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Video encryption/compression 
using compressive coded rotating 
mirror camera
Amir Matin & Xu Wang*

Compressive coded rotating mirror (CCRM) camera is a novel high-speed imaging system that operates 
under amplitude optical encoding and frame sweeping modalities in a passive imaging mode that is 
capable of reconstructing 1400 frames from a single shot image acquisition and achieves the highest 
compression ratio of 368 compared to the other compressive sensing (CS) based single-shot imaging 
modalities. The integrated optical encoding and compression adds a strong layer of encryption on 
the observed data and facilitates the integration of the CCRM camera with the imaging applications 
that require highly efficient data encryption and compression due to capturing highly sensitive data 
or limited transmission and storage capacities. CCRM uses amplitude encoding that significantly 
extends the key space where the probability of having the exact encoder pattern is estimated as 
P(A) = 1/10122,500 , hence drastically reducing the possibility of data recovery in a brute force 
manner. Data reconstruction is achieved under CS based algorithms where the obtained amplitude-
based pattern from optical encoder operates as the key in the recovery process. Reconstruction on 
the experimental as well as the synthetic data at various compression ratios demonstrate that the 
estimated key with less than 95% matching elements were unable to recover the data where the 
achieved averaged structural similarity (SSIM) of 0.25 before 95% encoder similarity and 0.85 SSIM 
at 100% encoder similarity demonstrates the high-sensitivity of the proposed optical encryption 
technique.

With recent advancements in high-speed imaging technologies, especially with the introduction of compressive 
sensing into their operation principle, high-speed imaging systems have become accessible for a wider range 
of applications, from capturing natural and ordinary dynamic scenes1,2 to high-throughput cell screening and 
classification3–5. These imaging systems however were associated with their unique disadvantages such as the 
requirement for expensive short-pulse laser (operation only in active mode) and the dependency on the precise 
repetition of the ultrafast event during the captures (multi-shot imaging), lacking the capability of imaging the 
luminescent transient events, monochrome scaled captures, low number of captured frames (short duration of 
recording), demanding storage and transmission capacity requirements, extremely high built costs, high main-
tenance, oversized dimensions and highly complex operations. Coded compressive rotating mirror (CCRM) 
camera6 is a low-cost and compact novel high-speed imaging system that enables the capture of dynamic transient 
events in passive imaging mode in color format using optical encoding and compression hence facilitating the 
capture of events for longer durations with a considerably lower transmission and storage capacity requirements.

Within the wide range of high-speed imaging applications and alongside the requirements such as low build 
costs, compact dimensions and easy-to-operate functionality, there are some particular areas that demand several 
other key properties from their imaging systems such as the highly secured and encrypted data with compressed 
formats. Some of these applications include under-vehicle inspection7,8, quantum-secured imaging9, secured data 
storage and transmission using digital holography10, biometrics11,12 and military based applications13,14. Therefore 
by the advancements in the aforementioned fields, the requirement for fast and secured data encryption and 
compression becomes increasingly important.

There are several industry-standard methods15,16 such as advanced encryption standard (AES)17 and Rivest-
Shamir-Adleman (RSA)18 that have been widely adapted in industrial applications and have also been used within 
the current computer operating systems. In addition to these techniques, other encryption methods that has 
also been used in imaging fields can be divided into several categories19 of chaos20–25, DNA based26–28, cellular 
automata29–31, fuzzy logic32–34 and transform based (e.g., Wavelet, Fourier, Frensel etc)35–38 as well as cryptographic 
techniques using compressive sensing (CS)39–41 in digital domain. These techniques require the initial acquisition 
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and storage of the data in the memory of a processing unit where the aforementioned techniques can access the 
raw data and apply the encryption in a separate step. Therefore, the original and unsecured data require a large 
amount storage and transmission capacities, lengthy processing times and can be easily attacked by the intruders 
while in their unencrypted format.

Furthermore, optical based methods have been widely utilized in the field of image cryptography that is due 
to their faster computational speed and data processing in different optical domains. Methods such as double 
random phase encoding42 that implements two random phase diffusers in space and frequency domains, optical 
colour image encryption43 and multi-beams interference with vector composition44, utilize the advantages of 
optical imaging encoding where the data are stored in their encrypted format. These methods can be applied on 
low-speed imaging systems where the data acquisition rate is the same as the frame rate of the detector. Addition-
ally, these types of image encryption techniques only apply the optical encryption on the original data where the 
compression is an extra step that is commonly applied on the data after they have been stored on a memory unit 
hence requiring high storage and transmission capacities, similar to those methods in the digital domain. There-
fore achieving both data encryption with high security and high compression in the optical domain, becomes 
a necessity to overcome the aforementioned shortcomings on the conventional data encryption-compression 
modalities.

To address these matters, we utilize the CCRM camera6 to securely capture and compress the dynamic scene 
with high frame rates entirely in optical domain, hence overcoming the limitations of aforementioned video 
encryption and compression techniques. CCRM camera captures transient events in passive imaging mode and 
by relying on its optical encoding (key) and continuous frame sweep on the detector surface that achieves the 
highest compression ratio of 368 and highest sequence depth of 1400 frames form a single exposure (single cap-
ture) of the detector. The heavily compressed data from the CCRM camera that are encoded by the optical mask 
can only be decrypted using the observed pattern on the detector which is considered as the “key” to the recon-
struction process. Alongside the high capture rate of the CCRM camera, the highly secured and compressed data 
format eliminates the aforementioned drawbacks of the conventional digital and optical encryption-compression 
methods and provides a new imaging platform for the applications such as medical and military based imaging 
systems where the confidentiality of the data remain the first priority.

Operation of CCRM camera
Depicted in Fig. 1 is the configuration and operation principle of the coded compressive rotating mirror (CCRM) 
imaging system. During the capture of a dynamic scene, the image at time t is focused on an static optical mask 
(noted as 1) that is printed on a soda-lime glass and consists of a random binary pattern with 50% transmission 
ratio. The optically encoded image is then focused on the mirror rotating at R (rps) by a high speed motor and 
reflected towards a 2 dimensional (2D) detector (such as Complementary metal-oxide-semiconductor (CMOS) 
or charge-coupled device (CCD)). The rotation of this mirror sweeps the individual frames across the surface 
of the detector module based on their time of arrival and overlaps them (optical compression) during a single 
exposure that creates a single pixel shift in-between the adjacent frames (noted as 2). Capturing a scene in a 
single exposure of the detector, eliminates the limitation of digitization and readout time of the camera from 
the proposed scheme. The captured encoded and heavily compressed 2D frame is then transmitted through a 
channel and stored on a storage unit.

The mathematical representation of data acquisition process of the proposed CCRM imaging system can be 
formulated as

where y ∈ R
MN+(F−1)M×1 is the captured data by the detector in a vectorized format, T ∈ R

MN+(F−1)M×MNF is 
the linear operator of frame shifting and overlapping that is built upon F identity matrices, C ∈ R

MNF×MNF is 
the obtained motion profile of the sweep from the calibration points on the encoder in the form of a diagonal 

(1)y = TCAx + n,

Figure 1.   Configuration and operation principle of the proposed CCRM camera setup.
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matrix, A ∈ R
MNF×MNF is the matrix that holds F encoding pattern of M × N in a diagonal form, x ∈ R

MNF×1 
represents the original frames in a vectorized format, and n is the additive zero mean Gaussian noise.

y represents the spatially coded and compressed observed data on the detector that contains the aggregate 
of individually encoded and temporally overlapped frames where each frame is positioned with a single pixel 
shift in the horizontal axis (sweep direction) compared to its adjacent frames. All the depicted operations in 
Eq. (1) occurs in the optical domain and therefore the entire function of encryption and compression happen 
at the operation speed of the imaging system without any requirements for external processing power or sub-
sidiary operations at the digital domain. Here, we implement the Alternating Direction Method of Multipliers 
(ADMM)45 using the total variation (TV)46 as the regularizer function to decrypt and decompress the scene ( ̂x ) 
from observed data (y).

This approach transforms the obtained equation into a minimization problem and solves the equation by 
minimizing the energy function via iterative calculations.

Decryption and decompression of the original scene can be achieved by solving the minimization problem 
that is

where ρk , ρtv are the variable regularization and denoiser threshold parameters that are adjusted based on the 
calculated error at each iteration and wtv is the regularizer weight for each horizontal, vertical and temporal 
domains and D is a regularization function that promotes sparsity in the dynamic scene. The linear operation 
of frame shifting and overlapping (represented by operator T) results in the compression and encryption of the 
data in CCRM camera4.

Encryption properties of CCRM camera
Optical encoding using binary encoder patterns have been previously utilized in compressive sensing (CS) based 
high-speed imaging technologies1–4,47 where they have been considered as encoding patterns that enabled the 
temporal compression and the reconstruction of the data. This encoding pattern however has another significant 
role in high-speed imaging applications that is to efficiently encrypt the data in the optical domain which could 
have a high impact in the security of the captured data48. The conventional data encoding techniques require 
all the raw data to be stored in an accessible storage unit prior to going through the encryption or compression 
stages. This process required a considerable amounts of storage and transmission capacities and in the cases of 
digital encryption methods - leaving the confidential data exposed to the possible threats. The sequential opera-
tions of optical encoding and compression in the CCRM camera enables the real-time data encryption and 
eliminates the potential exposure of the data.

In the optical setup of the CCRM camera, as the light transmits through the optical mask, the intensity values 
of the adjacent pixels interfere with the neighbouring pixels due to the light diffraction and changes the encoder 
pattern from binary into grey scale pattern. In the previous studies2,48 techniques to reverse the encoder pattern 
back into the binary format has been performed by implementing the commonly used binning process (e.g., 
2 × 2 or 3 × 3) on the detector however this comes at a cost of the reduced spatial resolution of the detected 
image. CCRM camera exploits this feature of the optical encoder where by attaining a reference image of the 
encoder pattern on the detector prior to capturing the dynamic scene, the requirements for the binning process 
is eliminated therefore achieving higher spatial resolution compared to the aforementioned methods. Here, we 
configure the CCRM camera to capture a scene from the U.S. Air Force (USAF) static target (G2-E4). As the 
dynamics of the scene in the frames are constant over time, by taking a single image of the target a reference 
image representing all the frames in the scene is obtained. This reference image is then used to evaluate the 
performance of the reconstruction algorithm by calculating the Peak Signal to Noise Ratio (PSNR) values and 
the Structural SIMilarity index measurement (SSIM)3,4. Figure 2 shows the effect of quantizing the observed 
encoder data on the detector where it shown that the data reconstruction using the observed greyscale pattern 

(2)x̂ = argmin
x
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Figure 2.   Reconstructed data (a) using various mask patterns quantised at different levels (b) at various Mask 
to CMOS pixel ratio. (c) SSIM and PSNR measurements for the figures shown at section (a, b).
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has the highest reconstruction quality. Furthermore, increasing the dimension of encoder pixels (increased ratio 
between mask and detector pixel size) also reduces the reconstruction quality of the data when there binning 
process is not applied on the detector. We perform analysis on four datasets of blood cells flowing in a microflu-
idic chip (experimental data - courtesy of Kim Ulvberget @Green-life.no)49, droplet stream (experimental data 
from CCRM camera), speaking person (synthetic video dataset)50 and lighter spark (experimental data from 
CCRM camera). The authors confirm that all the procedures were performed in accordance with the relevant 
guidelines and regulations.

These datasets represent different types of applications and have diverse characteristics such as the object 
movement speed and direction, dynamic range, spatial resolution etc.

Key Analysis (KA) is often considered as a fundamental part of any encryption method that plays a critical 
role in defining the strength of the algorithm. Strong secret keys will have a large space and high sensitivity51. Key 
space corresponds to the overall dimensions of the key where larger dimensions decrease the overall probability 
of estimating the secret key. Key sensitivity on the other hand, relates to the decryption using a partially known 
information from the secret key. Assuming the case where the decoder has no information about the secret key, 
given the number of k = 122,500 elements in the 2D encoder A(350× 350 ), the total number of possible keys 
is 10122,500 hence the probability of having the exact encoder pattern is estimated as P(A) = 1/10122,500 which 
could be considered as an infinity small number. Base 10 in this expression is due to the fact that we use grey 
scaled pattern that is observed at the detector for reconstruction of the data. For the key sensitivity analysis, we 
use Mean Squared Error (MSE) and SSIM as the two main parameters for reconstruction quality assessments for 
the scenario that one has partial knowledge about the secret key. In the first scenario, we assume that the known 
key values to an unauthorised person with various known percentages are evenly spread across the encoder 
matrix. Therefore, in this scenario there is no continuity in the pattern of the known elements of the encoder. 
The second scenario however, considers that the partial yet continues sections of the encoder with various known 
percentages are known to an unauthorised person. In this scenario, we assume that the missing information 
from the encoder are located at the centre of the encoder matrix where they will be randomly estimated and the 
top and bottom section of the matrix hold the true encoding data. Depicted in Fig. 3 are the absolute difference 
between the true encoding pattern and the predicted pattern.

The black sections in figure represent the known information and the grey pixels show the differences between 
the original and the predicted values respectively. As the original encoder is assumed to be a grey scale pattern 
with 10 different intensity levels, the brighter pixels represent higher differences between the original and the 
estimated pixels.

Depicted in Fig. 4 are the reconstructed frames (for the case of 100 overlapped frames), SSIM and MSE 
measurements from immune cells dataset at various known percentages for scenario 1 and it shows that recon-
struction quality of data is extremely sensitive to small percentage of unknown pattern on the estimated encoder.

The same types of recovery curves were observed on the same dataset in scenario 2 (depicted in Fig. 5) and 
three other aforementioned datasets (figures are not included due to the similarities in the graphs). Based on 
these presented data, with 95% correctness of the encoder values the SSIM is reduced to  0.5 from 0.85 at 100% 
similarity and the MSE is increased from 70 to  2200. This can be viewed as the minimum acceptable percentage 
for the encoder to achieve an acceptable data recovery in these datasets.

During the transmission stage over a channel, data can be altered by a variety of interference and additive 
noise where a robust decryption algorithm can recover the frames with low data loss23,38. To test the perfor-
mance of our decryption algorithm, two types of Salt and pepper noise (SPN) and additive white Gaussian noise 
(AWGN) are added to the encrypted data. Depicted in Figs. 6 and 7 are extracted frames and SSIM values from 
decryption of data at various noise levels respectively where due to the nature of the proposed reconstruction 
algorithm (iterative denoising defined as D(.) in Eq. 2), a robust and low loss data reconstruction is achieved.

Information Entropy (IE) measures the uncertainty of the information occurrence per bit in an image and 
is widely used in the applications of image compression and encryption23,38. Shannon’s source coding theorem 
describes the definition of the optimal coding by the length of the code assigned to the i’th symbol (pixel) that 
is −log2P(i) where P(i) is the probability of the occurrence of the symbol i. The entropy H(p) is calculate as:

Figure 3.   Example of the absolute difference between the original and the estimated encoder patterns at 50% 
data validity for the two presented scenario.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23191  | https://doi.org/10.1038/s41598-021-02520-8

www.nature.com/scientificreports/

that is measured in bits per symbol (pixel values) where n is the number of the possible values per pixel. Assum-
ing an 8 bit image, the ideal encryption method will have the entropy of 8. The mean calculated entropy of the 

(3)H(p) = −

n
∑

i=1

Pi × log2P(i)

Figure 4.   (a) Reconstructed frames, (b) SSIM and (c) MSE measurements of the immune cell dataset for the 
partially known encoder data at various known percentages of the true values located at random pixel positions.

Figure 5.   (a) Reconstructed frames, (b) SSIM and (c) MSE measurements of the immune cell dataset for the 
partially known encoder data at various known percentages of the true values with the unknown key values 
located at the central section of the encoder.

Figure 6.   Extracted frames from decrypted video sets at various noise levels for additive Gaussian noise and 
salt and pepper noise.
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aforementioned datasets is 7.48 with the min and max values of 7.34 and 7.64 that are very close to the expected 
ideal encryption value. Depicted in Table 1 are the full list of entropy measurements for various compressed and 
encoded frames for the aforementioned datasets.

Furthermore, Correlation Coefficient (CC)51 is another important analytical factor which measures the 
similarity between the corresponding pixels of an original and the reconstructed image that is obtained by the 
following equation

CC is the correlation coefficient between the plain and the reconstructed image, A is the plain image, B is the 
reconstructed image, Ā is the mean of the plain image, B̄ is the mean of the reconstructed image and m, n are 
2D dimensions of the images. Lower amounts of correlation indicate stronger encryption strength when the 
data are reconstructed with partially known encoder information. The mean calculated CC measurement for the 
reconstructed data with encoder similarity of 0-90% in the aforementioned datasets are 0.25 with a minimum 
and maximum values of 0.22 and 0.28 respectively and therefore it is evident that the observed data from the 
detector are efficiently secured and are very sensitive to the slightest changes to the encoder data. Depicted in 
Fig. 8 is the measured CC values of the reconstructed data for different datasets at various encoder similarity 
percentages. Randomly estimated sections in the encoder effect the reconstruction quality of the data and to 

(4)
CC =

∑

m

∑

n

(

Amn − Ā
)(

Bmn − B̄
)

√

(
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Figure 7.   SSIM values of decrypted data at various noise levels for additive Gaussian noise and salt and pepper 
noise.

Table 1.   Information entropy of encrypted images at various compression rates.

Data set

Number of frames

Mean Max Min100 200 400 600 800 1000 1200 1400

Blood cells 7.34 7.62 7.64 7.56 7.49 7.43 7.36 7.40 7.48 7.64 7.34

Droplet flow 7.51 7.65 7.45 7.51 7.41 7.40 7.35 7.41 7.46 7.65 7.35

Speaking person 7.45 7.55 7.52 7.52 7.48 7.45 7.39 7.49 7.48 7.55 7.39

Sparks 7.54 7.54 7.42 7.49 7.45 7.44 7.40 7.52 7.47 7.54 7.40

Figure 8.   Calculated correlation coefficients (CC) of reconstructed data using encoder patters with various 
similarity percentages to the original encoder key.
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estimate this deviation in the reconstruction fidelity, the process is repeated 50 times where during each trial, a 
new randomly estimated encoder is used for data reconstruction.

In the industry-standard encryption techniques such as AES17 and RSA18 methods, the decryption stages 
also show high sensitivity to the changes in the keys where in the AES method, changing a single byte of the 
key prevents the decryption algorithm from recovering the data where the CC value drops to less than 0.1. RSA 
algorithm is also sensitive to the private key where by randomly estimating the private key an average CC of 0.23 
is obtained from the decrypted data.

CC analysis can be further extended and applied on every pair of adjacent pixels in the encrypted frames 
where encryption schemes are expected to hide such correlations among pixels23,24,38. The obtain this inner-frame 
measurement, correlation values of adjacent pixels in three directions of horizontal, vertical and diagonal are 
calculated against the selected pixel and the correlation among the pixel pairs can be calculated as

where (x, y) is the combination of two directions (horizontal, vertical or diagonal) for the adjacent pixel pair. 
To measure the correlation of adjacent pixels, we select and analyse 1000 pairs of adjacent pixels from random 
locations of the original and encrypted images. Shown in Table 2 are correlation and correlation coefficients 
calculated from Eq. (5) where it shows low correlation between the adjacent pixels hence the effectiveness of the 
proposed method against statistical attacks.

In addition to the CC measurements, the Execution time (ET) is another critical parameter that is the time 
required to execute a given image or video encryption-compression process which is typically considered as 
the combination of the compile and the run time of the algorithm in the digital domain. For practical imple-
mentation of image encryption, ET must be minimum for given data size. In the conventional schemes that are 
dependent on algorithms in the digital domain, this process can take between sub-second to seconds per frame 
( 500× 500 in RGB) and is linearly proportional to the dimensions and number of the frames, e.g. it takes   0.25 
s per frame in51 that is more than   5.8 min to encode 1400 frames of a video. Industry standard AES and RSA 
methods are capable of encoding at the rates of 100 Mbps and 1 GBps respectively using a standard i5 2.5 Ghz 
central processing unit (CPU). Hence encryption of 1400 frames with the aforementioned dimensions takes   
1.4 min using the AES-128 encryption and   7 s for the RSA method whereas in the proposed CCRM scheme, 
the joint operations of encryption and compression takes 12 ms that is significantly faster than the conventional 
methods. This time is dependent on the rotation speed of the motor and the size of detector, and is independent 
of the dimension and number of frames.

Recording the dynamics of a phenomena often require multiple captures at different points in time (lifetime-
based screening and characterization of fluorescent proteins, microfluidics analysis etc) or several captures from 
various viewing angles (textile strength testing, combustion and chemical reactions etc) depending on the nature 
of experiments. Therefore, the required storage and transmission capacities increase drastically and therefore 
data compression methods are often employed in such scenarios.

Compression is regarded as a reversable conversion of data that contains fewer number of bits compared to 
the original format which facilitates a more efficient storage and transmission of data. Data compression can 
be divided into two types: lossless and lossy techniques. Lossless compression is predominantly used for text or 
application files where a loss of information even at a very low rate can cause a major damage to the data. Lossless 
compression methods often use statistical information to reduce the data redundancies.

Huffman-Coding52 and Run Length Encoding53 are two common algorithms that allow for compression ratios 
of  2:154. On the other hand, lossy compression introduces some errors to the data during the compression stage 
and yet can be used for data types such as images, video and sound which contain large amounts of redundant 
data. These methods are capable of achieving compression at the rates of up to 10 Mbps using the aforementioned 
processing unit hence the joint operation of compression and encryption for the RGB video with dimension of 
500× 500× 1400 will take   15 min to complete. In these methods however high amounts of compression ratios 
often result in lower decompression quality that is seen as a trade-off in lossy compression methods.

The compression process typically takes place prior to the encryption stage as the compression utilizes the 
sparsity in the spatial and temporal domains (intra-frame and inter-frame compression) in the data. H.26(1,3,4,5) 
and MPEG-(1,2,4)55,56 are two of the commonly used lossy compression methods for video data where compres-
sion ratios of 200:155,56 can be obtained without losing substantial amounts of information from the frames. These 

(5)

rxy =
(MN)2 · cov(x, y)

∑MN
i=1 (xi − Ex)

2 ·
∑MN

i=1

(

yi − Ey
)2
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i=1 xi
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(

(x − Ex)
(
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Table 2.   Correlation analysis of adjacent pixels in horizontal, vertical and diagonal directions.

Blood cells flow Droplet stream Speaking person Spark

H V D H V D H V D H V D

0.982 0.925 0.963 0.955 0.924 0.934 0.941 0.975 0.910 0.941 0.932 0.910

0.021 0.015 0.018 0.019 0.017 0.019 0.019 0.018 0.016 0.019 0.017 0.021
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methods however are associated with a drawback that is by having higher amounts of compression, the quality 
of the de-compressed data is linearly reduced [50]. As an example, compression ratios of 50:1 and 200:1 yield 
SSIM of 0.95 and 0.84 respectively that will continue to decrease with higher compression ratios.

As it is shown in Fig. 9, the compression ratio and SSIM measurements are independent of each other in the 
CCRM camera where they only depend on the spatial dimensions of the scene where the SSIM measurements 
tend to converge to its lowest value at number of frames >= 2 times of the dimension of the frame. This enables 
the continuous recording and compression of the data without sacrificing the data quality in the reconstruc-
tion process. CCRM camera achieves high compression ratios (333 and 476 for 1k and 10k number of frames 
respectively) and maintains high decompression (reconstruction) quality by attaining high SSIM values (higher 
than 0.8 for 10k frames).

Variance analysis57 is another measurement to test the performance of the data encryption technique. Close-
ness of the variance between the encrypted data shows the strength of the encryption algorithm while the encoder 
(key) varies. Variance histogram analysis is defined as

where Z is the vector of the histogram values and Z = z1, z2, . . . , z256 , zi and zj denote the number of pixels 
respectively.

Assuming A to be the key that is used to encrypt the frames, variance analysis can be conducted by by slightly 
changing the original key value and performing the encryption on the same set of frames. In the proposed 
scheme, as the key is represented by a 2-dimensional matrix, we change the matrix (key) values at increments 
of 20% and calculate the variance of the histogram. Depicted in Fig. 10 are the histograms of the encrypted and 
compressed data sets (top row) and histograms of single frames from data set (bottom row) respectively.

Table 3 shows the calculated variance values for various encoding keys with difference percentages to the orig-
inal key and it is evident that changes in the calculated variance values are small (encrypted images are uniform).

The proposed CCRM camera overcomes these fundamental limitations where it can achieve both compression 
and encryption at ultra-high rates (12 ms) through the native built-in optical operation in which the requirement 
for storage and transmission capacities are substantially reduced. The optical encoding mechanism in CCRM 
camera, enables a secure data storage and handling in the imaging applications fields (e.g. medical imaging and 
military based applications) where information security and confidentiality remains one of the top priorities.

Conclusion
In this paper, we demonstrated the encryption and compression properties of the CCRM camera where it has 
shown to be a formidable imaging system for applications that demand highly encrypted and compressed data 
acquisition at high frame rates in a compact design and easy-to-use operation. CCRM camera integrates the 
video encryption and compression in the optical domain hence significantly improving the information security, 
storage and transmission capacities as well as achieving the highest compression ratio of 368 and the highest 
sequence depth of 1400 reconstructed frames from a single shot image acquisition compared to the other CS 
based imaging techniques. Conducted experiments demonstrate that the original data can only be recovered 
using the encryption key observed by the detector. Moreover by introducing amplitude encoding technique 
to the encryption and compression stages, the key-space has been significantly extended hence substantially 
reducing the risk of brute force attacks on the data recovery. CCRM camera can be implemented in a variety of 
applications such as medical and military based imaging systems where the data security alongside the storage 
and transmission capacities are considered as critical factors.

(6)VAR(Z) =

(

1
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) M
∑

i=1

N
∑

j=1

(

1

2

)

×
(

zi − zj
)2

Figure 9.   Graphs of the (a) compression ratios and (b) SSIM measurements against number of frames in 
CCRM camera.
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