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ABSTRACT

Artificial intelligence has been emerging as an increasingly important aspect of our
daily lives and is widely applied in medical science. One major application of artificial
intelligence in medical science is medical imaging. As a major component of artificial
intelligence, many machine learning models are applied in medical diagnosis and
treatment with the advancement of technology and medical imaging facilities.

The popularity of convolutional neural network in dental, oral and craniofacial
imaging is heightening, as it has been continually applied to a broader spectrum of
scientific studies. Our manuscript reviews the fundamental principles and rationales
behind machine learning, and summarizes its research progress and its recent
applications specifically in dental, oral and craniofacial imaging. It also reviews the
problems that remain to be resolved and evaluates the prospect of the future
development of this field of scientific study.
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Figure 1 The popular branches of artificial intelligence used in medical imaging.
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ML utilizes computational methods and data (experience) for training purposes. It does
this to analyze the information that serves as the input and to process the information
gained from accumulative experiences. The foundation of ML falls on “experience
gathering” or “active learning.” In practice, this means that computers learn from
input data and boost their properties by the mistakes they have made without specific
programming or the establishment of a mathematical model (Erickson et al., 2017).

In recent years, the rapid development of medical science means that it requires

more precise and effective clinical treatment. Manual work increasingly has more
disadvantages because of the need for high-density data processing. In parallel, mistakes
are inevitable due to the inexperience of medical or dental professionals (Gao et al., 2019).
The combination of ML and medical science, which is based on automatic operation
workflow and the powerful operating capacity of computers, makes it possible to
circumvent the constraints of manual work (Visvikis et al., 2019).

Computer-aided detection and diagnosis are two major domains of medical
applications in ML (Gao et al., 2019). The application of algorithms for picture processing
is ubiquitous in medical applications, particularly for the detailed analysis of medical
images. These methods first carry out feature extraction of specific images and
subsequently conduct target detection or categorize images into established classes to
achieve image detection or classification. Convolutional neural networks (CNNs) have
been applied the most frequently in medical imaging from the various ML models available
because of their outstanding performance in disposing of image features (Lee ef al,
2017). They offer outstanding performance in areas including radiographic recognition,
analysis, segmentation and interpretation (Kulkarni et al., 2020) (Fig. 1). CNNs are thus
used for pathological detection, diagnosis and prognosis.

Many studies have established a considerable number of ML models for use in medical
and dental fields. Instances include the detection and evaluation of pulmonary nodules
(Hung et al., 2020a) and diffuse lung diseases (Kido, Hirano ¢ Mabu, 2020), diagnosis in
dermatology, for example, for melanocytic lesions (Selim ¢» Giovanni, 2019), as well as
the segmentation of the prostate (Milletari, Navab ¢ Ahmadi, 2016). Other examples
include cancers like lung and breast cancer and show potential for diagnosis, detection and
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even prognostication using CNN (Gao et al., 2018; Hosny et al., 2018; Liu et al., 2018; Xie
et al., 2019).

The applications of ML algorithms in dentistry and oral surgery are at early stages of
development despite their potential as promising assistants for radiography (Schwendicke
et al., 2019). In recent years, scientists have witnessed a drastic increase in research
featuring dental, oral and craniofacial imaging with deep-learning methods, along with
maxillofacial radiology and head and neck oncology. In this review, we first briefly
demonstrate the working principle and rationale of ML in medical imaging. Second,
we introduce the recent progress and applications of ML in dental radiography. Finally,
we conclude the review with a summary of problems demanding prompt and timely
investigation and resolution. We also describe our anticipations for the future research and
development of Al in medical science.

Why this review is needed and who it is intended for

ML is widely used in medical fields, including medical imaging and assisting clinicians
in the diagnosis and treatment of disease. The application of ML in dental, oral and
craniofacial imaging has been widely studied, and ML has been initially utilized in clinical
treatment. These technologies have attracted the attention of dentists and are expected to
become an important tool to assist in treatment. The combination of ML methods and
medical imaging is a current trend and becomes increasingly necessary. In the years
2018-2020, around 30 articles have been published describing the application of deep
learning, a subset of ML, to various fields of dentistry. The applications of ML in medical
imaging have been reviewed by some researchers. However, no review is available to
summarize in detail the applications of ML in the fields of dental, oral and craniofacial
imaging, an area of much interest in dentistry as well as oral and maxillofacial surgery.
Therefore, this review covers recent applications of ML methods in dental, oral and
craniofacial imaging, points out problems that remain to be resolved and evaluates the
prospects of the future development of this field of scientific study. The review is intended
for dentists, oral and maxillofacial surgeons, other specialists and medical workers who are
interested in AL

SURVEY METHODOLOGY

We performed a systematic search of the literature in PubMed, Web of Science and
IEEE ACM SPRINGER from 1980 to December 2020 to identify relevant articles for this
review. The main free text and MESH terms used for our search can be divided into
categories, and a combination of any words in different categories is applied to the search.
At the same time, in order to achieve wider search results, we initially avoid adding specific
types of data. Instead, we utilize the Boolean operator “NOT” to exclude unwanted results
like studies using genomic data. The categories we used are as follows:

1. About ML: machine learning (ML); artificial intelligence (AI); neural network;
convolutional neural network (CNN); support vector machine (SVM); regression;
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decision tree; random forest; deep learning; unsupervised learning; semi-supervised
learning; fully convolutional network (FCN); U-net; ResNet; AlexNet; Lenet; DenseNet.

2. About imaging methods: radiography; cone beam computed tomography (CBCT);
cephalometrics; X-ray; panoramic radiograph; lateral cephalogram; two-dimensional
(2D); three-dimensional (3D); hyperspectral imaging; fluorescence imaging.

3. About oral cancer: oral cancer; head and neck cancer; head and neck squamous cell
carcinoma (HNSCC); oral squamous cell carcinoma (OSCC); tongue cancer; oral tumor;
detection; diagnosis; prognosis; survival rate.

4. About task and processing methods of ML: detection; prognosis; segmentation; object
detection; classification.

5. About craniofacial imaging: orthodontics; landmark location; landmark annotation;
superimposition; orthognathic surgery; dentofacial deformity.

6. About other dental diseases: dental caries; endodontic disease; periapical disease;
periapical lesion; teeth extraction; periodontitis; root canal; dental pulp.

We only include the original research articles in the scope of references and single
case reports were ruled out. We focus on the application of ML in dental, oral and
craniofacial imaging, while studies with a wider range within the vague and broad concept
of executive functions were excluded. This included the use of ML in other medical
fields like respiratory diseases, other AI algorithms other than ML methods like expert
systems, and other forms of data like clinical and genomic indicators. The preliminary
research title and abstract were selected by four authors to determine whether they met the
research criteria. We found about 540 relevant articles written in English through the
preliminary search that may be useful for this review. We finally included about 170
studies that contributed to this review after reading the title and abstract of these articles.

THE WORKING PRINCIPLE AND RATIONALE OF ML

ML is a branch of AL It can be seen from its name that it refers to the ability of machines
to learn. ML is a general term for a class of algorithms that allow the machine to
automatically dig out hidden laws from data, build models and then use the models to
make decisions and complete other tasks. The core of these algorithms usually lies in data.
The explosive growth in the amount of information that we witness today therefore
gives these algorithms the vast soil upon which productive seeds can land and grow (Dey,
2016).

In the field of ML, four main learning methods exist: supervised learning, unsupervised
learning, semi-supervised learning (weakly supervised learning) and reinforcement
learning. Here we consider a task to be learned by a machine. Suppose there is a goal
function “G”: X>Y that can accurately predict the output Y corresponding to each input X.
This function is the ultimate goal learned by the algorithm. We can approximate the
optimal solution to a certain extent, although it is impossible to find it. The method is to
use a series of samples (x1, y1), (x2, y2),...,(xi, yi),..., (xn, yn) generated by the “Goal
function” to estimate itself in order to put as many out-of-sample target pairs (xj, yj) in the
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Figure 2 The fundamental machine learning procedure to achieve a final model.
Full-size Kal DOI: 10.7717/peerj.11451/fig-2

function as possible. xi represents the feature we select to achieve the goal or the feature
extracted by the algorithm, and yi represents the goal to be achieved by the task.

There are two essential parts for the application of ML to actual scenarios. The first is
data and features, and the second is models and algorithms. A commonly used ML
procedure receives data that goes through preprocessing and manual labeling for training
and testing. Selected ML algorithms are utilized for data learning, which occurs through
model optimizing and model evaluation, and the mature model is finalized (Fig. 2).
Specifically, the process of medical image processing typically consists of four steps:
image acquisition, image pre-processing, image analysis and pattern recognition. The first
step is image acquisition. The images processed in medical image processing are mostly
acquired from medical imaging devices, including X-ray, CBCT and magnetic resonance
imaging (MRI) (Taghanaki et al., 2021). The second step is to pre-process the images.
Artifacts and noise on the images affect the image quality, which are due to the damage and
contamination of the image caused by storage and transmission. Therefore, we need a
series of image enhancement operations to recover or generate an image of the desired
quality, including histogram equalization, image sharpening, thresholding transformations
(Maini & Aggarwal, 2010) and various filtering operations. The third step consists of image
analysis and feature engineering. This approach is used to extract the required features
using a priori information and to send the image analysis results to the next stage of the
ML model for training of the corresponding tasks. Shape features can be extracted by some
boundary extraction operators including first-order differential Robert, Prewitt, Sobel
operators, second-order differential Laplacian edge detection operators and optimal
method-based operator (Canny, 1986). Spatial relationship features can be extracted by
modeling pixel points, using methods such as Markov Random Field (L7, 1994). In image
processing utilizing deep neural networks such as CNN, feature engineering can be
performed using multi-layer convolution for adaptive extraction. This approach simplifies
the amount of engineering, but specific feature information is difficult to extract and
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Figure 3 The main machine learning algorithms used in medical image processing.
Full-size k&l DOL: 10.7717/peerj.11451/fig-3

externalize. The fourth step is to feed the feature information extracted in step 3 into the
selected ML model for modeling. Fallback steps such as hyperparameter adjustment and
model adjustment are carried out based on the feedback from the results.

In medical image processing, most traditional ML algorithms do not directly feed
the original image into the model but go through some feature extraction processes.
This may involve, for example, use of the well-known SIFT feature extraction analysis
(Lowe, 2004) to obtain the features and send them to the model such as Support Vector
Machine (SVM) (Smola ¢ Scholkopf, 2004). Models such as k-Nearest Neighbor (KNN)
(Cover & Hart, 1967) are used for tasks such as image classification or segmentation.
When the CNN is finalized, the traditional feature engineering can be replaced by the
convolutional layer and performed more efficiently. End-to-end task solutions can be
realized, for example, and the convolutional layer with fully connected (FC) layers can be
applied to image classification. CNN has become a popular model in the field of image
processing and has been broadly used (Fig. 3).

CNN is an important type of neural network, and it is widely applied to image
processing. The traditional method of FC layers, which existed before the advent of
CNN, has been considered to have various disadvantages when used in image processing.
Since it is constructed by how each neuron in the adjacent layer is linked, this architecture
contains many weights (parameters in neuron networks), which dramatically increases
the computational overhead. Compared to FC architecture, however, CNN is designed
with some special characteristics.

The basis of CNN is a series of convolution operations that can be understood as the
filter sliding on the image. A filter is a three-dimensional (channel, height, width) weight
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tensor that can extract the features from different pixel units. For a two-dimensional digital
image, the affine transformation of the region can be realized after the filter is multiplied by
the matrix of different regions of the image (Dumoulin ¢ Visin, 2016). A filter is a
collection of multiple different convolution kernels. A multiplying filter with the image
area will yield responses of different magnitudes because of different kernels. Features
are represented by the kernel in the area if the response is strong. The size of the filter is
related to the receptive field, which represents the perception area of neurons (Hubel ¢
Wiesel, 1962). It possesses a Gaussian distribution and also only takes up a small part of the
full theoretical receptive field (Luo et al., 2016).

One kind of kernel usually corresponds to one specific pattern. Numerous different
features can be extracted if filters with numerous different kernels are applied to an image.
If there are kernels that correspond to identical patterns in a given image, the output of the
convolution operation will respond strongly to those pixel units. These features include
edges, directions and others. In addition, this operation largely reduces the number of
weights because a filter conducts convolution operations for each pixel unit of the CNN
architecture image. Furthermore, it means different image units can share the parameters,
a process that is called parameter sharing (Ravanbakhsh, Schneider ¢» Poczos, 2017).
The use of kernels to process images can extract spatial information successfully, which
means the interpretability of the parameters will be improved.

Feature maps are obtained after the convolution operation. However, the feature
map size is still large even if the image has been processed by filters. A pooling layer has
been proposed to further downsize the feature maps (LeCun et al., 1998). The pooling
process is similar to the convolution operation, but its purpose is different: the filters used
for pooling are usually designed to generate the maximum value or average value. The two
methods involved in the pooling layer are called max-pooling and mean-pooling.

They are usually used to extract the texture information and to collect the background
information of feature points in the region (Boureau et al., 2010). The size of the feature
maps can be reduced by pooling subsampling. It is therefore helpful to avoid overfitting
and keep features robust against changes like rotation. Pooling subsampling can also
reduce the calculation workload. However, these two pooling methods will cause excessive
information loss and destroy the spatial information in processed images. Therefore, in
order to compensate for the flaws of both pooling methods, researchers have made many
improvements to them and presented methods like fractional max-pooling and others
(Graham, 2014; Zeiler ¢ Fergus, 2013; He et al., 2015). One trend is pronounced

despite these improved pooling methods: many advanced networks are using fewer
pooling layers and replacing them with convolution layers (Springenberg et al., 2014).

Problems remain to be solved after performing convolution and pooling operations
to images. We have noted that these two operations are virtually continuous linear
operations, and the output of the linear transformation superposition is another linear
transformation. Therefore, by applying these two operations, we can only produce linear
solutions and cannot handle indivisible linear problems. Nonlinear transformation is
needed to compensate for the confinement of these two operations.
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The solution to the aforementioned problem is activation functions, which are
essentially nonlinear functions (Karlik ¢» Olgac, 2011). The network can approximate any
function according to the universal approximation theorem (Cybenko, 1989) when
given sufficient linear output layers and nonlinear hidden layers. Only when a specific
threshold value is achieved by the weighted sum of the signal intensity from previous
dendrites will the subsequent neurons be activated in our nervous system for neurons in
the biological sense. It is also necessary to discard some weak features for the neural
network view, which is analogous to the biological neuron network, because it is
unnecessary to store these features. The following are some well-known activation
tunctions (Ramachandran, Zoph & Le, 2017): the softmax function, which is the earliest
sigmoid function and the currently popular Relu function (Nair ¢» Hinton, 2010). These
two parts are the basic components of CNN. This is why a deep learning net is considered
as a multi-stage distillation of information, where the information passes through
continuous filters and is continuously purified.

In addition to these two fundamental parts, FC layers are often chosen to be a part of the
network especially when networks are wanted to classify data (Krizhevsky, Sutskever &
Hinton, 2012; Simonyan ¢ Zisserman, 2014). Some unique variants have been well
designed in order to adapt to other work. Fully Convolutional Network (Long, Shelhamer
¢ Darrell, 2015) and U-net (Ronneberger, Fischer ¢ Brox, 2015) are proven to be effective
in semantic segmentation tasks. Yolov3 (Redmon ¢ Farhadi, 2018) performs well in
real-time object detection. In addition to these architecture changes, some optimization
methods are also proposed in this process like Dropout (Hinton et al., 2012) and Adam
(Kingma & Ba, 2014).

APPLICATIONS OF ML IN THE DENTAL, ORAL AND
CRANIOFACIAL IMAGING FIELD

Dental, oral and craniofacial imaging consists of several techniques from two-dimensions
to three-dimensions. The most common imaging methods are CBCT and panoramic
radiographs. Recent years have witnessed the burgeoning increase of the application of
ML in this field. Our systematic search revealed that the usage of ML in the field of
craniofacial imaging has become the biggest area of application, among which automatic
cephalometrics has become relatively mature. In oral imaging, oral cancers, which are life
threatening, have caught the attention of many researchers. Therefore, considerable
studies focus on ML-based detection, diagnosis, prognosis and treatment design for these
tumors, especially for OSCC, the oral cancer with the highest morbidity.

ML in craniofacial imaging has stepped into a multidirectional mature stage of research
with many studies reported. Meanwhile, oral cancers are life-threatening diseases that
cannot be easily diagnosed. Auxiliary diagnosis seems to be particularly meaningful.

In addition, therapeutic schedules vary from person to person with different conditions of
prognosis and process. The prediction of results based on ML may therefore lead to
valuable references that improve the quality of life of patients. Other fields in oral medicine
like endodontic and periodontal disease are likewise studied using ML approaches but
mostly at the diagnostic level. In this section, we categorize the applications into three
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classes. First, we focus on the craniofacial imaging field, which includes orthodontics and
orthognathic surgery. Second, we introduce the applications in oral tumors, covering their
diagnosis, prognosis and the design of therapeutic regimen. Other applications will be
grouped together.

Application of ML in craniofacial imaging

Landmark location in cephalometrics

Automated cephalometric analysis is helpful in reducing the workload of orthodontists
while achieving higher accuracy and efficiency (Dot et al., 2020). In 1984, computer-aided
automated skeletal landmarking was created (Cohen, Ip ¢ Linney, 1984). Today, various
approaches have been used for cephalogram measurement. In the field of landmark
location, the methods that have been most widely adopted into use can be roughly
categorized into four branches: knowledge-based approaches (Gupta et al., 2015),
model-based approaches (Romaniuk et al., 2004; Shahidi et al., 2014; Vucinic, Trpovski ¢
Scepan, 2010), learning-based approaches (Kunz et al., 2020) and hybrid approaches
(the combination of the first three approaches mentioned here) (Montiifar, Romero &
Scougall-Vilchis, 2018). The first two approaches are considered deductive methods or
analogical learning and are used to analyze radiographic structure via a defined set of
patterns and models. Therefore, variability plays an important role in the final output data
(Gupta et al., 2015), and both approaches are sensitive to image quality (Leonardi et al.,
2008). By contrast, the recent widely applied approach of ML refers to learning by
induction. Once training data are given, the computer produces the source concept itself
based on a large dataset, which means it acts like a perception procedure.

Yue et al. presented a modified active shape model (ASM) to assist landmark location of
lateral radiographs. This model is based on principal component analysis and grey pattern
matching. Such an algorithm is built to capture variations of region shape and grey
profile (Yue et al., 2006) by training with two hundred cephalograms of which 262
labeled feature points were set. The input pre-labeled images are marked by presetting
12 landmarks with good reliability. However, this method requires a large number of
feature points to identify specific landmarks. The solution is to divide the whole lateral
radiographs into smaller regions. The accuracy is highly relevant to the resolution ratio
and initial position of the tested imagery graphs, which requires laborious work and has
limitations in image quality.

Kunz et al. (2020) implemented cephalometric X-ray analysis by the application of a
CNN mainly for landmark location. The customized CNN functioned as well as expert
analysis, the golden standard for this type of study, after training with a total of 1,792
manually positioned lateral cephalometric radiographs. Numeric grey-scale values of each
pixel, as input data, are recognized, and afterward the output layer acquires coordinate
pairs of cephalometric landmarks after going through hidden layers with subsampling
functions. Algorithms like You-Only-Look-Once version 3 (YOLOvV3) network and Single
Shot Multibox Detector (SSD) have been compared and analyzed in recent studies.
YOLOV3 clearly outperformed SSD in time consumption and accuracy. In addition, no

Ren et al. (2021), Peerd, DOI 10.7717/peerj.11451 9/35


http://dx.doi.org/10.7717/peerj.11451
https://peerj.com/

Peer/

difference in detection error between YOLOvV3 and manual landmark identification was
found (Hwang et al., 2020; Park et al., 2019).

Two-dimensional radiographs lead to the deficiency of overall craniofacial morphology
as well as information in the horizontal plane (Lenza et al., 2010). Other than traditional
lateral cephalograms, CBCT imaging, which obtains details from the coronal, sagittal
and horizontal positions, excels at lower radiation doses and where more structural
information is present, and consequently is popular for dental imaging (Kiljunen et al,
2015). Many Al-aided types of research for cephalometric analysis work at the
three-dimensional level (Gupta et al., 2016; Lee et al., 2019; Montiifar, Romero ¢ Scougall-
Vilchis, 2018; O’Neil et al., 2019).

Three-dimensional automated analysis is the ramification of plane cephalometrics.
The main annotation methods can be classified into three categories: knowledge-based,
atlas-based and learning-based methods (Dot et al., 2020). Gupta et al. (2015) created a
knowledge-based algorithm in MATLAB that consists of preset mathematical entities.
This approach works by finding the seed point, creating the volume of interest and
extracting the contour of the valid skeletal structure. The corresponding landmarks on
CBCT images are accessed by matching extracted contours with relevant mathematical
entities. Furthermore, Montiifar, Romero ¢ Scougall-Vilchis (2018) developed a hybrid
method based on earlier work (Gupta et al., 2015) and a two-dimensional holistic
ASM. The result suggests a potential role of the initial two-dimensional search algorithm
in the improvement of accuracy and time saving for three-dimensional landmark
annotation. Deep learning methods like CNN structure have also been conducted (Kang
et al., 20205 Lee et al., 2019; Yun et al., 2020). Some structures like gonion, porion and
others seem to be points with imperfect accuracy. In addition to algorithm insufficiency
and manual errors, inexact anatomical positions and complex definitions are possible
causes of this loss of accuracy (Ma et al., 2020; Montufar, Romero ¢ Scougall-Vilchis,
2018). However, only a few studies have been reported in the three-dimensional field of
imaging, which suggests that it is still at the initial stages. Some research has produced
tenable results, but further improvements are required to permit concrete conclusions.

One point worth noting is that the spatial landmark annotation can directly result from
two-dimensional image learning. Lee ef al. (2019) introduced a novel approach using
shadowed two-dimensional image-based ML. VGG-Net is able to form stereoscopic
craniofacial morphological structures after training using two-dimensional marked image
data with different lighting angles and various views. A significant benefit of this approach
is the reduction of input size. However, large errors persist in some landmarks. This
approach offers new ideas, but many subsequent trials are needed.

Other branches in orthodontics
In addition to cephalometrics, the personalized design of orthodontic treatment is vital and
significant.

Long-lasting therapeutic processes, optimal initiation times and optimal durations of
orthodontic treatment are the main considerations for malocclusion types. Therapeutic
interventions can help patients overcome the severity of different conditions and counter
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problems due to deficiencies in individual growth and development (Martonffy, 2015;
Pinto et al., 2018; Pinto et al., 2017).

Orthodontists can better design the initial time of intervention by determination of the
cervical vertebrae stages (CVS) from cephalometric radiographs (Chen et al., 2010; Uysal
et al., 2006). Kok, Acilar ¢ Izgi (2019) implemented a series of comparisons on CVS
classifications using seven different AI algorithms, naming artificial neural networks
(ANN) and evaluating other criteria. These algorithms analyze second to fourth cervical
vertebrae and classify radiographs into six stages. The different stages are subsequently
used to evaluate the decisions made for treatment time. ANN achieves the highest stability
in a comparison of actual CVS with predicted CVS for the output of Al algorithms.
ANN and SVM yielded the highest determination value in distinct stages of the area under
the receiver operating characteristic curve (AUC) evaluation. More specifically, SVM
achieves the highest accuracy in identifying CVS3 and CVS5, while ANN has the best
performance in determining the other stages. SVM functions as a maximum margin
classifier, maximizing the differences between disparate classes (Ben-Hur ¢ Weston, 2010).
Other evaluation methods also suggest that ANN displays both high relative accuracy and
stability. ANN is therefore preferable in CVS determination. Recently, a study also
compared the effectiveness of ANN with manual observation, and ANN was determined to
be slightly inferior to human observers (Amasya et al., 2020). Other research described
considerably high accuracy with ANN to achieve CVS evaluation (86.9% with 13 linear
marks for each radiograph) (Kok, Izgi & Acilar, 2020). The differences may be due to
measurement methods.

Al-assisted methods have been used in diverse ways in orthodontics. Some studies
discuss the possibility of using ML to determine the necessity to extract teeth and the need
for orthognathic-orthodontic surgery (Choi et al., 2019; Jung ¢ Kim, 2016; Takada, Yagi &
Horiguchi, 2009; Xie, Wang ¢» Wang, 2010). Jung et al. (Jung ¢ Kim, 2016) created a
two-layer neural network to perform the extraction or non-extraction decision.

The procedure sets four classifiers and consists of three stages: determining whether to
extract teeth, the need for differential extraction between maxillae and mandible, and,
eventually, the need for more retraction. The success rates of each stage tested were 93%,
89% and 84% (for more retraction with identical retraction) and 96% (for more retraction
with differential extraction), which suggest a relatively high diagnostic precision.

In addition to the need to extract teeth, the system of Jung provides a detailed plan of
orthodontic treatment. In another study, ANN outputs detailed extraction patterns as well
as anchorage patterns based on clinical and radiological data of orthodontic patients,
which provides good treatment advice for orthodontists (Li et al., 2019) (Fig. 4).

In terms of poor image quality, which leads to unavoidable systematic errors, including
noise and artifacts (particularly metal artifacts), the constraints can be reduced robustly
and efficiently by deep learning methods (Huang et al., 2018; Jiang et al., 2018; Minnema
et al., 2019; Zhang ¢ Yu, 2018). Computer-assisted denoising and metal artifact reduction
(MAR) succeed in improving the structural visualization and diagnostic accuracy of
orthodontists, oncologists and doctors in other fields.
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Figure 4 An example of a machine learning method (artificial neural network) utilized in
orthodontic treatment design. (A) The data processing workflow of the artificial neural network
which provides detailed guidance for the extraction and anchorage patterns. (B) The main inputting data
and the structure of the three-layer neural network for tooth extraction prediction. Reprinted from (Li
et al.,, 2019). Full-size k&) DOT: 10.7717/peerj.11451/fig-4

Orthodontists have accounted for a relatively large portion of users at present for the
application of ML in oral medicine. Two-dimensional landmark location based on ML
using traditional lateral cephalograms gradually shows promise. Multiple methods,
especially various types of CNNs, produce good results.

The common use of CBCT means that cephalometrics is advancing to the
three-dimensional stage. Three-dimensional cephalometrics has become a frontline
direction for research. The need to retain more information means that landmark
identification requires more suitable operations and specialized knowledge (Cevidanes,
Styner & Proffit, 2006), which may be one of the principal obstacles to the automatic use of
three-dimensional landmark annotation using AI methods. In ML, the lack of large
training datasets might confine the development in three-dimensional fields because of ML
features learning directly from data (Hwang et al., 2019). Other obstacles in the
development of Al-supported applications in medical science include situations likely to
take excessive amounts of time (computer learning time and manual cropping time) as
many studies utilize manually preprocessed images for training data. Some other
applications like CVS and orthodontic-orthognathic operation design also demonstrate
the superiority of neural networks. The practicability of picture processing is therefore
paving the way for the development of automatic orthodontic treatment. More mature
clinical uses like image superimposition, detailed surgical procedure design and process

Ren et al. (2021), Peerd, DOI 10.7717/peerj.11451 12/35


http://dx.doi.org/10.7717/peerj.11451/fig-4
http://dx.doi.org/10.7717/peerj.11451
https://peerj.com/

Peer/

simulation of orthodontic treatments can be achieved fully automatically with the help of
ML methods.

Orthognathic surgery and other dentofacial deformities

In the field of orthognathic surgery, the use of ML can enhance the accuracy of diagnosis
from maxillofacial images (Sun et al., 2018; Zamora et al., 2012), assist in customizing the
computer-aided design and manufacture (CAD/CAM) of orthodontic and surgical
appliances and equipment (Cevidanes, Styner & Proffit, 2006) and can be improved by
comparing the results at finer intervals through image superposition (Bouletreau et al,
2019).

Hyuk-11 Choi et al. (Choi et al., 2019) developed a ML model by studying 316 samples.
Twelve lateral cephalogram measurements and six additional indexes were used as
input for the model to calculate the success rate of surgical decision-making. Patcas et al.
(2019a) have shown that ML can be used to evaluate the facial attractiveness and
appearance age of orthognathic patients. Patcas et al. (2019b) evaluated the facial
attractiveness of the forehead and side images of ten patients with a left cleft lip and ten
controls using a special convolution neural network, and concluded that the ML method
can be a powerful tool to describe facial attractiveness. Facial symmetry is an important
indicator of facial attractiveness. Lin et al. used a novel Xception model to score facial
symmetry before and after orthognathic surgery. Special two-dimensional contour maps
converted from CBCTs were considered as the input data. These maps contain much
three-dimensional information (Lin et al., 2021). Jeong et al. studied the front and side
faces of more than 800 subjects with dentofacial dysmorphosis/malocclusion using CNNs
and found that CNNs are able to relatively accurately estimate the soft tissue contours
related to orthognathic surgery with these photographs alone (Jeong et al., 2020). However,
as far as the current results are concerned, important adjustments need to be made to
the ML model. CBCT images combined with ML models can also be used to measure the
bone mineral density of the implant area (Colak, 2019; Dahiya et al., 2018), evaluate
the bone mass of the surgical area (Suttapreyasri, Suapear ¢» Leepong, 2018) and assist in
the construction of a static guide plate system (Lin et al., 2020).

AT passage from two-dimensional to three-dimensional imagery along with the added
benefits of increased diagnostic precision make the treatment effect visual and the
communication between doctors and patients unimpeded. However, the value and ability
of ML in simulating the consequences of orthognathic surgery have not been fully proved.
Bone displacement will make it difficult to predict soft tissue changes. The response
displacement of soft tissue to the underlying bone can vary greatly according to the mass,
and there are many influencing factors. An algorithm is still unlikely to accurately predict
the final aesthetic effect after surgery.

Application in oral cancers

Oral cavity cancer is a high-risk category of life-threatening tumors and accounts for the
major proportion of head and neck cancer (Rivera, 2015). In addition to several functional
symptoms like teeth loss, head-neck pain and potentially fatal consequences, this

Ren et al. (2021), Peerd, DOI 10.7717/peerj.11451 13/35


http://dx.doi.org/10.7717/peerj.11451
https://peerj.com/

Peer/

craniofacial disease also likely results in disfigurement of patients without early diagnosis
or favorable prognosis. Classical oral cancer detection and diagnosis are based on
radiological analysis, clinical monitoring indicators and histopathological assessments
(Mahmood et al., 2020). Prevention and early-stage diagnosis are of great significance to
the survival rate and treatment management of cancerous patients. However, the definite
tumor diagnosis is usually late (Chakraborty, Natarajan & Mukherjee, 2019; Rivera, 2015).
In recent years, conventional and modern ML methods, especially neural networks and
SVM, have illustrated the capability of processing oral cavity tumor-related image data.
This includes oral cancer detection and tissue cell classification in the stage of cancer
diagnosis (Al-Ma’aitah & AlZubi, 2018; Aubreville et al., 2017; Das, Hussain & Mahanta,
20205 Jeyaraj & Samuel Nadar, 2019; Shamim et al., 2019), tumor margin assessment and
tumor subtype classification in the process of clinical cancer treatment (Fei et al., 2017,
Marsden et al., 2020; van Rooij et al., 2019) and assessment of complications after
treatment (Ariji et al., 2019; Dong et al., 2018; Men et al., 2019). Major tumors like OSCC
are able to be detected and evaluated with high accuracy using a timesaving algorithm
(Aubreville et al., 2017; Das, Hussain ¢ Mahanta, 2020).

Detection of oral cancers

Semantic image segmentation and feature extraction are two fundamental processes of
image classification through ML methods. They form the basis of oral cancer detection by
this type of approach (Haider et al., 2020; Mahmood et al., 2020). Hyperspectral Imaging
(HSI) is a currently applicable technique for tumor detection. HSI, which contains
three-dimensional data, provides a potential noninvasive approach to assess pathological
tissue by illustrating spectral features of different tissue (Akbari et al., 2011; Lu et al., 2014).
Pandia et al. (Jeyaraj ¢» Samuel Nadar, 2019) established a deep CNN, which is used in
the classification and evaluation of hyperspectral cancerous images. The researchers
extract image features at the first stage using a weight-based technique, and a two-layer
partitioned, regression-based deep CNN classifier is employed subsequently for feature
classification. The discrimination accuracy using an expert classification scheme between
malignant and benign tumors reaches 91.4%, while the accuracy between malignant
tumors and precancerous lesions reaches 91.56%.

Chan et al. (2019) designed a two-branch deep CNN method for oral cancer detection
and localization. Original auto-fluorescence images were chosen and disposed of to
output texture maps. Afterward, the specific texture maps are utilized by ML to conduct
automatic localization of cancer. The Gobar filter, which is used to implement image
feature extraction, achieves detection sensitivity and specificity of 93.14% and 94.75%,
respectively.

Oral leukoplakia is the most common type of precancerous lesions of oral cancer.

A study by Jurczyszyn utilizes intraoral photographs to conduct oral leukoplakia
prediction, which can be considered for early prevention of oral cancers (Jurczyszyn,
Gedrange & Kozakiewicz, 2020). However, oral cancer consists of a large variety of distinct
malignancies. Hence, primarily distinguishing tumor-related tissue from imaging data of
patients is fundamental and essential but lacks precision for specific oral cancers.
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Some other studies have focused on the diagnosis of single oral cancers (Aubreville et al.,
2017; Das, Hussain ¢ Mahanta, 2020; Rahman et al., 2020; Shamim et al., 2019).
Squamous cell carcinoma is responsible for approximately 90% of total oral cancers and
has become the sixth most common cancer worldwide (D’Souza ¢ Addepalli, 2018; Kar
et al., 2020).

Biopsy is the current gold standard for OSCC (Swinson et al., 2006), but the
histopathological method is time-consuming and costly. Therefore, Navarun et al. (Das,
Hussain & Mahanta, 2020) utilize four types of deep CNN models through a transfer
learning approach, and one proposed CNN to achieve the automated histological grading
of whole slide images on lesion locations.

Transfer learning can reduce the amount of training data as it fine-tunes from the
previously trained large dataset. Biopsy is invasive and painful for patients, and some
researchers are looking for ways for noninvasive imaging. Confocal Laser Endomicroscopy
(CLE) imaging has proved capable and reliable in the detection of HNSCC (Nathan et al.,
2014). It has been used by Marc and coworkers (Aubreville et al., 2017) for OSCC
microstructure assessment.

The researchers collected both normal tissue images from the alveolar ridge, inner
labium, hard palate and cancer-related tissue images as samples. A binary classification
(normal or cancerous) with an accuracy of 88.3% is obtained using CNN. The real-time
identification instrument is of use for automated detection of cancerous lesions.

Carcinogenic factors need to be taken into consideration. Infection by human
papillomavirus (HPV) is one of the high-risk factors for OSCC (Marur et al., 2010).
ML-based cancer detection also succeeds in evaluating molecular markers like HPV. Some
studies use contrast computed tomography (CT) for capturing features of HPV-related
head and neck squamous cell carcinomas (Huang et al., 2019; Zhu et al., 2019). MRI data
are also utilized for OSCC assessment. Specific MRI texture features, which are chosen
by dimension reduction, are capable of automatic OSCC histological grading without
biopsy (Ren et al., 2020). The grading accuracy of OSCC achieves an average of nearly 85%
using three types of classifiers. It is useful to assess histological grading via MRI since it is a
noninvasive approach for clinical examination.

Trials on automated screening of other oral cavity cancers have been implemented
clinically (Shamim et al., 2019) or on experimental animals (Lu ef al., 2018). Six deep
CNNs have been applied to distinguish tongue lesions before tongue cancer fully takes
hold (Shamim et al., 2019). The VGG19 model demonstrates the best capability in
classifying benign and pre-cancerous lesions using original resized photographic images as
input, while the ResNet50 model shows its potential in the discrimination of five lesion
subtypes. Researchers have further combined computational outcomes with physician
decisions and increased the binary classification accuracy to 100%. At the same time, some
benign tumors in the oral cavity are also detected automatically by some ML methods,
which includes ameloblastoma, keratocystic odontogenic tumor, pleomorphic adenoma,
Warthin tumor and others (Poedjiastoeti ¢~ Suebnukarn, 2018; Al Ajmi et al., 2018). These
tumors also make up a large proportion of oral tumors.
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The majority of these studies are related to cancerous image classification, and most
studies have achieved desirable detection accuracies compared to the gold standard. ML
has yet to reach the needed precision for tumor diagnosis. The automated detection
methods, which are based on a series of diverse imaging approaches, improve clinical
cancerous workflow and provide assistance for the decisions of oncologists. However, a
lack of training datasets and data quality restrict the scale of research. More image data
with the standard format are required for future research.

Clinical treatment of oral cancers

Morphological analysis, including tumor margin assessment and tumor site evaluation, is
of much concern during the treatment of oral cancers. The tumor size and site are
connected with prognosis (Chakrabarti et al., 2010; Namin et al., 2020), for example, for
patient survival rate and surgical decisions for tumor resection (Upile et al., 2007). Much
research has focused on the automated structure segmentation of oral cancer-related
images (Brouwer de Koning et al., 2018; Fei et al., 2017; Grillone et al., 2017; Marsden et al.,
2020; van Rooij et al., 2019). In a study by Fei et al. (Fei et al., 2017), hyperspectral images
of surgical cancerous tissue samples have been acquired to train and test the ML model.
The principle of this method is also related to tissue classification, through which the
margins of oral tumors are profiled clearly with an average accuracy of 90%. Additionally,
the research also compares the impact of image types on the precision of margin
assessment, which turns out to outperform HSI over fluorescence images.

The use of real-time oral cavity screening probes with ML methods has also been
reported for surgical procedures (Marsden et al., 2020). Fluorescence lifetime imaging
(FLIm) is a noninvasive technique capable of assessment of molecular composition (Cheng
et al., 2013). Mark and coworkers (Marsden et al., 2020) utilized and compared three ML
models to conduct both in vivo and ex vivo tumor margin assessment. They used fiber
probes to acquire oral tissue specimens, and further processed the tissue regions with
different classifiers: SVM, Random Forests and CNN. “Cancer,” “Health” and “Dysplasia”
labels were annotated on the scanning images after the visualization process using Python.
The outcomes demonstrate the potential of FLIm to predict pre-cancerous tissue and
suggest that the Random Forest technique is superior to the other two popular
image-processing methods.

Prognosis of oral cancers

Post chemoradiotherapy complications of cancers are severe and individualized.

In addition to common side effects like myelosuppression, osteoradionecrosis and hair
loss, specific complications after chemoradiotherapy include xerostomia, hearing loss,
inflammation of skin and mucosa and cancer recurrence (Haider et al., 2020). Kuo and
coworkers (Men et al., 2019) collected CT scan data from patients undergoing radiation
therapy and developed a prognostic system using three-dimensional residual CNN
(3DrCNN) to predict the occurrence of post-therapy xerostomia. The implementation of
the 3DrCNN method is followed by structural segmentation, which outlines margins

of parotid and submandibular glands on CT scans. Radiation dose distributions, profiles of
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salivary glands and CT scans are prepared as optional data, and at least two of them are
selected as input. The model without data rejection reaches the best performance with
accuracy, sensitivity and specificity of all around 0.76. The worst performance occurs
when the radiation dose label is lacking. Further studies can focus on the accuracy of
methods for structure identification and to increase the data types for input (e.g., treatment
cycle) to augment the precision of xerostomia prediction.

Five-year survival rate and survival time of cancer patients are significant indicators
for cancer prognosis, as well as references for therapeutic outcomes. In a recent study, a
total of 59 patients with oral tongue cancer have been examined (Pan et al., 2020). All were
treated with radiotherapy, and their CT images utilized and studied by computer for
individual survival prediction.

The researchers used a t-Distributed Stochastic Neighbor Embedding (t-SNE) method
to screen out effective features to allow for numerous irrelevant features. Probabilistic
Genetic Algorithm-Back Propagation (PGA-BP) ML methods were used, and the
prediction accuracy was already close to actual survival conditions: 30.5 + 21.3 months
for actual survival time and 31.6 + 15.8 months for predicted survival times. Furthermore,
to improve the degree of accuracy, other indicators including tumor grading and staging
should be taken into account. The year of diagnosis, the age at diagnosis and cancer
size and site are of significance in the lifetime of patients (Hung et al., 2020b).

Oral malignancies have a close relation with cervical lymphatic metastasis, which
implicates poor cancer prognosis (Okada et al., 2003; Spiro, 1985) and is especially
indicative of the sharp decrease in the 5-year survival rate (Exarchos, Goletsis ¢ Fotiadis,
2012; Taghavi & Yazdi, 2015; Walk ¢» Weed, 2011). Therefore, the detection of metastasis
for cervical lymph nodes has become a focus of attention after clinical treatment.

In this context, automated detection with the help of ML methods has been conducted
with distinct image types recently (Ariji et al., 2019; Dong et al., 2018; Keek et al., 2020).
The nodal status of oral cavity SCC and oropharyngeal SCC is assessed using contrast-
enhanced CT scans. The bagging of Naive Bayes achieves the best accuracy of 92.9%
with receiver operating characteristic (ROC) of 0.857 (Romeo et al., 2020). Additionally,
more than 10,000 contrast-enhanced CT images of cervical lymph nodes have been trained
by CNN, and the analytical result suggests a close precision for evaluation between manual
and automated assessment.

In another study (Dong et al., 2018), the assessment sensitivity based on a non-radiating
thermal system was higher than that based on contrast-enhanced CT scans, but the two
pieces of research utilize distinct ML models.

The wiser choice of image types for assessment needs further comparison. MRI has also
been considered as a potential predictive modality for HNSCC prognosis (Yuan et al,
2019). In future, computer-assistant methods can be explored and put into application.
One type of research utilizes both MRI image features and clinical information such as
smoking history, age and other factors to automatically predict the existence of HPV in
patients suffering from oropharyngeal squamous cell carcinoma (Bos et al., 2021).
Relations between clinical characteristics and HPV status are also analyzed as the existence
of HPV is closely related to cancer prognosis. Others have also estimated the existence of
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HPV and p53 mutation in HNSCC patients via MRI (Dang et al., 2015; Ravanelli et al.,
2018).

Automated oral cancer detections and assessments are available for diverse image data,
most of which are CT scans and HSI (hue, saturation, intensity).

CNN models achieve high-quality cancer-related image processing and are mainly used
as a means of image classification, especially functioning as binary classifiers. Other ML
methods like SVM and Random Forests also display high sensitivity, accuracy and
specificity during image processing with specific types of image data. However, their
superiority needs further exploration and more evidence due to the lack of sufficient
research literature. Meanwhile, given that a large amount of recent research utilizes limited
imaging data for Al training, the significance of data sharing and dataset construction is
highlighted (Haider et al., 2020).

The combination of Al and molecular imaging has aroused attention with the rapid
progress in ML-based imaging. Rather than conventional automated imaging, which
works by image classification, applications at the level of molecular imaging place
emphasis on biomarker exploration (Choi, 2018). Biomarkers of oral cancers may assist in
unambiguous tumor detection and individualized treatment. At the genetic level, the
complex genomic data can be extracted by ML methods effectively, which demonstrates a
distinct way for the detection of oral cancer and its evaluation (Chang et al., 2013; Li et al.,
2017). SVM shows promising capabilities in genomic studies. Future directions of research
will include Al-related, imaging-genomic combined studies to enhance analytical
effectiveness and the accuracy of oral cancers.

Other fields in dental, oral and craniofacial imaging

ML is widely used in the field of stomatology. It has important clinical value, including but
not restricted to the detection of dental caries, periapical disease, periodontology, facial
recognition, the evaluation of facial attractiveness evaluation and other uses.

Hong Guofeng and coworkers (Hung et al., 2020a) established a non-clinical caries
detection model and realized caries detection by obtaining and analyzing two-dimensional
images of extracted teeth. You et al. (2020) studied plaque detection of deciduous teeth
based on deep learning. Schwendicke et al. (2020a) applied deep CNN to detect caries
in near-infrared transparent (NILT) images, and they also emphasized that applying
Al for caries detection is less costly and more effective (Schwendicke et al., 2020b). Zhang X
et al. developed ConvNet, which is based on CNN, to identify dental caries from oral
images captured with consumer cameras. The result showed that the image-wise sensitivity
is good (Zhang et al., 2020). At present, more studies have been conducted on the
possibility and accuracy of Al-assisted detection of dental caries, but there are few
studies on Al-assisted prediction of the occurrence of dental caries. The automatic
detection of superficial dental caries is also a problem that needs a solution.

ML is increasingly being used by both dentists and researchers as a novel method for
diagnosing dental diseases, especially endodontic diseases. The condition of teeth is a
significant factor of influence for stomatognathic system health. The classification and
segmentation of tooth and root canal by ML methods has achieved promising results both
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Table 1 Applications of ML methods in dental, oral and craniofacial imaging.

Fields Subfields Types of ML Researches
Orthodontics Landmark Active shape model (ASM) The algorithm functions by capturing variations of
identification region shape and grey profile, based on

determination of
cervical
vertebrae stages
(CVS)

Teeth-extraction
decision

Customized open-source CNN deep learning algorithm
(Keras & Google Tensorflow)

You-Only-Look-Once version 3 (YOLOV3)

Hybrid: 2D active shape model (ASM) & 3D
knowledge-based models

Entire image-based CNN, patch-based CNN &
variational autoencoder

VGG-Net

k-nearest neighbors (k-NN), Naive Bayes (NB), decision
tree (Tree), artificial neural networks (ANN), support
vector machine (SVM), random forest (RF), and logistic
regression (Log.Regr.)

A two-layer neural network

segmentation of lateral cephalograms. High imagery
quality and tedious works are needed (Yue et al,
2006)

Study uses high quality training data for supervised
learning. With a huge set of 1792 lateral
cephalograms, the algorithm demonstrates
comparable precision with experienced examiners
(Kunz et al., 2020)

The study uses 1028 cephalograms as training data,
which consists of both hard and soft tissue
landmarks. The mean detection errors are not
clinically significant between AI and manual
examination. Reproducibility seems better than
manual identification (Hwang et al., 2020; Park
et al., 2019)

The study uses a holistic ASM search to get initial 2D
cephalogram projections. Further it utilizes 3D
approaches for landmark identification. With the
preprocessing of 2D algorithms, the accuracy and
speed of landmark annotation are heightened
(Montufar, Romero & Scougall-Vilchis, 2018)

With only a small amount of CT data, the hierarchical
method (consists of 4 steps) reaches higher accuracy
than former researches on 3D landmark annotation
with deep learning methods. The mean point-to-
point error is 3.63 mm (Yun et al., 2020)

The study has trained VGG-Net with a large amount
of diverse shadowed 2D images. Each image has
different lighting and shooting angles.

The VGG-Net is able to form stereoscopic
craniofacial morphological structure (Lee et al,
2019)

The study suggests that the seven AI algorithms have
different precision of determination. ANN reaches
the highest stability, the lowest accuracy occurs in
Log.Regr. and kNN. By overall consideration, ANN
is recommended to CVS determination (Kok, Acilar
& Izgi, 2019)

The process consists of three steps: initial
determination of teeth extraction, the choice of
differential extraction, and determination of specific
teeth to be extracted. The neural network gives a
detailed plan of teeth extraction in orthodontic
treatment (Jung & Kim, 2016)

(Continued)
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Table 1 (continued)
Fields Subfields

Types of ML

Researches

Detection of oral
cancers

Oral cancer

Cancer margin
assessment

Prognosis of oral
cancer

Detection of
dental caries

Dental
endodontics

Root morphology

Periapical lesions

Texture-map based branch-collaborative
network

Alexnet, VGG-16, VGG-19, Resnet-50, & a proposed
CNN

Regression-based deep CNN with 2 partitioned layers,
Google Net Inception V3 CNN architecture

SVM, Random Forests, 6-layer 1-D CNN

3-D residual CNN (rCNN)

Deep learning method, AlexNet architecture

back propagation (BP),
Genetic Algorithm-Back Propagation (GA-BP),
Probabilistic Genetic Algorithm-Back Propagation
(PGA-BP) neural networks

CNN, the basic DeepLab network, DeepLabV3+ model

CNN, the standard DIGITS algorithm

deep CNN

Deep CNN is used for cancer detection as well as
localization, the detection sensitivity and specificity
achieve 93.14% and 94.75% respectively (Chan et al.,
2019)

The study utilizes five CNNs for automated OSCC
grading. The proposed CNN performs best with
accuracy of 97.5% (Das, Hussain ¢ Mahanta, 2020)

The deep learning method is implemented on
hyperspectral images, with the amount of training
data growing from 100 to 500, the tissue
classification accuracy (benign or cancerous)
increases by 4.5% (Jeyaraj ¢» Samuel Nadar, 2019)

Fiber probes are utilized to collect FLIm data with ML
methods. Random Forest demonstrates best
performance in tissue region division (healthy,
benign and cancerous tissue), displaying potential in
tumor surgical visualization (Marsden et al., 2020)

The study uses three types of labels as inputting data:
CT images, radiotherapy dose distribution and
contours of oral cancers. And the rCNN model is
able to extract features on CT images to predict
post-therapeutic xerostomias with best accuracy of
76% (Men et al., 2019)

The system is implemented on contrast-enhanced CT
to assess cervical lymph node metastasis in patients
carrying oral cancers. The diagnostic results
demonstrate little differences between manual and
automated evaluation (Ariji et al., 2019)

Three ML approaches are utilized for cancerous
patients’ survivial time prediction. PGA-BP has the
best performance with an error of of average
survival time for less than 2 years (Pan et al., 2020)

The dental plaque detection model was trained using
natural photos based on a CNN framework and
transfer learning. Photos of deciduous teeth before
and after the usage of a dental plaque exposure agent
were used. Results show that the AI model is more
accurate (You et al., 2020)

This study analyzed CBCT and panoramic
radiographs of mandibular first molars with a total
of 760. The root image block is segmented and
applied by deep learning system. High accuracy in
the differential diagnosis of distal root forms of the
mandibular first molar (single or multiple) was
observed (Hiraiwa et al., 2019)

CBCT images of 153 periapical lesions were evaluated
by deep CNN, and it was able to detect 142
periapical lesions, which is capable to figure out the
location and volume of lesions and detect periapical
pathosis based on CBCT images (Orhan et al., 2020)
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Table 1 (continued)

Fields Subfields Types of ML Researches
The deep learning approach based on a U-Net This study achieved periapical lesions detections by
architecture segmenting CBCT images. The accuracy of DLS

lesion detection reaches 0.93 (Setzer et al., 2020)

Periodontology CNN, the GoogLeNet Inception-v3 architecture The study utilized panoramic and CBCT images to
detect three types of odontogenic cystic lesions
(OCLs) based on CNN and transfer learning.
Results suggest that CBCT-based training performs
better than panoramic image-based training (Lee,
Kim & Jeong, 2020)

deep CNN architecture and a self-trained network The study utilized deep CNN algorithm for
periodontally compromised teeth (PCT) diagnosis
and prediction. The accuracy of PCT diagnosis on
premolars reaches high level than that on molars
(Lee et al., 2018)

Orthognathic facial CNN, VGG-16 architecture The study viewed the photos of 146 orthognathic
surgery attractiveness patients before and after treatment, assessed their
facial attractiveness and apparent age using CNN,
and found that the appearance of most patients
improved after treatment (Patcas et al., 2019a)

CNN, VGG-16 architecture Full-face and lateral pictures of left cleft lip patients
and controls were assessed and facial attractiveness
was evaluated. Results showed that CNN is capable
to assess facial attractiveness with similar score of
manual evaluation (Patcas et al., 2019b)

Others CNN CBCT images combined with AT can also be used to
measure the bone mineral density of the implant
area, evaluate the bone mass of the surgical area, and
assist in the construction of static guide plate system
(Dahiya et al., 2018; Lin et al., 2020; Suttapreyasri,
Suapear & Leepong, 2018)

at the two-dimensional and three-dimensional levels (Dumont et al., 2020; Zhang et al.,
2018). Dumont et al. (2020) combined an intraoral scanner-acquired crown form with a
CBCT-obtained root form to realize the clinical labeling of spatial crown and root
morphology. Image segmentation work was conducted using both U-Net and ResNet.
The follow-up clinical diagnosis or therapeutic schedule can be more complete and more
precise once the tooth morphology has been ascertained.

Different studies (Fukuda et al., 2019; Hiraiwa et al., 2019; Orhan et al., 2020) have
utilized a CNN system to detect the root morphology, longitudinal root fissure and
periapical lesions of molars. Lee, Kim ¢ Jeong (2020) used CNN-based dental panoramic
X-rays and CBCT images to detect and diagnose three types of odontogenic cystic lesions
as follows: odontogenic keratocyst, odontogenic cyst and periapical cyst. They also
developed a computer-aided detection system using a deep CNN algorithm (Lee et al.,
2018), which was found to be useful in PCT diagnosis and provided predictable evaluation
of periodontal injury. Early osteoarthritis can also be automatically detected by providing
radiologic, clinical and molecular level information for the temporomandibular joint

Ren et al. (2021), Peerd, DOI 10.7717/peerj.11451 21/35


http://dx.doi.org/10.7717/peerj.11451
https://peerj.com/

Peer/

(Bianchi et al., 2020). Most of the studies are in the initial stages with insufficient clinical
applications.

We conclude that the research of image detection based on CNN has been intense in
the past few years. One of the development trends of Al in oral imaging research in
the future will be using CNN to combine image detection with clinical treatment and
further advance smarter decision making for medical treatments.

ML models have also proved useful in other clinical application domains. Examples
include the following: the diagnosis of maxillary sinusitis (Ohashi et al., 2016), the
classification of third molar developmental phase and tooth type (Tuzoff et al., 2019),
the classification of periapical slices, the identification of dental plaque and gingival
inflammation at the root canal opening, the automatic allocation of dental age estimation
and the diagnosis of multiple dental diseases (Benyo, 2012; Hwang et al., 2019). The major
applications of ML in dental, oral and craniofacial imaging are summarized in Table 1.

CONCLUDING REMARKS

In recent years, ML has gradually penetrated all fields of dentistry, most of which are
related to teeth and, in some cases, to gums and dental tissue, dental arch, osteoporosis and
others. In our review, we mostly focus on applications in the fields of craniofacial imaging
and oral cancer. ML, especially CNNs, not only helps doctors to screen diseases

quickly but also assists in diagnosis and treatment. However, some aspects need to be
supplemented to promote the sustainable development of oral and maxillofacial radiology
deep-learning research. First, the data needed for these types of research are internal,
which results in difficulties in making objective comparisons and poses great needs for
professional labeling. Second, the imbalance in the quality of medical records quality, some
good and some bad, makes it difficult to conduct studies with big data. In addition, the
insufficient number of data is another obstacle. Recent research with ML usually has only
less than 1,000 X-rays in each group. For three-dimensional data like CBCT, sometimes
less than 100 units are used for training. Third, because of the large amount of
computation and long training time, higher requirements exist for computer hardware
(Schwendicke et al., 2019). Fourth and finally, deep learning cannot be completely
intellectualized. It must rely on considerable existing data samples in order to analyze and
predict new data, but for disease analysis, we often cannot control the variability of this
data (Ruellas et al., 2016).

The development of ML has faced major challenges. However, significant progress has
been made for ML applications in current trials such as two-dimensional landmark
annotation and detection of oral diseases. Some of these applications have obtained the
same high accuracy as the current golden standard or achieved even better results.

The image-processing capability of ML has particular significance in oral medicine.
However, many applications are at an incipient stage and are far from clinical use. In view
of data deficiencies, efforts can be made to transform learning models: for example, turning
the complex, integral model to several modularized structures, modifying previous ML
models to handle multifarious, accessible data or adopting the method that combines
manual operation with computer assistance. The production of more high-quality medical
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imaging data sets in the future will also greatly promote this direction of research. Novel
semi-supervised and weak-supervised algorithms will also help alleviate this problem.

In addition to model design, the operating cost also needs to be taken into consideration.
Overall, ML has a bright future as a way to increase clinical efficiency and diagnostic
accuracy.

There are three types of main tasks in medical imaging: image classification, image
positioning and detection and image segmentation. Good progress has been made in all
three fields, especially in the areas of medical image registration and segmentation.
However, application has been weak, and more innovative work is needed. Some
theoretical and application aspects of machine learning applied to medical imaging
require improvement. In addition, new theoretical breakthroughs and creative
applications are needed to promote the further development of this direction.

In particular, many theoretical areas need significant advances. For example, the
application of three-dimensional convolution to medical imaging can compensate for
the three-dimensional features of organ tissues that cannot be extracted by traditional
two-dimensional convolution (Zhu et al., 2018). Three-dimensional reconstruction
technology can help visualize the internal structure of the human body, which enables
surgical navigation and early-stage auxiliary diagnosis (Dong et al., 2018). A multi-modal
information extraction method can synthesize information obtained by different devices to
generate more accurate information. In addition, a time series model can be used to
generate metastasis trajectory predictions for oral tumors and other diseases.

ML is likely to be more widely used in medical imaging as current trends in medical
development gather pace, and we witness the inevitable convergence of the medical
and computer sciences,. In the future, many of the existing barriers for medical
image-assisted diagnosis technology will be overcome by the application of ML as its
accuracy improves. Further effort should ensure a smarter and more effective imaging
analysis in the fields of dental, oral and craniofacial research.
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