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Quadruped robots are widely applied in real-world environments where they

have to face the challenges of walking on unknown rough terrains. This paper

presents a control pipeline that generates robust and compliant legged

locomotion for torque-controlled quadruped robots on uneven terrains. The

Cartesian motion planner is designed to be reactive to unexpected early and

late contacts using the estimated contact forces. Moreover, we present a novel

scheme of optimal stiffness modulation that aims to coordinate desired

compliance and tracking performance. It optimizes joint stiffness and

contact forces coordinately in a quadratic programming (QP) formulation,

where the constraints of non-slipping contacts and torque limits are

imposed as well. In addition, the issue of stability under variable stiffness

control is solved by imposing a tank-based passivity constraint explicitly. We

finally validate the proposed control pipeline on our quadruped robot

CENTAURO in experiments on uneven terrains and, through comparative

tests, demonstrate the improvements of the variable stiffness locomotion.
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1 Introduction

Quadruped robots have found extensive applications in real-world scenarios such as

field exploration, industrial inspection, logistics and delivery, and disaster rescue (Bledt

et al., 2018a; Bellicoso et al., 2018; Klamt et al., 2018; Lee et al., 2020) due to their better

mobility in unstructured environments. They are often required to traverse rough terrains

robustly in all of those applications. Even when cameras or lidars are available, the robots

are still expected to adapt to some uncertainties in terrain geometries introduced by

limited accuracy of the perception.

In case of unexpected interactions, impedance control (Hogan, 1985) is able to

generate compliant behaviors by directly specifying the stiffness and damping that the

system manifests to external disturbances. Instead of using constant joint stiffness,
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however, humans are found to keep modulating joint stiffness

when performing daily tasks, enabling us to interact smoothly and

stably with environments (Lee and Hogan, 2014; Wu et al., 2020a).

It has also been demonstrated that robots may benefit from

variable stiffness control in performing practical tasks as well.

Whereas, the design of appropriate stiffness profiles that fulfill

feasible requirements and optimality is still an open research topic.

Different approaches have been studied in the literature to

implement variable stiffness control. An exponential-function-

basedmodulation of joint stiffness is implemented in (Zollo et al.,

2003), where the robot is required to be more compliant when the

tracking errors of joint positions increase so that it achieves safe

collision with the environment. Reinforcement learning has been

a common practice in the field of robotics to obtain complex

behaviors and it is used in (Heijmink et al., 2017) to generate

optimal stiffness trajectories for quadruped robots. The policy is

trained offline in simulations, trading off tracking performance,

energy consumption and fall avoidance, and then validated on

the robot HyQ. Another type of learning algorithm, namely

imitation learning, is employed in (Wu et al., 2020b) to copy the

properties of variable stiffness of human manipulations to a

robotic arm. The proposed method is shown to provide better

tracking and interaction behaviors in comparative experiments.

In contrast, optimization-based approaches, e.g., (Albu-Schäffer

et al., 2004; Petit and Albu-Schäffer, 2011), do not require large

data sets or human demonstrations. In (Petit and Albu-Schäffer,

2011), the authors propose to utilize both passive and active joint

stiffness to achieve the desired Cartesian stiffness as much as

possible. Two separate optimizations are therefore established to

compute first the passive stiffness, which are decoupled among

the joints, and then the active stiffness.

From the perspective of energy, modulating the stiffness of a

robot may inject too much energy into it, which will lead the robot

to instability. The works mentioned above, however, do not take

into account stability issues in variable stiffness control. To this

end, several approaches have been studied in the literature. An

energy tank-based method is introduced in (Ferraguti et al., 2013)

to analyze the passivity of manipulators under variable stiffness

control. The energy dissipated from the system, which to some

extent expresses the passivity margin, is stored in the tank and then

applied to avoid injecting too much energy into the system by

restricting the variation rate of the stiffness. Alternatively, the

stability of variable stiffness control is proved by a Lyapunov-based

method in (Kronander and Billard, 2016). It proposes to relate the

variation rate of the stiffness to the value of damping and provide a

systematic way to design the impedance parameters, which

guarantees that the desired impedance can be achieved while

complying with stability. (Angelini et al., 2019) proposes a

variable stiffness controller for legged robots with guaranteed

stability. By properly decoupling the dynamics in single-input

and single-output (SISO) sub-systems, the authors manage to

ensure the stability under variable stiffness control by restricting

the variation rate of the stiffness.

In this paper, we present a control pipeline for torque-

controlled quadruped robots. It features optimal modulation

of joint stiffness with guaranteed stability and touchdown

adaptation that allows overcoming uncertainties in terrain

geometries using only proprioceptive information. To be

specific, the motion planner relies on estimated contact forces

to transit between gait phases, which endows the robot with

adaptations to early or late contacts in unknown environments.

Moreover, we propose a QP-based optimization over both

contact forces and joint stiffness based on desired motions

and desired Cartesian compliance. An energy tank-based

approach is exploited as a passivity constraint to restrict the

variation rate of the joint stiffness, thus ensuring stable behaviors

of the robot. Other types of constraints such as unilaterality of

contact forces and torque limits are also considered in the

optimization to ensure practically feasible results. The

contributions of this paper are summarized as follows.

• A novel scheme for optimal stiffness modulation is

proposed, where the desired stiffness gains and the

desired contact forces are generated coordinately within

a single optimization problem.

• The stability issue of stiffness modulation is resolved

theoretically by introducing an energy tank-based

constraint to the coordinated optimization. To the best

of the authors’ knowledge, this is the first time that such a

scheme with guaranteed stability is proposed and applied

to quadruped robot locomotion.

• A control pipeline for torque-controlled quadruped robots,

integrating the aforementioned scheme, is developed,

enabling locomotion on uneven terrains with optimal

modulation of joint stiffness. It is validated extensively

on the quadruped robot CENTAURO (seen in Figure 1)

through comparative tests.

The remainder of this paper is organized as follows. Section 2

covers approaches to generate position-based and torque-based

legged locomotion for quadruped robots. Section 3 analyzes the

influence of variable stiffness and then introduces our design of

the coordinated optimization over contact forces and joint

stiffness. Section 4 demonstrates experimental results that

validate the proposed scheme. In Section 5, we discuss and

compare this work with some related works and propose

future directions as well.

2 Approaches of locomotion
generation

The proposed control pipeline for legged locomotion mainly

consists of three modules: 1) a position control module that

generates Cartesian reference trajectories and the corresponding

joint motions; 2) a torque/impedance control module that
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computes feedforward and feedback torque commands; and 3) a

contact estimation module that estimates ground contact forces

and determines the actual contact states. An overview diagram of

the proposed scheme is shown in Figure 2.

2.1 Cartesian motion planner

The generation of the reference motions for the center of

mass (CoM) majorly follows our previous work (Zhao et al.,

FIGURE 1
CENTAURO is a torque-controlled wheeled-legged quadruped robot designed in our lab (Humanoids and Human Centered Mechatronics,
HHCM) at IIT. The world coordinate frame {W} is also displayed in the picture.

FIGURE 2
An overview diagram of the proposed control pipeline for legged locomotion. The dashed boxes represent the position control module, the
torque/impedance control module and the contact estimation module, respectively. The color of blocks indicates execution frequency: the block
with green shade runs at 10 Hz, the blocks with blue shade run at 200 Hz and the block with yellow shade runs at 400 Hz.
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2021) and it will be recapitulated here. The robot dynamics is

described by the linear inverted pendulum (LIP) model, where

we focus on the motions of the CoM and the zero-moment-point

(ZMP) but ignore the forces acting on the robot. Let xcom and

xzmp denote the positions of the CoM and the ZMP, respectively,

in the world frame, and then the reference motions of the CoM

are generated by optimizing the jerks x
...

com in an MPC fashion in

the following formulation.

min ∑k0+N
k�k0+1

α

2
‖x... com tk( )‖2 + β

2
‖xzmp tk( ) − xrefzmp tk( )‖2 + γ

2
‖xb tk( ) − xrefb tk( )‖2( )

(1)
s.t. xzmp tk( ) ∈ ConvHull pc,i tk( ){ }, i ∈ S tk( ) (1a)

There are three objectives in the optimization (Eq. 1). The

first objective is to minimize the CoM jerks. The second objective

is to control the ZMP to track the reference xrefzmp that is selected

to be the center of the support polygon (SP). xb in the last

objective denotes the geometric center of the robot base and the

reference xrefb is selected to be the geometric center of the convex

hull formed by all the feet, regardless of their contact states. This

objective is added to modulate the lower body away from leg

singularities. pc,i denotes the positions of the feet and S(tk)
denotes a set of indices for the stance legs at this moment.

Hence, ConvHull pc,i(tk){ } represents the convex hull formed by

the feet in contact, i.e., the SP. The constraint Eq. 1a is to place the

ZMP always within the SP, which is the ZMP-based stability

criteria for quasi-static locomotion.

Taking into account that CENTAURO weighs about 110 kg

and is driven by actuators with high gear ratios, the robot adopts

a quasi-static gait pattern in the locomotion tasks. The gait

schedule of the swing leg is periodic, which follows the

sequence left-front leg (LF) → right-back leg (RB) → right-

front leg (RF) → left-back leg (LB). The feet in contact are

required to keep stationary, while the reference motions of the

swing foot are formulated by two segments of quintic

polynomials, one for the lifting phase and the other for the

landing phase.

2.1.1 Touchdown adaptation
In this work, it is assumed that visual perception is not

integrated to the locomotion controller. In order to adapt to

uneven terrains that are unknown a priori in blind

locomotion, contact-triggered touchdown adaptation is

implemented.

The motion planner adopts a finite state machine with

time/event-driven transitions as illustrated in Figure 3. The

blue arrows represent time-based transitions, where ta and ts
denote the periods of the All-Stance Phase and the Swing

Phase, respectively. The red dashed arrows represent

transitions that can only be triggered by detected contact

events. The motion of the swing foot is adjusted

accordingly in the cases of early touchdown and late

touchdown. When contact is detected in advance of the

nominal moment, the swing foot is switched to contact

state and the nominal reference motion is truncated

immediately. On the other hand, if expected touchdown is

not established within the duration ts, the swing foot will move

downwards at a constant speed so as to search for contact.

When contact is detected, in both of the two cases, the motion

planner will then switch to the All-Stance Phase, update the

internal model with the actual configurations and start a new

planning loop. The adaptation to early and late touchdown

implemented in this chapter will enable perception-less

locomotion over moderately uneven grounds.

The contact event is detected by a threshold trigger of the

estimated ground reaction forces, the calculation of which will

be introduced later in Section 2.4. When the state remains in the

Swing Phase and the current swing leg generates a reaction

force larger than a specific threshold fup on the z-axis, the

contact state of that leg will switch from swing to contact and a

contact signal will be sent simultaneously to trigger the state

machine shown in Figure 3.

2.2 Whole-body IK controller

The Cartesian reference motions are then transformed into

joint space by the whole-body controller which solves an inverse

kinematics (IK) problem at 200 Hz. The IK problem is

formulated as a hierarchical QP-based optimization inside

CartesI/O (Laurenzi et al., 2019), a ROS-based framework for

Cartesian control that facilitates the assignment of different tasks

and constraints in a user-friendly manner.

To be specific, the whole-body IK controller used in our

control pipeline solves a cascade of two constrained optimization

problems (i = 1, 2) in the following formulation.

FIGURE 3
The finite state machine adopted by the Cartesian motion
planner. The ellipses represent the three planning phases with the
arrows indicating the possible transitions between them. ta and ts
denote the periods of the All-Stance Phase and the Swing
Phase, respectively. The dashed red arrows, however, indicate the
time-independent transitions that can only be triggered by the
actual contact state.
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_q∗i � arg min
_qi

‖Ji _qi − _xi‖2 + λ‖ _qi‖2 (2)

s.t. c i ≤Cin,i _qi ≤�ci (2a)
J1 _q

∗
1 � J1 _q2 only for i � 2( ) (2b)

where the problem with i = 1 is assumed to be superior to the

problem with i = 2. The first objective in Eq. 2 is to achieve the

predefined task while the second term is to regularize the joint

velocities. _xi ∈ Rmi is the desired task velocities of the i-th

problem and Ji ∈ Rmi×(n+6) denotes the associated task

Jacobian. _qi � [ _qTu,i _qTa,i]T ∈ Rn+6 denotes the velocities of the

generalized state, including the 6 degree-of-freedoms (DoFs) of

the floating base _qu ∈ R6 and the n DoFs of the actuated joints
_qa ∈ Rn. The regularization factor λ is selected to be λ = 1 × 10–4

in our implementation. The inequality constraint Eq. 2a

expresses the boundary limits of joint positions and joint

velocities, and is imposed on the two optimization problems

in order to produce mechanically feasible solutions. The equality

constraint Eq. 2b expresses the requirement of prioritized tasks

and is only imposed on the second problem. _q∗i denotes the

optimal solution of the first optimization, and thus Eq. 2b implies

that the secondary problem will be solved without affecting the

primary problem.

Based on the robot model, the tasks and the constraints

assigned by users, the specific form of the optimization Eq. 2 is

constructed by CartesI/O where the matrices and the vectors

involved are automatically generated, which greatly facilitates

development and deployment of the controller. The optimization

problems Eq. 2 are then solved by the qpOASES solver at each

control loop. Readers are recommended to refer to the

website1 for more about the algorithms, implementations and

applications of CartesI/O, whereas the details will be skipped in

this paper. The tasks and constraints used in our experiments are

summarized in Table 1.

2.3 Contact force optimization

As shown in Figure 2, the robot is controlled by a

combination of the feedforward torque τff ∈ Rn and the

feedback torque τfb ∈ Rn. Several approaches have been

proposed in the literature to compute the torque references

towards achieving the desired Cartesian motions. Some

researchers propose to first optimize the contact forces

through a QP-based problem and then map them into joint

space to obtain torques commands (Ott et al., 2011; Gehring

et al., 2013; Focchi et al., 2017), or through another inverse

dynamics optimization (Stephens and Atkeson, 2010). It is also

possible to bypass the computation of contact forces by directly

mapping the desired motions into the space of joint torques

through, e.g., orthogonal projections (Mistry et al., 2010; Winkler

et al., 2017). Alternatively, the torque references can be computed

by exploiting the full-body inverse dynamics (Sentis et al., 2010;

Righetti et al., 2013). In this paper, we adopt a similar approach as

in (Focchi et al., 2017; Mastalli et al., 2017) to compute τff, which

will be briefly summarized in the following part.

To start with, the Centroidal dynamics (Orin et al., 2013) is

adopted to describe the relationship between the motion of the

robot and the acting forces. The model assumes that the robot

walks slowly and the legs stay close to their nominal

configurations so that the model description is independent of

specific joint positions, which is the case for CENTAURO in

quasi-staic locomotion. We further assume that the angular

velocity of the robot is approximated by the angular velocity

of the base and the point-like contacts of CENTAURO do not

generate ground reaction torques. Let €xcom ∈ R3, _ωb ∈ R3 and

f i ∈ R3 denote the acceleration of the CoM, the angular

acceleration of the robot base and the ground reaction forces,

respectively, and then the Centroidal dynamics is established as

follows.

m €xcom − gc( ) � ∑nc
i�1

f i (3)

IG _ωb + _IGωb � ∑nc
i�1

pcom,i × f i( ) (4)

where nc is the number of feet in contact (in our setup of quasi-

static locomotion, there is always nc = 3 or nc = 4). m is the mass

of the robot. gc = [0,0,−9.81]T m/s2 is the gravity acceleration

vector. IG ∈ R3×3 is the centroidal rotational inertia computed at

the CoM. pcom,i ∈ R3 is the vector going from the CoM to the i-th

foot. The equations above can be rewritten in matrix form as

I3×3 . . . I3×3
pcom,1[ ]

×
. . . pcom,nc[ ]

×

[ ]︸�����������︷︷�����������︸
Af∈R6×3nc

f1
..
.

fnc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸��︷︷��︸
f∈R3nc

� m €xcom − gc( )
IG _ωb + _IGωb

[ ]︸�������︷︷�������︸
bf∈R6

(5)

where I3×3 ∈ R3×3 denotes an identity matrix and [·]× ∈ R3×3

denotes the skew-symmetric matrix related to vector cross

products, i.e., v1 × v2 � [v1]×v2, ∀v1, v2 ∈ R3. Since the robot

moves slowly in our experiments and the base orientation has

been regulated to be constant by the whole-body IK controller

(seen in Section 2.2), it is reasonable to assume that _ωb � ωb � 0

TABLE 1 Tasks and constraints assigned in the whole-body IK
controller.

Task/Constraint Description Priority

CoM tracking Cartesian references i = 1

base orientation regulated to be constant i = 1

legs tracking Cartesian references i = 1

configuration of upper body regulated to be constant i = 2

joint position constraint -

joint velocity constraint -
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in the following computation. This problem has six equations

and at least nine free variables and thus always has infinite

solutions. The redundancy can be exploited to satisfy the

inequality constraints imposed by friction cones and the

unilaterality requirements of contact forces.

The following optimization is solved at every control loop to

compute the desired contact forces.

fd � arg min
f

α1‖Aff − bf‖2 + α2‖f‖2W (6)

s.t. df,min ≤Cff ≤ df,max (6a)

where ‖ ·‖ stands for the 2-norm of a vector, and α1, α2 are two

positive weight factors. The inequality Eq. 6a includes the

constraints of friction cones and unilaterality of contact forces

(Focchi et al., 2017). It is worth noting that the inequality Eq. 6a

also constraints the desired contact forces generated by the swing

leg to be 0 so that the dimensions of variables become constant,

i.e., f ∈ R12 and Af ∈ R6×12 in the optimization Eq. 6, which

simplifies implementation in code and further extension as will

be introduced in Section 3.2. The positive-definite weight matrix

W ∈ R12×12 is chosen as follows to minimize joint torques rather

than contact forces

W � JcS
TSJTc (7)

where S � [0n×6 In×n] is a matrix selecting the actuated n DoFs

and Jc ∈ R12×(n+6) is the contact Jacobian.
The feedforward torque τff is finally obtained by mapping the

optimal contact forces fd into joint space through

τff � S h − JTc f
d( ) (8)

where h � C(q, _q) _q + g(q) ∈ R(n+6) represents the non-linear

dynamics caused by centripetal, Coriolis and

gravitational forces. Besides the feedforward torque,

there is also a feedback controller running in parallel to

compensate for the tracking errors caused by model

mismatch or interactions. The feedback torque τfb is

calculated as follows

τfb � KP qda − qa( ) + KD _qda − _qa( ) (9)

where the diagonal, positive-definite matrices KP,KD ∈ Rn×n

represent the stiffness and damping matrices in joint space,

respectively.

2.4 Contact detection

CENTAURO is not equipped with foot force/torque sensors

and, therefore, the ground reaction forces fest are estimated from

the measurements of joint torques and the dynamics of the robot

through

f esti � JT
+

c,i M€q + h − STτr( ), i � 1, . . . , 4 (10)

where Jc,i ∈ R3×(n+6) represents the Jacobian of the i-th leg and

(·)+ denotes the pseudo-inverse operation. M ∈ R(n+6)×(n+6)

denotes the joint-space inertial matrix of the robot. τr ∈ Rn

represents the measurements of torques. The matrix S and the

vector h are the same as defined in Eq. 8.

Due to noisy measurements from the sensors and inaccurate

parameters of the model, the contact forces estimated by Eq. 10

usually suffer from non-negligible noise. To mitigate such effects,

a first-order low-pass filter with cutoff frequency of 20 Hz is

adopted to smooth the estimation. Although the contact force

estimation is implemented in a simple manner compared with,

e.g. (Bledt et al., 2018b) or (Camurri et al., 2017), we have

validated in experiments that it is able to provide good

enough results for our robot in quasi-static locomotion.

3 Optimal stiffness modulation

The proposed scheme of optimal stiffness modulation will be

introduced in detail in this section. First of all, it is worth

clarifying that the stability of variable stiffness control is

different from the locomotion stability for quadruped robots

(the latter is ensured by the ZMP constraint as introduced in

Section 2.1). It concerns whether the modulation of stiffness

gains will inject too much potential energy into the robot and

drives the system to divergence. This section starts by analyzing

the influence of variable stiffness control from the perspective of

energy, followed by our scheme of stiffness optimization with

guaranteed stability.

3.1 Stability analysis of variable stiffness
control

In this section, we will analyze the stability issues of variable

stiffness control from the perspective of energy, following a

similar approach as in (Ferraguti et al., 2013; Kronander and

Billard, 2016), and provide a sufficient condition that

theoretically ensures stability under variable stiffness control.

The analysis is carried out by considering each limb of the robot

separately, which can be modeled as an articulated chain with l

joints as follows (Siciliano et al., 2009)

Ml ql( )€ql + Cl ql, _ql( ) _ql + gl ql( ) � τ l + JTc,lf l (11)

where ql ∈ Rl denotes the joint positions. Ml ∈ Rl×l denotes the

symmetric and positive-definite inertia matrix in joint space.

Cl ∈ Rl×l denotes the Coriolis/centrifugal matrix that is selected

to fulfill the property

vT _Ml ql( ) − 2Cl ql, _ql( )( )v � 0, ∀v, ql, _ql ∈ Rl (12)

which implies that _Ml − 2Cl is a skew-symmetric matrix. gl ∈ Rl

denotes the torques due to gravitational effects. τl ∈ Rl denotes
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the control torques and f l ∈ R3 denotes the external forces, where

Jc,l represents the associated Jacobian. The dependence on

variables will be dropped in the following part for convenience.

The goal of impedance control is to regulate the relationship

of the motions of the robot and external interactions. Let ~ql �
ql − qdl denote the errors between the actual and the desired joint

positions. Then the closed-loop dynamics under the control of

the feedforward and feedback torques is derived as follows

Ml
€~ql + KD,l + Cl( ) _~ql + KP,l~ql � JTc,l f l − fdl( )︸����︷︷����︸

~τe

(13)

where KP,l ∈ Rl×l and KD,l ∈ Rl×l denote the corresponding

submatrices of the joint stiffness matrix KP and damping matrix

KD, respectively. In this work the desired joint accelerations €qdl � 0.

To check the energy variation under the impedance control

law, a storage function is selected to be

V � 1
2
_~q
T

l Ml
_~ql +

1
2
~qTl KP,l~ql (14)

and what follows after derivative w.r.t time and substituting Eq.

13 is

_V � _~q
T

l ~τe +
1
2
~qTl _KP,l~ql − _~q

T

l KD,l
_~ql( ) (15)

where the property _M − 2C being a skew-symmetric matrix has

be applied. If the term inside the parentheses in Eq. 15 is not

positive, there will be

V t( ) − V 0( )≤ ∫
t

0

_~q
T

l ~τedt (16)

implying that the closed-loop system Eq. 13 is passive w.r.t. The

input-output pair (~τe, _~ql) (Khalil, 2002). Loosely speaking, being

passive means a dynamical system does not produce more energy

than it receives, and therefore, it ensures stable behaviors both in free

motion and in the case of interactions with passive environments

(Schindlbeck and Haddadin, 2015). Although the effect of damping

is always dissipating energy from the system, the variation of

stiffness will inject extra energy into the system when ~qTl _KP,l~ql is

positive, and consequently, may break the condition of passivity and

drive the system unstable. In the special case of conventional

impedance control with fixed gains, i.e. when _KP,l � 0, the

system under control is essentially stable all the time. Whereas in

more general cases, the sign of the term inside the parentheses in Eq.

15 is undefined, and thus the stability is not guaranteed.

Following the analysis above, imposing such a condition

∫
t

0

1
2
~qTl _KP,l~ql − _~q

T

l KD,l
_~ql( )dt≤ 0 (17)

will make Eq. 16 satisfied again even though the system is under

variable stiffness control where _KP,l ≠ 0. The inequality Eq. 17

also depicts the principle of the tank-based passivity constraint.

That is, we may store the dissipated energy into a virtual tank and

withdraw the energy to cover some non-passive actions without

loss of passivity. From the perspective of control theories, the

tank energy depicts a sort of passivity margin which tells the

controller how much variation of stiffness can be afforded now.

3.2 Stiffness optimization with tank-based
constraint

Some observations and considerations on the computation of

joint stiffness gains are first provided before presenting our

scheme of the stiffness optimization with guaranteed stability.

First of all, the torque command τ = τff + τfb is subject to

boundary constraints imposed by the actuators, i.e., τ ∈ [τmin,

τmax]. It is worth noting that the values of the desired contact

forces fd and the joint stiffness matrixKP affect each other. This is

because the feedforward torques τff, which are mapped from fd by

Eq. 8, place a constraint on τfb and thus constrain the feasible

range of the stiffness gains, i.e., there are

τmin − τff ≤ KP~q + KD
_~q︸����︷︷����︸

τfb

≤ τmax − τff

Another observation is that the position-based commands

calculated by the whole-body IK controller and the desired

contact forces fd are actually consistent to achieve the

Cartesian reference motions. Therefore, it is the authors’ belief

that the computation of the desired contact forces and the joint

stiffness is better to be considered together, which should permit

more possibilities to achieve desired motions and desired

compliance in a coordinated manner.

Additionally, it is worth reminding that the sign of the _KP

related term is undefined, dependent on the eigenvalues of _KP. It

implies that, from the point of view of passivity, the effect of

stiffening some joints may be compensated by relaxing other

joints rather than merely draining the energy tanks. Compared

with analytical formulations, numerical optimization should be

better in exploring the structure of _kP and leads to less

conservative results.

Motivated by these thoughts, we propose an optimization

over both contact forces and joint stiffness by extending the

previous optimization Eq. 6 as follows.

min
f , _kp,

α1‖Aff − bf‖2 + α2‖f‖2W + α3‖kC
P kp( ) − kC

P,d‖2F + α4‖Nkp

− ktrack
p,d ‖2 + α5‖ _kp‖2 + α6‖‖2

(18)
s.t.

df,min ≤Cff ≤ df,max
(18a)

kp ≥ kp,min (18b)
≥ 0 (18c)

|τ|≤ I ( )τc (18d)
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1
2
~qTi _K

J

P,i~qi ≤ _~q
T

i K
J
D,i

_~qi +
Etank
i

△T
, i � LF,RF, LB,RB{ } (18e)

where the first two terms in the cost function Eq. 18 and the first

constraint Eq. 18a are exactly from the previous optimization Eq.

6. _kp ∈ Rn is the variation rate of the joint stiffness kp ∈ Rn. At

time instant tk, there is approximately

kp,tk � kp,tk−1 +△T _kp,tk

with△T being the servo time of the controller, which is typically

a small value (in our case it is 5 ms). In this paper, we assume

that the stiffness and damping are decoupled among joints.

That is, the stiffness matrix KJ
P ∈ Rn×n and the damping matrix

KJ
D ∈ Rn×n are both diagonal matrices with the joint stiffness

and the joint damping on their diagonals, respectively.  ∈ Rn

is the slack factors of torque limits that will be introduced

later.

The α3-related term in Eq. 18 aims to track the desired

Cartesian stiffness. KC
P,d denotes the desired Cartesian stiffness

and KC
P(kp) denotes the actual Cartesian stiffness dependent

on joint stiffness kp. ‖ ·‖F denotes the Frobenius norm of

matrices. As known in the literature (Albu-Schäffer et al.,

2004; Petit and Albu-Schäffer, 2011), there is a relationship

between the stiffness matrices in Cartesian space and in joint

space as follows

KC
P kp( ) � J+TKJ

P kp( )J+ (19)

where (·)+ denotes the pseudo-inverse of the Jacobian J. The

benefit of using Frobenius norm rather than other types of norm

is the convenience of transforming the problem of matrix

minimization to a standard, convex minimization of a vector

(Albu-Schäffer et al., 2004)

Apkp � bp (20)

so that the proposed optimization Eq. 18 can be solved as a

standard QP problem by many off-the-shelf solvers.

Besides tracking desired Cartesian stiffness, the α4-related

term is to achieve nullspace stiffness where the projector

N ∈ Rn×n maps kp into the null space of the α3-related task,

that is
N � I − A+

pAp (21)

where Ap is the same matrix as in Eq. 20. ktrackp,d ∈ Rn denotes the

desired stiffness in null space, which is calculated from the

tracking error of joint positions

ktrack
p,d � β~q2 (22)

where ~q ∈ Rn is the vector of position errors and (·)2 denotes

specially an operation of element-wise square of a vector. The

benefit of including this term is, as we have found in many tests,

to coordinate the calculated joint stiffness in order to avoid one

huge stiffness for some joint while quite small values for the

others.

Besides the peak torque limit, there also exists a continuous

torque limit τc for many models of actuators (e.g., those used on

our robot) that allows for long-term operation without

triggering the overheat protection. However, the continuous

torque limit is a rather conservative constraint because it is

usually less than half of the peak torque limit, and exceeding

this limit slightly and occasionally does not prevent continuous

operation in practice. Consequently, the inequality Eq. 18,

imposes a soft constraint on the reference joint torques by

using the relaxed continuous torque limit, where I() ∈ Rn×n is

a diagonal matrix with the i-th element being 1 + ϵi (ϵi is the i-th
element of ).

Following the analysis in Section 3.1, we propose to adopt the

tank-based passivity constraint to keep the robot stable with

stiffness modulation. The tank-based constraints, which are

described by the inequalities Eq. 18e, are imposed separately

on each leg, where Etank
i denotes the energy stored from the i-leg

and (·)i denotes the subvector or the submatrix corresponding to

the joints on the i-leg. In addition, as pointed out in (Ferraguti

et al., 2013), the tank-based constraint is actually not able to

preserve the system’s stability in practice unless the tank energy is

properly bounded, and therefore, a positive, application-

dependent upper bound Emax is required. The selection of a

proper Emax, however, remains an open problem and it will be

selected intuitively later. Eventually, the tank energy at time

instant tk is update by the following rules

Etank
i,tk

� E0 if E0 <Emax,
Emax else

{ (23)

where

E0 � Etank
i,tk−1 +△T _~q

T

i K
J
D,i

_~qi −
1
2
~qTi _K

J

P,i~qi( ) (24)

Moreover, it is worth remarking that the stability of the

variable stiffness locomotion is always preserved no matter if the

energy tanks are empty or not. When the energy runs out, the

optimization Eq. 18 will stop the variation of joint stiffness so that

the robot remains passive anyway at the price of losing track of

the desired Cartesian stiffness KC
P,d.

The α1, . . . , α6 in the optimization Eq. 18 are positive weight

factors which should be tuned properly to coordinate all the

objectives. The first two terms majorly affect the computation of

the desired contact forces, where the α2-related term regularizes

the results. A too strong regularization may cause significant

tracking errors and compromise the task performances, and

consequently α2 is usually much smaller than α1. The

computation of the desired joint stiffness is majorly affected

by the next three terms. The priority between the α3-related and

the α4-related terms has been enforced by the nullspace

projection and thus these two parameters may be selected

similarly in magnitudes, whereas α5 should be relatively

smaller to regularize and smooth the stiffness profiles. α6
controls the computation of the slack factors  and, as a
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result, affects how much the reference joint torques comply with

the continuous torque limit. It is usually much larger in the order

of magnitudes so that the torque constraints can be obeyed as

much as possible. Based on these principles, a few simulation

tests should be enough to help decide the proper values of the

factors α1, . . . , α6. The selection of parameters used in our tests

will be introduced later in Section 4.1.

4 Results

To validate the proposed control pipeline, we conduct several

experimental tests on our quadruped robot CENTAURO. The

results are provided in this section.

4.1 Parameters and setup

CENTAURO is a wheeled-legged quadruped robot designed

in our lab (Humanoids and Human Centered Mechatronics,

HHCM) at IIT (Kashiri et al., 2019). The robot weights 110 kg

and is powered by 42 fully torque-controlled joints where each

leg is composed of six actuated joints, namely three pitch joints,

two yaw joints and a wheel, as shown in Figure 4. All the modules

shown in Figure 2 are implemented as ROS nodes in C++ and

run at the indicated rates. The communication between user’s

programs and the robot’s hardware is established by XBotCore, a

real-time (RT) safe robot control framework developed in our

lab, which also provides interfaces to non-RT processes

(Muratore et al., 2017).

When our robot walks on unknown terrains using

touchdown adaptations, the huge impulse with the ground

majorly appears on the z-axis of the world frame, the

magnitude of which may exceed 600 N sometimes. Aiming

to mainly reduce the contact impulse in locomotion, we apply

the proposed optimal stiffness modulation only to the 12 pitch

joints of the legs (marked by red arrows in Figure 4). Those

joints contribute the most to the Cartesian stiffness on the

z-axis and, by modulating their stiffness online, the balance

between tracking performance and desired compliance at the

moments of contact should be achieved. Correspondingly, the

desired Cartesian stiffness matrix in the optimization Eq. 18

becomes KC
P,d ∈ R4×4, only containing the stiffness on the

z-axis of the world frame for the four legs. Additionally,

the decision variables in the optimization Eq. 18 become

f ∈ R12, _Kp ∈ R12 and  ∈ R12, which also results in a

smaller problem to solve.

For selection of parameters, the torque limit τc ∈ R12, as

reported in (Kashiri et al., 2019), is set to be τc �
[τc,1, . . . , τc,4]T where τc,i = [123, 123, 46] Nm. Since we

mainly consider the effects of modulating joint stiffness

towards locomotion at present, the damping matrix is

temporarily left to be constant in the following tests, being

KJ
D � diag(KD,1, . . . ,KD,4) where KD,i = diag ([40, 40, 20])

Nms/rad. As mentioned in Section 3.2, there is no systematic

way to select the upper bound of the tank energy Emax. It is set

to be 5 J in our cases based on the observation that 5 J is a

relatively conservative bound but allows to keep the tank

energy positive, i.e., enabling continuous modulation of the

joint stiffness gains, in most experimental trials. The design of

the desired Cartesian stiffness will be introduced later in

Section 4.2.1.

Unless otherwise stated, other parameters used in the

following experiments are listed in Table 2.

4.2 Experimental results

The experimental results of applying the proposed control

pipeline on our robot CENTAURO are displayed in this part.

FIGURE 4
CENTAURO has six joints on each leg. The proposed scheme
of stiffness modulation is only applied to the pitch joints on each
leg in our experiments, i.e., those marked by red arrows.

TABLE 2 Parameter list.

Parameter Value Parameter Value

α1 1 β 1 × 105

α2 1 × 10–4 kp, min 100I12 Nm/rad

α3 1 fup 50 N

α4 1 △T 0.005 s

α5 1 × 10–1 Emax 5 J

α6 1 × 106
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The workspace consists of two wooden steps as shown in

Figure 5, where the bottom step is about 6 cm high and the

upper step is about 4 cm high. The robot needs to walk up the

two steps without knowing the height maps beforehand.

Although the task is not quite challenging, it provides

variations of several centimeters in the height maps, which

enables to demonstrate the improvements of the variable

stiffness locomotion and the effectiveness of the developed

contact-triggered touchdown adaptation. Please refer to the

supplementary video for the whole execution of the following

trials.

4.2.1 Variable stiffness locomotion
The results of using the proposed control pipeline are

displayed in this section.

Figure 6 shows the optimal contact forces fd and the

feedforward reference torques τff. The dashed boxes indicate

the periods when the corresponding leg is in swing, within which

the expected contact forces should be 0. However, the

corresponding feedforward reference torques are not 0 within

the swing phases since the compensation for gravity and Coriolis

effects has already been considered by the mapping Eq. 8. It is

worth noting that the swing periods are not a constant value

FIGURE 5
Snapshots of the variable stiffness locomotion, where the robot needs to walk up two steps in the workspace without knowing the terrain
geometries beforehand.

FIGURE 6
The desired contact forces and the feedforward torques in the variable stiffness locomotion. The dashed boxes indicate the periods when the
corresponding leg is in swing. (A) The desired contact force for the leg LF. (B) The desired contact force for the leg RF. (C) The desired contact force
for the leg LB. (D) The desired contact force for the leg RB. (E) The feedforward torques for the leg LF. (F) The feedforward torques for the leg RF. (G)
The feedforward torques for the leg LB. (H) The feedforward torques for the leg RB.
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because the robot adapts to early or late touchdown rather than

relying on nominal transitions between gait phases. The

effectiveness of the touchdown adaptation will be better

illustrated later by the last trial, where we disable this function

and let the robot perform the same task.

The design of the desired Cartesian stiffness introduced in

Eq. 18 depends on specific applications, expressing the expected

compliance of the robot when interactions happen. For instance,

the stiffness gains may be adapted online based on the detected

environments and expected interactions when exteroceptive

sensors are available. In our experiments without perception

aided, the desired Cartesian stiffness is designed in a pattern

simply dependent on gait phases as shown by the dashed red lines

in Figure 7A–D. To be specific, the desired stiffness gain reduces

to a smaller value (1 × 104 N/m) at the second half of swing

phases while remaining at a higher value (3 × 104 N/m) at the

other times, which aims to balance the requirements of

supporting the body steadily and touching down compliantly.

The optimized joint stiffness gains for each leg are shown in

Figure 7E–H, respectively. The stiffness gain of the ankle pitch

joint is in general much smaller than the gains of the hip pitch

and the knee pitch joints because of the smaller torque capacity of

the ankle pitch joint, as explained previously in Section 4.1. The

joint stiffness gains increase at the first half of the swing phase

majorly due to the variation of the leg configuration, and thus the

variation of the Jacobian matrix involved in Eq. 19, which

requires higher gains to maintain the same level of Cartesian

stiffness. Whereas at the second half of the swing phase, the joint

stiffness gains dropped rapidly aiming to track the lower

reference stiffness in Cartesian space. By checking the plots

Figure 7A–D, it is clear that the actual Cartesian stiffness have

managed to track the desired values with reasonably good

precision.

The slack factor  in Eq. 18d controls how much the joint

torques comply with the continuous torque limit. The closer of 

to 0, the better the reference joint torques comply with the

constraints. As explained in Section 3.2, the weight factor α6,

which controls the computation of , is selected to be a relatively

huge value in order to obey the torque constraints as much as

possible. The values of  shown in Figure 8 are all sufficiently

close to 0, coinciding with our expectation, which implies that all

the actuators work within the continuous torque range with only

negligible violations.

Figure 9 shows how the energy stored in virtual tanks, i.e. the

passivity margin, varies during the test, where the dashed boxes

indicate the swing phases. It is observed that a sudden drop in the

tank energy usually occurs at the end of the swing phase due to

the rapid rise of the joint stiffness gains, as expressed in Figure 7,

which consumes the stored passivity margin. However, in

general, the energy remains positive and increases until it

reaches the upper bound (5 J), implying that it is always

affordable for some non-passive actions when modulating the

joint stiffness without undermining the robot’s stability.

4.2.2 Comparative tests
We also compare the proposed control pipeline with other

strategies on the robot and the results will be provided in the

following part.

FIGURE 7
The Cartesian stiffness and the corresponding optimal joint stiffness in the variable stiffness locomotion. The dashed boxes indicate the periods
when the corresponding leg is in swing. (A) The desired/actual Cartesian stiffness for the leg LF. (B) The desired/actual Cartesian stiffness for the leg
RF. (C) The desired/actual Cartesian stiffness for the leg LB. (D) The desired/actual Cartesian stiffness for the leg RB. (E) The optimal joint stiffness for
the leg LF. (F) The optimal joint stiffness for the leg RF. (G) The optimal joint stiffness for the leg LB. (H) The optimal joint stiffness for the leg RB.
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FIGURE 8
The slack factor  of continuous torque limits in the variable stiffness locomotion. (A)  for the leg LF. (B)  for the leg RF. (C)  for the leg LB. (D) 
for the leg RB.

FIGURE 9
The plots of the tank energy in the variable stiffness locomotion, where the dashed boxes indicate the swing phases. (A) Tank energy for the leg
LF. (B) Tank energy for the leg RF. (C) Tank energy for the leg LB. (D) Tank energy for the leg RB.
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4.2.2.1 High stiffness locomotion

Compared with locomotion with fixed joint stiffness, the

proposed variable stiffness locomotion may achieve a better

balance between tracking performance and contact

compliance. To this end, we repeat the task above with

different configurations of joint stiffness.

In this test, the stiffness for the hip pitch, knee pitch and

ankle pitch joints on each leg are fixed to be [2000, 2000,

1,000] Nm/rad. Figure 10 reveals that the tracking errors of

joint positions are roughly on the same scale for the variable

stiffness locomotion and the high stiffness locomotion.

However, by checking Figure 11, it shows that the variable

stiffness locomotion has smaller impulse when the swing leg

touches down, which can also be observed intuitively in the

supplementary video. The maximum force at the moment of

contact (marked by red ellipses) has reduced from 711 N in

high stiffness locomotion to 556 N in variable stiffness

locomotion.

4.2.2.2 Low stiffness locomotion

In this test, the stiffness for the hip pitch, knee pitch and

ankle pitch joints on each leg are fixed to be [600, 600, 300]

Nm/rad. The impulse with the ground has even reduced in

this case as shown in Figure 11, however, the tracking errors

of joint positions become much larger in Figure 10. Actually,

the robot failed to walk up the step because of the terrible

tracking performance, as revealed in the supplementary

video.

4.2.2.3 Locomotion without touchdown adaptation

In order to validate the effectiveness of the implemented

touchdown adaptation, we disable this function and then repeat

the variable stiffness locomotion in the same task. To be

specific, the Cartesian motion planner will ignore any

contact signal and transit from the Swing Phase directly to

the All-Stance Phase after a period of ts (seen in Figure 3). The

execution of this test is included in the supplementary video,

which reveals that the robot failed to accomplish the task

without the touchdown adaptation.

5 Discussion and future work

As mentioned in Section 1, optimal modulation of joint

stiffness for quadruped robots is studied in (Heijmink et al.,

2017), where the desired stiffness profiles are trained by learning

FIGURE 10
The joint position tracking error of the leg RF in three comparative tests. (A) In the variable stiffness locomotion. (B) In the high stiffness
locomotion. (C) In the low stiffness locomotion.
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algorithms. The offline training in simulations allows optimizing

the energy efficiency when computing for the desired stiffness

profiles, whereas our scheme presented in this paper cannot

account for the overall energy consumption. The scheme

proposed in (Heijmink et al., 2017), however, is only tested in

simulations without hardware-based demonstrations, perhaps

due to the considerable time consumption of the training

process and the difficulties in sim-to-real practice. Another

deficiency is that there is no theoretical consideration of the

stability issues under variable stiffness control, which implies that

the learned modulation may lead the robot to go divergence in

some corner cases.

A variable stiffness controller with guaranteed stability is

developed in (Angelini et al., 2019) for the quadruped robot

ANYmal. In order to prove the stability, it requires decomposing

the dynamics of the base into decoupled, one-DoF sub-systems in

different directions, which may not be valid for complex robots

with an upper body and dual arms such as CENTAURO. In

contrast, an energy tank-based constraint is employed in this

work to prove the stability of robots with time-varying stiffness

gains, which requires fewer assumptions and approximations to

validate the proof.

The tank-based approach is introduced by (Ferraguti et al.,

2013) to study the issue of stability for manipulators with time-

varying joint stiffness. However, one drawback of the proposed

controller there is that the stiffness will fall back to a predefined

constant value whenever the tank is empty. Such a sudden change

corresponds to an infinitely large variation rate of the stiffness

and may cause oscillations of the motors, which should be

avoided in real applications. In contrast, our scheme simply

stops the variation of joint stiffness whenever the tank is empty so

there are no discontinuities in the generated stiffness profiles.

In this paper, we assume the stiffness and damping matrices,

i.e. KJ
P and KJ

D, to be diagonal, which may prohibit tracking the

desired Cartesian stiffness precisely at a given joint configuration,

as pointed out in (Albu-Schäffer et al., 2004). A possible solution

is proposed in (Petit and Albu-Schäffer, 2011) to optimize the

coupled stiffness matrix directly by the matrix nearness

technique. However, that matrix-optimization approach seems

impossible to account for constraints such as torque limits and

the energy tank-based passivity constraint, which may produce

infeasible or unstable behaviors for the real robots. An alternative

method to mitigate the aforementioned restriction is proposed in

(Albu-Schäffer et al., 2004), where the arm configurations are

FIGURE 11
The estimated contact force (on z-axis of theworld frame) of the leg RF in three comparative tests. Themaximumcontact forces at themoment
of contact are marked by the red ellipses. (A) In the variable stiffness locomotion. (B) In the high stiffness locomotion. (C) In the low stiffness
locomotion.
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optimized together with the joint stiffness. Since the stability

issue is not considered in (Albu-Schäffer et al., 2004), it is an

interesting future direction to extend the developed scheme in

this work by including an optimization of leg configurations,

which should better achieve the desired Cartesian stiffness with

guaranteed stability.

We present a control pipeline in this paper that enables our

quadruped robot to walk on moderately uneven terrains

robustly and compliantly without perception aided. One of

our ongoing topics is to combine the proposed locomotion

controller with perception in order to traverse more challenging

environments. Due to some properties of the objects, the light

conditions or the noise from the sensors, the perception may

introduce uncertainties of about several centimeters in the

terrain information, which, as demonstrated in the

experiments, can be well solved by the proposed control

pipeline. That work will eventually allow our quadruped

robot CENTAURO overcoming more challenging terrains

with various obstacles.
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