction, the more the torsion of the cantilever. An image with 128 × 128 pixels
was obtained from a clean Si sample without moving the AFM tip (i.e., the zero scan) to
evaluate the noise floor. The RMS roughness of this image, calculated using XEI version
4.3.0 (Park Systems, Suwon, Korea), was ~38 pm for the main NX 10 AFM (Park Systems,
Suwon, Korea). A noise floor between 30 and 60 pm is considered typical [54].

We obtained the atomic-scale LFM images of TMDs (MoSe2 or MoS2) and multilayer
graphene with a Si cantilever (NSC36) under ambient conditions (13.1–19.6 ◦C; relative
humidity: 12–20%) using the NX10 AFM. The NSC36 series probes (MikroMasch, Tallinn,
Estonia) have three beam-shaped cantilevers with different spring constants on one side
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of the holder chip. Usually, we use the cantilever with the lowest normal spring constant
(NSC36C) among them: the lower the normal spring constant of the rectangular cantilever
is, the better the lateral force difference can be detected. More precisely, the force sensitivity
of the LFM is determined by the torsional spring constant, which is proportional to the
normal spring constant for a given rectangular cantilever geometry [55–58]. The LFM
images of graphene were acquired at 26 ± 1 ◦C and an RH of 59% ± 2% using another
cantilever (also NSC36C) and a different AFM system (XE-100; Park Systems). The XE-100
AFM was operated in the low-voltage mode for the highest-resolution imaging. When
operating the NX10 AFM, we used a standard 50 µm XY-scanner, which required additional
calibration steps. Highly Ordered Pyrolytic Graphite (HOPG) was used to calibrate the
scanner. All atomic lattice images presented here were acquired without closed-loop control.
Prior to collecting the atomic-scale LFM data from each sample, the sample surface was
locally cleaned several times using the same AFM tip (typically, an area of 20 µm2 at a scan
rate of 7 Hz and a load of about 10 nN) [59–63].

We used the Cleveland method to calibrate the spring constant [64]. The normal
spring constants of the NSC36C cantilevers used for our atomic-scale imaging ranged
from 0.77 to 1.43 Nm−1. For the cantilever with a normal spring constant of 1.43 Nm−1

(having the lowest LFM force sensitivity among the cantilevers used in our experiments),
the torsional spring constant calculated with the dimensions provided by the company
was 14.87–23.01 Nm−1 (the range results from the uncertainty of the given tip height) and
the lateral optical lever sensitivity obtained from the NX10 following the wedge method
using the NT-MDT TGG1 silicon grating was 80.9–112.8 nNV−1 [58,65]. In addition, we
expected the tip stiffness to be larger than 100 Nm−1, since the smallest radius of the
curvature measured in the experiment is approximately 52.3 nm [66]. The contact stiffness
between the 1.43 Nm−1 Si tip and the reference Si substrate at the load of 10.3 nN (RH:
23% ± 2%) was estimated to be 240.9 Nm−1 according to the Hertz model when the tip was
medium sharp (See Supplementary Materials for detailed calculations; Figure S1) [67–69].
The applied normal force was between 2.9 and 33.4 nN.

The color bars of all LFM images represent the voltage reading from the photodi-
ode (C–D), which was proportional to the friction at the tip−sample contact [70]. The
lattice−scale contrast came from the well-known stick-slip phenomenon [50]. Brighter
locations in the LFM images corresponded to the centers of the hexagonal rings (hollow
sites) in the honeycomb lattice [71].

Black bands appear on the left of the atomic-scale images, when the color range
was adjusted. The origin of the bands is initial sticking [50]. Figure S2 shows a MoS2
trace image before and after the color range adjustment. To visualize the atomic lattice
structure clearly without these black bands, we recommend applying a minimum of 20%
overscan (the overscan is an overscanned area that is not used for sampling image data)
when acquiring images with a scan size of less than 5 nm. We applied 5−20% overscan
throughout the work.

2.3. FFT

We used Gwyddion software from http://gwyddion.net/ (accessed on 10 April 2022)
for our analysis. We performed 2D FFT to analyze the atomic-scale LFM images of MoSe2,
graphene, and MoS2. The inverse FFT images accurately revealed the respective honeycomb
lattices and yielded the expected lattice constants of MoSe2, graphene, and MoS2.

3. Results and Discussion
3.1. Accurate Atomic Lattice Imaging Protocol
3.1.1. Effect of the XY Feedback, Scan Size, Scan Rate, Gain, Load, and Substrate Roughness
Effect of the XY Feedback

We discussed several critical AFM parameters that influenced the quality of LFM
images of 2D atomic lattices sequentially. First, the XY position feedback loop needed to
be disabled to visualize the atomic lattices in air. This rather counterintuitive finding is

http://gwyddion.net/
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due to the slow and small spatial drift of the tip relative to the sample caused by ambient
temperature fluctuations. The XY closed-loop system typically compensated for nanometer-
level drifts [72,73], but not the drifts in the picometer-to-subangstrom range required for
atomic-scale imaging. In addition, open-loop scans (without XY position feedback) showed
less noise than closed-loop scans [74]. When the XY feedback was turned on, the associated
sensor noise and a sudden nanometer-level compensational reposition of the piezo actuator
inevitably introduced irregularity to an image, as illustrated in Figure 1a. An example of
a closed-loop LFM image of MoS2 is presented in Figure 1b, which failed to reveal any
information related to the lattice structure. In contrast, such irregularity was eliminated in
an open-loop scan as illustrated in Figure 1c and as demonstrated in the LFM image of the
same MoS2 monolayer (Figure 1d). All parameters used for obtaining Figure 1b,d were the
same, except for the setting of the XY closed-loop feedback. A periodic pattern related to
the underlying lattice is only visible in Figure 1d.

Figure 1. Lateral force microscopy (LFM) raw images obtained with or without engaging the XY
closed-loop control in air (color range adjusted). (a) Schematic representation of a jumbled LFM
image due to the use of a XY closed-loop control. The orange dashed lines indicate the locations at
which the piezo stage was abruptly repositioned due to the XY closed-loop control; (b) LFM image of
a MoS2 monolayer obtained with a closed-loop control (calibrated scale bar: 2 nm; scan rate: 21 Hz);
(c) schematic illustration of the LFM image of a two-dimensional (2D) lattice expected in the absence
of the XY closed-loop control; (d) LFM image of a MoS2 monolayer obtained without a closed-loop
control, which revealed a periodic pattern from the atomic lattice (calibrated scale bar: 2 nm; scan
rate: 21 Hz). The grey dots are a guide for the eye and correspond to the lattice of rate MoS2.

Scan Size Dependence

Secondly, whether the LFM images can correctly represent the atomic lattices depends
on the scan size. One might expect that taking an image with a smaller scan size is
advantageous in revealing atomic-scale details. We have found that images were distorted
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if the scan size was too small. We presented LFM images taken from a MoSe2 layer with
lateral scan sizes of 160, 70, and 25 Å at 19 Hz (Figure 2a–c). In all these three images,
periodic patterns are evident. We have drawn two green arrows along the pixels of the
same brightness in the LFM images. These arrows are aligned with the two nearest zigzag
directions of the MoSe2 hexagonal lattice [75,76], as illustrated in Figure 2d. The two arrows
were expected to make an angle of 60◦. While this angle was measured as 60◦ ± 1◦ for scan
sizes of 160 Å (Figure 2a) and 70 Å (Figure 2b), the analysis of Figure 2c yielded an angle of
87◦ ± 1◦, which clearly deviated from the expected value. In fact, the type of skewed lattice
shown in Figure 2c was frequently observed in many scanning probe microscopy images
beyond LFM images. We further analyzed the LFM data shown in Figure 2a to extract the
lattice constant of MoSe2. We presented a filtered FFT image of Figure 2a and the inverse
FFT (the filtered real-space image) in Figure 2e,f, respectively. The spacing between the
red diagonal lines in Figure 2f was measured to be ~3.3 Å, which agreed well with the
previously reported lattice constant of MoSe2 in the range of 3.288–3.320 Å [77,78]. Thus,
we concluded that the FFT bright spots in Figure 2e are due to the periodic lattice structure
of MoSe2 and the original LFM image presented in Figure 2a represents the MoSe2 lattice
structure with high accuracy.

Figure 2. Scan size-dependent atomic lattice images (only color range adjusted). (a–c) LFM raw im-
ages of a MoSe2 monolayer acquired with nominal lateral scan sizes of 160, 70, and 25 Å, respectively
(calibrated scale bar: 1 nm; scan rate: 19 Hz). All green arrows are aligned along the zigzag direction
as illustrated in (d). The black dots in (c) are for visual guidance and represent the centers of the
hexagonal rings in MoSe2 (i.e., the hollow sites); (d) schematic model of MoSe2. Mo and Se atoms are
marked with blue and grey spheres, respectively; (e) filtered FFT image of the LFM raw image shown
in (a); (f) inverse FFT image (scale bar: 1 nm).

Scan Rate Dependence

Thirdly, the scan rate should be set to approximately an order of magnitude larger
than the commonly used values to image the atomic lattices accurately. Several atomic-level
LFM images of a MoS2 monolayer acquired at 3, 12, and 21 Hz without closed-loop control
are displayed in Figure 3a–c, respectively. Except for the scan rate, all parameters used
for obtaining Figure 3a–c were the same. The features associated with the MoS2 lattice
were most clearly captured at the highest scan rate of 21 Hz among these images. The
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periodic pattern associated with the atomic lattice was very difficult to identify if the scan
rate dropped below 12 Hz, even though the typical scan rate used for AFM imaging was
around 1–3 Hz. Thermal drift is a common problem for AFM systems operating under non-
vacuum environments. As a result, two consecutively scanned images generally represent
slightly different locations on the sample surface [79]. Typical drift velocities between the
tip and the sample range from 0.25 to 8.3 Ås−1 [80–82]. An increased scan rate will result
in a decreased image acquisition time, thus reducing the overall image distortion due to
slow thermal drift. We illustrated the distortion caused by a constant tip drift velocity in
Figure 3d. Our measured LFM images in Figure 3a–c demonstrated unambiguously that
the higher the scan rate, the smaller the distortion.

Figure 3. Scan rate-dependent atomic lattice images (color range adjusted). (a–c) LFM raw images
of MoS2 acquired at various scan rates. Grey dots are a guide for the eye and correspond to the
centers of the MoS2 hexagons. All scale bars are calibrated and correspond to 2 nm; (d) schematic
representations of the LFM images as a function of the scan rate, assuming a constant drift velocity.
The red lines mark horizontal scan lines. Image distortion is reduced with an increasing scan rate.

Interplay between the Scan Size and the Scan Rate

So far, we have investigated the effects of the scan size and the scan rate separately.
However, these two scan parameters are related to one another as scan speed = 2 × scan size
× scan rate, when the tip moves in a raster fashion during imaging. Thus, it is possible to
produce more accurate lattice images by LFM, as long as the scan speed is set high enough
to compensate for the drift effect. LFM lattice images obtained from the graphene and
monolayer MoS2 in Figure 4 clearly revealed this empirical rule. For an image containing
2N × 2N pixels, if one roundtrip line scan (trace-retrace) along the fast-scan direction
(usually referred to as the x-axis) requires a certain amount of time ∆t, it takes a duration
of 2N × ∆t for the tip to cover the equal distance in the slow-scan direction (the y-axis).
Therefore, it is important to extract crystallographic information such as lattice constants
or crystal orientation from the fast-scan direction which involves negligible distortion.
The hexagonal lattice structure in Figure 4a appeared to be compressed. We attributed
this kind of distortion to the difference in the actual traveling distance of the tip on the
sample surface in the slow-scan direction, which depended on the relative tip−sample
drift velocity along the slow-scan direction. This type of artificial image distortion can be
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easily confused with strain-induced lattice distortion [83,84]. One can only distinguish
them by performing a careful comparison measurement on a well-defined reference sample
using the same scan parameters. In addition, we noted that the sharpness of atomic images
was nearly independent of the scan speed (observed in the range of 60–400 nms−1). The
magnitude of friction is known to change with scan speed [85]. However, the sharpness of
atomic images appeared to be strongly related to the saw-tooth amplitude (jump height)
only (Figure S3).

Figure 4. The effect of the scan speed on LFM lattice images (color range adjusted). (a–c) LFM raw
data of MoSe2 at various scan speeds (calibrated scale bar: 1 nm); (d–f) LFM raw data of graphene at
various scan speeds (scale bar: 1 nm). All green arrows are aligned along the zigzag direction.

Gain Dependence

Next, we investigated the effect of feedback gain using the example of LFM images
taken from multilayer graphene at 19 Hz. For a proper comparison between images,
we equally set the maximum/minimum limits of each color bar. Counterintuitively, the
image sharpness tended to decrease with the increasing gain (Figure 5a–c). Each pixel
in Figure 5a–c represents the strength of the LFM signal. A high LFM reading in volts
indicated a high friction. The number of pixels against the LFM value is plotted in Figure 5d.
It can be seen in Figure 5d that the LFM data tended to be more broadly distributed as
the gain increased from 1 to 4 to 8, indicating that the atomic image became dull as the
gain increased. The observed gain dependence can be explained by the unavoidable
mechanical crosstalk between the vertical and lateral deflections of the cantilever according
to previous studies [86–88]. This finding is consistent with the result of a recent study in
which the boundary of graphene and Si were imaged as a function of the gain with LFM.
In their case, a large contrast was expected in the LFM images due to the considerable
difference in the friction properties between graphene and Si (about an order of magnitude
difference when measured by a Si AFM tip) [44,89]. Nevertheless, the contrast became
progressively undetectable, as the gain increased [86]. In other words, if the gain was
increased excessively, the friction force could not be correctly measured. Consequently,
LFM images did not reveal the atomic lattice.
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Figure 5. The effect of the gain on atomic-level LFM images (color range adjusted). (a–c) LFM images
of multilayer graphene acquired at various gain values and at a scan rate of 19 Hz. The lattice
structure became more difficult to identify, as the gain value increased. All scale bars are calibrated
and represent 2 nm; (d) number of pixels by the LFM value for different gains. The vertical axis
indicates how many pixels in an image belong to a certain LFM value. As the gain increased, the
LFM data values were more spread out from the mean.

Load Dependence

We compared LFM images of MoS2 taken at various setpoints to study the effect of
the load (Figure 6a–c). In order to compare the images directly, we set the range of color
bars to be the same. As expected, the friction force increased with the load; the higher
the load, the brighter the image (Figure 6a–c). In addition, we found that the periodicity
associated with the hexagonal atomic lattice tended to become less and less pronounced
with the increasing load (Figure 6a–c). We can easily confirm from the insets in Figure 6a
that the LFM image obtained at a relatively low load of 6.68 nN well represented the
hexagonal lattice. We also presented the raw FFT images corresponding to the three images
(Figure 6d–f). Six FFT spots representing the hexagonal lattice were visible in the raw FFT
image acquired at 6.68 nN (Figure 6d). In contrast, in the FFT image obtained at 30.38 nN,
only four FFT spots were visible, indicating that the lattice was deformed locally (Figure 6f).
This change may be due to the increased shear force the tip exerted on the MoS2 monolayer
during scanning as the load increased. Therefore, we recommended using a moderate
load (<10 nN) to avoid this type of distortion in the atomic lattice imaging of 2D materials.
However, the corrugation of the potential energy surface reduce with the load; thus, the
stick−slip contrast can disappear at very low loads (in the adhesive regime) [90]. In this
regard, we recommended using a positive load for image clarity, and the minimum load
we used in our experiments was 2.9 nN.
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Figure 6. The effect of the load (i.e., setpoint) on LFM lattice images. (a–c) LFM raw data of MoS2

at various loads (calibrated scale bar: 5 nm; frequency: 17.1 Hz). The insets in (a) represent the
filtered FFT images of the area enclosed by the white rectangle and its corresponding inverse FFT
image; (d–f) corresponding unfiltered FFT images of MoS2. The six FFT spots associated with the
hexagonal lattice structure are highlighted with dotted circles. The spots were less noticeable at a
load of 33.38 nN, as seen in (f).

Effect of the Substrate Roughness

Lastly, we investigated the influence of the substrate roughness. We acquired dozens
of images from monolayer graphene and multilayer graphene on the same Si substrate
(roughness: 0.3–0.4 nm) using a single AFM tip with various combinations of scan parame-
ters following the protocol. A representative atomic lattice image of monolayer graphene is
presented in Figure 7a, and that of multilayer graphene is presented in Figure 7b. For a
direct comparison, we set the range of color bars to be the same. We analyzed the images
obtained by optimizing the parameters and found that, in general, the sharpness of the
atomic lattice images of monolayer graphene tended to be lower than that of multilayer
graphene (Figure 7a–d, including dozens of other images). The tendency may be due to
the roughness of the substrate. Figure 7a,b were obtained from region1 (monolayer) and
region2 (multilayer), respectively (Figure 7e). The analyses of the roughness of Si substrates,
monolayer graphene, and multilayer graphene through height and LFM friction images and
cross-sectional profiles showed that the roughness of the substrate directly affected the friction
of monolayer graphene (Figure 7e–h). The rougher the surface, the stronger the feedback-
driven tip-to-sample distance adjustment, suppressing the stick-slip phenomenon [85].

3.1.2. Protocol Established Taking into Account Main Parameters

We summarized the protocol established through a series of experiments presented
above in Figure S4. First, it is necessary to select an appropriate scan size, such that an
image contained the desired number of lattice points. Generally, we recommend using
scan sizes less than 100 Å if the lattice constant is as small as graphene. On the other hand,
for TMDs, high-quality atomic lattice images can be obtained even at a scan size of 300 Å.
Next, one should increase the scan rate as aforementioned until the angle between two
nearest zigzag (or armchair) crystallographic axes in the image does not change with scan
rate. Under common laboratory conditions, atomic lattices can be satisfactorily visualized
in air by selecting a scan rate between 15 and 35 Hz, a scan size between 20 and 300 Å, a
load less than 1 nN, and a gain value less than or equal to 1. The optimal scan rate varies
depending on a variety of factors, including the scan size and the thermal drift velocity.
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When the environmental temperature fluctuations are large, we recommend using a larger
scan size (>60 Å) and scan rate (>25 Hz) within the range mentioned above.

Figure 7. Demonstration of substrate roughness effect. (a) High-resolution LFM raw (unflatten and
unfiltered; color range adjusted) image of monolayer graphene acquired at a scan size of 50 Å, a
scan rate of 22.12 Hz, and a load of 3.4 nN; (b) high-resolution LFM raw (unflatten and unfiltered)
image of multilayer graphene acquired at a scan size of 50 Å, a scan rate of 22.45 Hz, and a load of
2.9 nN. (a,b) were obtained using the same atomic force microscopy (AFM) probe; (c,d) comparison
of cross-sectional profiles along the red (monolayer) and black (multilayer) lines in (a,b); (e) height
image of graphene; (f) comparison of cross-sectional profiles along the red and black lines in (e); (g) LFM
image of graphene; (h) comparison of cross-sectional profiles along the red and black lines in (g).
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3.2. Application of the Protocol
3.2.1. Proofs of Protocol Using Various Commercial AFMs

To demonstrate this protocol, we collected several atomic lattice images from graphene,
MoSe2, and MoS2 using different commercial AFMs (Figure 8). The LFM raw image of
graphene shown in Figure 8a was taken with a scan rate of 22.45 Hz, a scan size of 50 Å,
and a 0.037 gain using an XE-100 AFM system. The filtered FFT image, including high-
intensity spots arranged in a hexagonal shape (Figure 8b) and the filtered real-space image
(Figure 8c), confirmed that the presented protocol can be used to visualize the graphene
lattice accurately. More images obtained from MoSe2 and MoS2 monolayers and their
FFT images are reported in Figure 8d–j. The LFM raw image of MoSe2 was taken at
12.9 Hz with a scan size of 300 Å and a gain of 1 (Figure 8d), while that of MoS2 was
collected at 17.0 Hz with a scan size of 250 Å and a gain of 0.51 (Figure 8h) using two
other AFMs. We successfully obtained well-defined local atomic lattice images under
atmospheric conditions using these parameters following our protocol. In addition, their
filtered FFT and inverse FFT images all showed the expected MoSe2 (Figure 8f,g) and MoS2
lattice (Figure 8i,j)-related images.

Figure 8. Demonstration of LFM lattice images obtained by applying our protocol to several com-
mercial AFMs. (a) LFM raw (unflatten and unfiltered; color range adjusted) image of graphene
acquired at a scan size of 50 Å and a scan rate of 22.45 Hz using an XE-100 AFM system. The scale
bar corresponds to 1 nm; (b) filtered FFT image of the raw data shown in (a); (c) resulting inverse FFT
image. The black dots in (a) and (c) represent carbon atoms arranged around hollow sites; (d) LFM
raw image of MoSe2 collected at a scan size of 300 Å and a scan rate of 12.90 Hz using a CP-II
AFM system. The scale bar corresponds to 10 nm; (e) the enlarged view of the squared area in (d);
(f) filtered FFT image of (e); (g) the resulting inverse FFT image; (h–j) LFM image of MoS2 obtained
at a nominal scan size of 250 Å and a scan rate of 17.0 Hz using an NX10 AFM system, the filtered
FFT, and the resulting inverse FFT. The inset in (h) is an inverse FFT image of the squared area. The
scale bar in (h) corresponds to 10 nm. All white hexagons are for visual guidance.
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3.2.2. Key Example: The Atomic Structure of Torn and Self-Folded Edges of Graphene

We applied our protocol to another case. One of the most compelling applications
of graphene-based materials is to enable control of their physical properties through
edge engineering [91]. Thus, a nondestructive method of identifying edge structures
of 2D materials in graphene-based devices is highly desirable. TEM and STM are not
suitable for this task since the sample preparation process for TEM is destructive, and STM
often requires the transfer of 2D materials onto a conductive substrate. We addressed this
challenge by applying our protocol. We prepared monolayer and multilayer graphene using
the exfoliation method [92] and applied a normal force of 13 nN onto a graphene monolayer
repeatedly with an AFM tip to induce self-folding [31] several times (Figure 9a,b). We
collected LFM images using our protocol to investigate the crystallographic orientation of
self-folded and torn edges of the folded graphene nanostructure (Figure 9c–g).

Figure 9. The edges of self-folded graphene nanostructure. (a) Topographies of graphene before
and after the AFM-induced self-folding; (b) cross-sectional profile along the red line in (a); (c) LFM
image of the folded graphene; (d) LFM image taken from the squared area in (c); (e) atomic-scale
image collected from the white square in (d); (f) filtered FFT image of (e); (g) inverse FFT image of (e);
(h) topography of the folded graphene. The white-solid (yellow-solid) line corresponds to the edge
folded along the armchair (zigzag) direction. The white-dotted line is the edge torn along the armchair
direction during mechanical ex-foliation. The white hexagons in (e,g) are for visual guidance.
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We found that self-folding and ripping occurred primarily in the armchair direction.
Out of four self-folding events, three occurred along the armchair direction, and one along
the zigzag direction (solid lines; Figure 9h). Additionally, among 16 torn edges, nine were
armchair edges, four were zigzag edges, and three were chiral edges (Figure S5). Our
findings are consistent with the results of previous experiments [93,94]. According to
several molecular dynamics simulations, the shear modulus in the armchair direction is
generally smaller than that in the zigzag direction [95–97]. The armchair graphene shows
a slightly lower strength than the zigzag graphene [96]. This difference in mechanical
properties explains our experimental observations. While the experiments reported here
focused on determining the crystallographic orientation of monolayers, AFM can also be
used to image superlattices formed in a vdW heterostructure (e.g., moiré crystals formed
by graphene/hBN) [32,48].

4. Conclusions

In conclusion, we have developed a protocol to obtain high-quality atomic lattice
images of 2D materials using an AFM operated under the ambient environment. The
challenges caused by inevitable thermal drift can be mitigated to a large extent by properly
selecting several parameters, including the scan size, scan rate, and gain as well as by
disenabling the XY feedback loop. The optimal values for these scan parameters varied
with the drift velocity specific to a laboratory. In addition, we found that the load and
the substrate roughness influenced the accuracy and the sharpness of the atomic lattice
image, respectively, and we estimated the contact area and the stiffness between the AFM
tip and the Si substrate using the Hertz model so that others can adapt the proposed
protocol readily. Using this protocol, we have demonstrated that the atomic structure of
self-folded and torn edges of graphene can be determined. Accurate atomic-scale images
can be used to identify local strains and twist angle variations and guide the extensive
effort to improve the quality of vdW heterostructures and 2D materials such as graphene,
hBN, TMDs, MXenes, and perovskite oxides.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano12091542/s1, Figure S1: Tip characterization; Figure S2:
Before and after color range adjustment; Figure S3: Effect of the scanning speed on the image
sharpness; Figure S4: AFM protocol for accurate atomic lattice imaging; Figure S5: Graphene torn-
edge analysis; Table S1: Atomic lattice images of laminates obtained with the contact-mode AFM in
air. References [12,28–30,32–37,39–41,43–51,67–69,98,99] are cited in the supplementary materials.
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