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Abstract
The identification of temporal protein complexes would make great contribution to our

knowledge of the dynamic organization characteristics in protein interaction networks

(PINs). Recent studies have focused on integrating gene expression data into static PIN to

construct dynamic PIN which reveals the dynamic evolutionary procedure of protein interac-

tions, but they fail in practice for recognizing the active time points of proteins with low or

high expression levels. We construct a Time-Evolving PIN (TEPIN) with a novel method

called Deviation Degree, which is designed to identify the active time points of proteins

based on the deviation degree of their own expression values. Owing to the differences

between protein interactions, moreover, we weight TEPIN with connected affinity and gene

co-expression to quantify the degree of these interactions. To validate the efficiencies of our

methods, ClusterONE, CAMSE and MCL algorithms are applied on the TEPIN, DPIN (a

dynamic PIN constructed with state-of-the-art three-sigma method) and SPIN (the original

static PIN) to detect temporal protein complexes. Each algorithm on our TEPIN outperforms

that on other networks in terms of match degree, sensitivity, specificity, F-measure and

function enrichment etc. In conclusion, our Deviation Degreemethod successfully elimi-

nates the disadvantages which exist in the previous state-of-the-art dynamic PIN construc-

tion methods. Moreover, the biological nature of protein interactions can be well described

in our weighted network. Weighted TEPIN is a useful approach for detecting temporal pro-

tein complexes and revealing the dynamic protein assembly process for cellular

organization.

Introduction
Cellular processes are typically carried out by protein complexes formed by groups of proteins
interacting with each other, rather than by individual protein. Large-scale protein-protein
interaction data being produced along with high-throughput techniques such as yeast two-
hybrid (Y2H) provide maps of molecular networks for several organisms [1], thereby
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promoting the emergency of many computational algorithms for identifying protein com-
plexes from protein-protein interaction network (PIN). Most of these methods are based on
solely network clustering [2–5] or integrated with multiple biological data [6–9]. Identifying
protein complex has significant implications in revealing the important principle of protein
organization within cell [10, 11].

While significant progress has been made in those computational analysis of proteome-
scale cellular networks, the inherent dynamics of protein interactions within these networks
are often overlooked [12]. Cellular systems are highly dynamic and responsive to the stimulus
from external environment—the biomolecules and their interactions are changing over time,
environment and different stages of cell cycle [12]. Temporal protein complexes are typically
formed by the dynamic assembly and disassembly of proteins to implement various biological
functions. Systematically analyzing the temporal protein complexes can not only improve the
accuracy of protein complexes identification but also strengthen our biological understanding
on the dynamic protein assembly process for cellular organization [13]. Undoubtedly, the shift
from static interactome to dynamic protein complexes plays an important role in uncovering
the dynamic organization characteristics in cell systems [14]. The dynamic evolutionary proce-
dure of protein interactions in the real world can be reflected in dynamic PIN, thus it provides
a reliable foundation for mining temporal protein complexes with more effectiveness. Besides,
dynamic PIN conduces to illustrate how the onset and progression of disease are reflected in
the time-evolving protein interaction network, and contributes to the detection of a disease
prior to the development of clinical symptoms, thus paving a way to preventative treatment
[15].

Nevertheless, the protein interaction networks derived from high throughput processing
techniques could not enable us to discern temporal and contextual signals. Fortunately, gene
expression data provide a complementary view by their ability to monitor changes in RNA
concentration in thousands of genes simultaneously [16, 17]. Thus we can construct time-
evolving dynamic PIN with these data to detect temporal protein complexes. Yet, how to recog-
nize the activities of proteins is the key issue to construct dynamic PIN.

De Lichtenberg et al. constructed a dynamic PIN over the yeast mitotic cell cycle [18]. For
the periodically expressed proteins, they appear at the time point of peak expression; while for
the non-periodically expressed proteins, they present at every time point. As a result, only 300
proteins are involved in this dynamic PIN in contrast to nearly 5000 proteins in yeast prote-
ome. Tang et al. adopted a recommended threshold to filter expression noises from the gene
expression profiles over three successive metabolic cycles [16]. Further, they constructed a
time-series protein interaction network (called TC-PIN), which cover 14904 interactions
among 3520 proteins (about 70%) in average. TC-PIN has better performance than the original
static PIN in practice of predicting protein complexes; however, without considering the differ-
ential expression levels of different genes, the proteins with low expression peak filtered by a
relatively higher threshold will be improperly missed in TC-PINs, which will cause the inaccu-
rate analysis of dynamic PIN [17]. Rather than employing a global threshold to determine a
protein’s activity, Wang et al. designed a three-sigma method to identify the active time points
of each protein by considering its own characteristic expression curve [17]. Based on two dif-
ferent gene expression profile sets, namely GSE3431 and GSE4987, the authors constructed
two dynamic protein interaction networks (called DPINs) with smaller scales, on which the
protein complex predictions have been proved to be better than those on TC-PINs and static
PIN [17]. Observation on these time-evolving dynamic PINs suggests that the network scale
and density can be used to measure the quality of different dynamic networks derived from the
same data sets [15]. Though three-sigma method has been a state-of-the-art approach for con-
structing dynamic PIN and has been widely accepted in academic circle [13], it has its
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shortcomings—many proteins with high expression levels would be involuntarily filtered out
by their high active thresholds. This would cause the unconvincing analysis of dynamic PIN.

We propose a novel method—Deviation Degree, to recognize the active time point of pro-
tein according to the deviation degree of its expression values from their arithmetic average.
Then a time-evolving protein interaction network (called TEPIN) is constructed by mapping
active proteins into the original static PIN. TEPIN could more closely imitate the dynamic evo-
lutionary procedure of protein interaction. Experimental results show that TEPIN greatly
improves the prediction of temporal protein complexes in terms of match degree, sensitivity,
specificity, F-measure and function enrichment, which indicates that our method not only suc-
cessfully surmounts the drawback mentioned above, but also outperforms three-sigma method
in practice for recognizing protein activity.

Further, we present a weighted approach for PINs, which is applied on TEPIN to quantify
the degree of interactions among proteins based on connected affinity [19] and gene co-
expression [8]. It has been noticed that the interactions among proteins should not be treated
equally, but the difference among these interactions cannot be reflected at all in PINs. The pro-
tein interaction data produced by high-throughput experiments are not absolutely convincing.
There exist a huge amount of false positive interactions and some transient interactions cannot
be captured due to the limitations of current experimental techniques. Our weighted strategy
can not only describe the biological nature of protein interactions, but also provide an
approach for reducing the impacts of the inherent false positives and false negatives within
PINs. Experimental results indicate that the weighted TEPIN further optimizes the identifica-
tion of temporal protein complexes with aspect of various evaluation metrics.

Materials and Methods

Experimental Data
Protein interaction network: We use yeast protein interaction data derived from DIP [20] (Ver-
sion of 20101010), which contains all the interactions of proteins from a particular species and
provides species-specific subsets. The static PIN includes 24743 interactions among 5093 dis-
tinct proteins after removing the self-interactions and repeated ones.

Gene expression data: Gene expression data over three successive metabolic cycles are avail-
able from GEO (Gene Expression Omnibus) [21] with accession number GSE3431. This data-
set includes the expression profiles of 9335 probes under 36 different time points. The gene
products involved in the gene expression data cover 97.8% of the proteins in the static PIN.

Known protein complex dataset: MIPS Complex-Catalogue is probably one of the most
comprehensive public datasets of yeast complexes available and allows precise standardized
functional descriptions of genes [22]. It is often used as the benchmarks to evaluate protein
complex prediction [5, 19]. We thus derive the known yeast protein complexes fromMIPS
(ftp://ftpmips.gsf.de/), which contains 1063 protein complexes through a series of preprocess-
ing, excluding the ones containing only one protein.

Active Time Points of Proteins and TEPIN
Typically, the dynamics of protein interactions are indirectly reflected in the active time points
of proteins. Therefore, the construction of a time-evolving dynamic PIN is determined by the
identification of these active time points.

Identification of the Active Time Points of Proteins. The expression values of each
gene/protein fluctuate in a certain range, meaning they rise and fall around their arithmetic
average value. Deviation Degree is a method created to identify the active time points of each
protein according to the deviation degree of its expression values from their arithmetic average.
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For a gene i at time point t (t2{1,2,. . .,n}), only if the positive deviation degree of its expression
value at this time point is greater than the standard deviation of the gene’s expression values
over time points 1 to n, we consider it to be active at this time point. Let expit denote the expres-
sion value of gene i at time point t, then the gene’s arithmetic average (ui) and standard devia-
tion (σi) of its expression values over time points 1 to n can be formulated as Eqs (1) and (2).
Therefore, we define the active threshold for protein/gene i as Eq (3). A protein is considered
to be active at the time points with expression values that are above its active threshold value.

ui ¼
1

n

Xn
t¼1

expit ð1Þ

s2
i ¼

1

n� 1

Xn
t¼1

ðexpit � uiÞ2 ð2Þ

ActiveThresholdðgeneiÞ ¼ ui þ si ð3Þ

Where n is 36. We manage to achieve the time-evolving active protein sets under n time points.
To begin with, each protein’s active threshold value is calculated according to (3). Then, for a
time point t (t2{1,2,. . .,n}), each of the proteins is determined to be active or not by comparing
its expression value at this time point with its active threshold value. As a result, we obtain the
active protein set at time point t, which is denoted as ActiveProteinsTt. After the traversal of
n time points, a sequential collection containing n active protein sets is generated, which is
denoted as {ActiveProteinsT1,. . ., ActiveProteinsTn}.

When a single global threshold is used to identify proteins’ active time points, the proteins
with low expression levels will be filtered out even if they are always active during the whole
metabolic cycle; while the ones with high expression levels during the whole metabolic cycle
will be considered as active proteins at all the time points, even if their activities never appear.
Although three-sigma method overcomes these drawbacks [17], it brings another problem—

the proteins with high expression levels should be filtered out by their high active threshold val-
ues. However, these disadvantages are eliminated in our Deviation Degreemethod, which is
capable to recognize the active time points of proteins correctly, including the ones with very
low or high expression levels.

Construction of TEPIN. Actually, the PINs in the real world are changing over time, envi-
ronment and different stages of cell cycle. The assembly processes of almost all eukaryotic com-
plexes are just-in-time, contrary to the just-in-time synthesis observed in bacteria [23]. Just-in-
time assembly means that most subunits of a complex are pre-transcribed, while some units
are transcribed when required to assemble the final complex [23].

As the gene products involved in the gene expression data cover 97.8% of the proteins in the
original static PIN, it is reasonable to construct TEPIN by combining these two datasets. A
TEPIN behaves as n snapshots, each of which is a subset of the original static PIN. For a time
point t (t2{1,2,. . .,n}), the proteins in ActiveProteinsTt and their interactions in static PIN are
reserved to form a temporal PINTt, namely, a snapshot of the dynamic PIN at time point t.
After the traversal of n time points, we generate a TEPIN which is denoted as a sequential col-
lection {PINT1,. . .,PINTn}. TEPIN reveals the dynamic evolutionary procedure of protein
interactions.
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Weighted Approach Based on Connected Affinity and Gene Co-
expression
In this section, TEPIN is converted into a weighted network in which the edge-weights repre-
sent the degree of protein interactions.

For the one hand, it has been noticed that the interactions among proteins shouldn’t be
treated equally. But owing to the neglect of biological nature, only Boolean values “1” and “0”
can be employed to denote whether two proteins could interact or not in PIN. To resolve this
issue, Li et al. defined connected affinity coefficient (CAC) to enhance the biological character
of PIN [19]. According to Li et al., for a protein complex including proteins Pi and Pj, their rela-
tionship RPij should be closer when the complex contains more proteins but slighter when it
includes more interactions [19]. Thus Connected Coefficient CCij standing for how large possi-
bility to connect the proteins Pi and Pj in one protein complex is defined for RPij as Eq (4):

CCij ¼
Nk

Rk

ð4Þ

Where Nk and Rk represent the number of proteins and interactions within protein complex k
respectively. Considering the fact that proteins interacting with each other are often subordi-
nate more than one complex simultaneously, Connected Affinity Coefficient CACij standing
for the likelihood of that two proteins Pi and Pj could interact with each other is inferred from
a protein complex set [8]:

CACij ¼
XMij

k¼1

CCij ð5Þ

WhereMij is the number of the known protein complexes which include the interaction con-
necting Pi and Pj. The value of CACij thus depends on two factors: the number of the protein
complexes including interaction RPij and their individual values of CCij.

For the purpose of validating the effectiveness of CAC, Li et al. split the known protein com-
plexes into training set and testing set in their previous work, and the comparison between
identified complexes and benchmarks in testing set has already demonstrated that the incorpo-
ration of CAC provides powerful support to reveal the biological properties in PINs [19]. For
this reason, in our experiments there is no need to make a duplication of effort on splitting the
benchmarks into two catalogs, namely training set and testing set. Therefore, we calculate CAC
with all the known protein complexes as a part of the weight in PIN to generate more helpful
biological knowledge.

For the other hand, the protein interaction data are not absolutely convincing due to the
limitations of the associated experimental techniques. Interestingly, the integration of gene co-
expression—which is usually measured by Pearson Correlation Coefficient (PCC)—can dimin-
ish the impacts of the inherent false negatives and false positives in PINs [8]. For two columns
of gene expression profiles x = (x1,. . ., xn) and y = (y1,. . ., yn). PCCxy can be denoted as Eq (6):

PCCxy ¼

Xn
i¼1

ðxi � �xÞðyi � �yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi � �xÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðyi � �yÞ2
s ð6Þ

Where �x and �y represent the average expression values of gene x and gene y respectively. The
values of PCCxy range from -1 to 1.
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To characterize effectively the biological nature of protein interactions, we weight TEPIN by
combining CAC with PCC. For each pair of proteins Pi and Pj that interact with each other, we
take the sum of CACij and PCCij as the weight of interaction RPij:

Wij ¼ CACij þ PCCij ð7Þ

CACij and PCCij are complementary and consistent with each other. First, Due to the incom-
pleteness of known protein complex data and the false negatives of protein interaction data,
some of the interactions will gain lower weight. In this case, it is reasonable to increase the
weight with positive PCCxy which means gene x and gene y are co-expressed; Instead, some
interactions will gain higher weight because of the false positives of interactions and the fact
that the known protein complex set contains some putative ones determined by high-through-
put experiments. So it is also reasonable to decrease the weight with negative PCCxy which
denotes the two genes’ expressions are inhibited with each other. Second, the higher degree of
the interaction between two proteins, the greater the likelihood that they participate in the
same biological functions, thus the greater the values of both CACij and PCCij.

Our weighted approach is applied on each temporal PINTt (t2{1,2,. . .,n}) of TEPIN, thereby
generating a weighted TEPIN denoted as {WDPINT1,. . .,WDPINTn}. Interactions with positive
weight are deemed to be positive interactions and reserved within weighted PIN, while the oth-
ers are eliminated as false positives. The ratio of eliminated interactions varies between 0.021 to
0.134 (mean = 0.090, standard deviation = 0.039) across 36 time points.

Mining Temporal Protein Complexes
As we shall demonstrate in that following section, WTEPIN provides a more reliable basis for
detecting temporal protein complexes. As three-sigma method has been demonstrated to be
superior to the other dynamic PIN construction methods and has been widely accepted in aca-
demic circle as a state-of-the-art method to date [13], it is used to evaluate the validity of our
Deviation Degreemethod. To accomplish this goal, we employ several classic and state-of-the-
art algorithms to mine protein complexes from our TEPIN, DPIN (constructed with three-
sigma method based on the same datasets) and SPIN. Markov Cluster algorithm (MCL) [3],
which is more tolerant to noise and behaves more robustly than other classic algorithms, has
been widely used to analyze complex networks. ClusterONE [4] and CAMSE (connected affin-
ity and multi-level seed extension) [5] are two state-of-the-art algorithms designed for identify-
ing protein complexes. Cytoscape [24] is a famous open source software platform on which we
can conveniently perform ClusterONE algorithm on protein interaction networks, thus we
employ it to produce protein complexes. Considering the high efficiencies of these three algo-
rithms, we employ them to compare the performances of various kinds of networks involved in
this study. Given a dynamic PIN, an algorithm performs separately on n temporal snapshots.
Therefore, n groups of predicted protein complex are generated, which are finally merged into
one group. The predicted protein complexes containing only one protein will be wiped out.
Besides, inner kernel extension threshold and outer kernel extension threshold involved in
CAMSE algorithm need to be adjusted to render the best performance.

We need to filter the redundant complexes from predicted protein complex set due to the
high overlap ratio within them. To be more specific:

1. All the predicted protein complexes are sorted in descending order by their size;

2. For each of the undiscarded protein complexes Cu, we compare it separately to the other
undiscarded ones with smaller or the same size (denoted by {Co}). Among the complexes in
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{Co}, the one whose similarity with Cu is greater than a very high similarity threshold will be
discarded.

Such a filter operation reduces the number of predicted protein complexes and retains the
correct ones, which is helpful to the analysis of experimental results. The similarity threshold is
set to 1.0 for ClusterONE and MCL algorithms, and 0.8 for CAMSE algorithm [5, 16].

Metrics for Evaluating Identified Protein Complexes
Overlapping Score (OS) [9] Eq (8) is often used to assess the match degree between a predicted
protein complex pc and a known protein complex kc:

OSðpc; kcÞ ¼ jpc \ kcj2
jpcj � jkcj ð8Þ

Where |pc\kc| represents the number of the proteins involved in both complexes pc and kc; |pc|
and |kc| represent the number of proteins involved in complex pc and complex kc respectively.
Two protein complexes are considered to be matched if their overlapping score is greater than
or equal to a given threshold, which is set to 0.2, the same as many other researches [9]. Particu-
larly, OS(pc,kc) = 1 indicates that the two complexes pc and kcmatch perfectly. The predicted
protein complex sets identified from various networks are separately compared against the
known protein complex set.

Sensitivity (Sn) and Specificity (Sp) are typically employed to evaluate the detection of pro-
tein complexes [19]. Let true positives (TP) denote the number of predicted protein complexes
that match with known complexes, false positives (FP) denote the number of unmatched pre-
dicted complexes, and false negatives (FN) denote the number of known protein complexes
which match with none of the predicted protein complexes, then Sn and Sp can be defined as
Eqs (9) and (10), respectively. The harmonic mean of Sn and Sp, also known as F-measure Eq
(11), is often used to assess the overall accuracies of various methods [9].

Sn ¼ TP=ðTP þ FNÞ ð9Þ

Sp ¼ TP=ðTP þ FPÞ ð10Þ

F �measure ¼ 2� Sn� Sp
Snþ Sp

ð11Þ

Larger Sn to some extent indicates that more known protein complexes could be recognized,
while higher Sp shows that higher percentage of predicted protein complexes match with
known protein complexes.

To evaluate the statistical significance of the identified protein complexes, many researchers
annotate their main biological functions by using p-value formulated as Eq (12) [16, 17]. Given
a predicted protein complex containing C proteins, p-value calculates the probability of observ-
ing k or more proteins from the complex by chance in a biological function shared by F pro-
teins from a total genome size of N proteins [25]:

p� value ¼ 1�
Xk�1

i¼0

F

i

 !
N � F

C � i

 !

N

C

 ! ð12Þ
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The lower the p-value is, the stronger biological significance the complex possesses, while the
complex with p-value greater than 0.01 is deemed to be meaningless at all. Generally speaking,
the larger protein complexes possess the smaller p-values.

Results and Discussion

Analysis of Network Properties
First of all, we analyze the properties of three kinds of networks—TEPIN, DPIN and SPIN
(static PIN)—in terms of the average scale and network density. As is shown in Table 1, in con-
trast to SPIN, the sizes of TEPIN and DPIN are greatly decreased while their network densities
are markedly increased, which is mainly due to the fact that dynamic PINs eliminate the noises
which exist in static PIN. Moreover, the average scale of TEPIN is evidently smaller than that
of DPIN, while the average density of TEPIN is approximately two times to that of DPIN.
Therefore, the probability that the proteins interacting with each other in our TEPIN share the
same or similar biological functions is greater than that in DPIN and SPIN.

Fig 1 exhibits the distribution of the number of proteins with varying amount of active time
points in TEPIN. For example, 1110 proteins are active at 6 time points, while only 2 proteins
are active at just one time point. It can be seen that the numbers of active time points of most
proteins (94.1%) range from 3 to 8, explaining they are active in the time of one forth to two
thirds of a metabolic cycle.

In the rest of this section, we’ll confirm the validity of our TEPIN and its weighted strategy
by assessing their overall performances with three classic evaluation metrics (See Materials and
Methods).

Table 1. The properties of TEPIN, DPIN and SPIN.

Network Average nodes Average edges Average density

TEPIN 447 839 0.008800675

DPIN 609 917 0.004794229

SPIN 5093 24743 0.001908184

doi:10.1371/journal.pone.0153967.t001

Fig 1. Distribution of the number of proteins with varying amount of active time points in TEPIN.

doi:10.1371/journal.pone.0153967.g001
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Comparison with the Known Protein Complexes
Validity of TEPIN. To validate the effectiveness of our constructed TEPIN, we implement

the percentage comparison of the matched known protein complexes when applying MCL,
CAMSE and ClusterONE algorithms to SPIN, DPIN and TEPIN. As is shown in Fig 2, the frac-
tion of matched known protein complexes on TEPIN are evidently higher than that on SPIN
and DPIN when OS threshold ranges from 0.2 to 0.4. Particularly, MCL algorithm obtains
47.5% as its percentage from TEPIN, which is 28% and 49% greater than that achieved from
DPIN and SPIN respectively as OS threshold is set to 0.2 (see Fig 2(A)); ClusterONE algorithm
obtains 48.7% as its percentage from TEPIN, which advances 29% and 102% in contrast to
DPIN and SPIN respectively (see Fig 2(B)); CAMSE algorithm achieves 49.5% as its percentage
from TEPIN, which is 20% and 27% higher than that obtained from DPIN and SPIN respec-
tively (see Fig 2(C));.

In addition, the comparisons between weighted networks further illustrate the advantage of
WTEPIN when we perform MCL and CAMSE algorithms (ClusterONE algorithm does not
apply to weighted networks in cytoscape platform), which is shown in (Fig 2D and 2E). The
fractions of matched known protein complexes on WTEPIN are evidently higher than those
onWSPIN andWDPIN when OS threshold ranges from 0.2 to 0.4. Particularly, CAMSE
obtains 60.9% as its percentage fromWTEPIN, which advances 44% and 33% in contrast to
WDPIN and WSPIN respectively (see Fig 2(D)) at OS threshold 0.2; while MCL obtains 53.4%
as its percentage fromWTEPIN, which advances 33% and 30% in contrast to WDPIN and
WSPIN respectively (see Fig 2(E)). TEPIN is capable to describe the dynamics of protein inter-
actions more effectively than DPIN, which contributes to the improvements of protein com-
plex detection.

More interestingly, Fig 3 illustrates an example of a protein complex labeled as 550.1.213,
which is more similar to the protein complex with the identical label identified fromWTEPIN,
rather than the one identified fromWDPIN. In this illustration, the real complex consists of 29
proteins, of which 19 proteins are covered in the complex labeled as 550.1.213 identified from
WTEPIN (see Fig 3(B)), while only 14 proteins are covered in the one that identified from
WDPIN (see Fig 3(C). The overlapping score between the real protein complex and these two
predicted protein complexes are 0.541 and 0.355 respectively, which explains the prediction on
our WTEPIN is more accurate than that on WDPIN. Meanwhile, observation on the proteins
uninvolved in the real protein complex (shown in blue) shows that there is one more protein
within the complex identified fromWDPIN: ypl235w to which only one protein node connects.
In addition, these three protein complexes share the identical Gene Ontology terms such as
RNA polymerase activity | AmiGO with p-values 5.01e-45 (Fig 3(A)), 3.16e-37 (Fig 3(B)) and
7.13e-32 (Fig 3(C)) respectively. Therefore, this example suggests that our WTEPIN can reflect
the dynamics of protein interaction network more realistic, which makes the prediction of pro-
tein complexes more correctly.

Validity of weighted approach. Fig 4 exhibits the performance comparison of weighted
and unweighted networks under varying OS threshold. It can be seen that the weighted net-
works evidently outperform the corresponding unweighted ones. For instance, when we set OS
threshold to 0.3, the percentages obtained fromWTEPIN, WDPIN and WSPIN by MCL algo-
rithm are 22%, 23% and 37% higher than that achieved from TEPIN, DPIN and SPIN, respec-
tively (see (Fig 4A, 4B and 4C)); the fractions achieved fromWTEPIN, WDPIN and WSPIN
by CAMSE algorithm are 41%, 17% and 30% higher than that obtained from TEPIN, DPIN
and SPIN, respectively (see (Fig 4D, 4E and 4F)). In short, owing to the fact that the biological
properties of the protein interactions are well reflected in the weighted networks, the predic-
tions of protein complexes get significantly optimized.

Weighted Dynamic PIN and Temporal Protein Complex
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Fig 2. Percentage comparison of known protein complexes matched by the predicted protein complexes detected from various kinds of networks.

doi:10.1371/journal.pone.0153967.g002
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Measurements of Sensitivity and Specificity
Performance of TEPIN. We use several metrics for evaluating the performance of TEPIN

including Sensitivity, Specificity and F-measure (See Materials and Methods). Table 2 shows
the overall performance comparison of SPIN, DPIN and our TEPIN. Applying CAMSE algo-
rithm, we predict 2906 protein complexes with an average size of 9 proteins fromWTEPIN, of
which 1599 match with known protein complexes; 647 known protein complexes are success-
fully detected fromWTEPIN, while only 487 ones can be identified fromWSPIN. Moreover,
the numbers of protein complexes detected from (W)TEPIN are almost greater than those
detected from (W)DPIN or (W)SPIN, meaning our new method can detect more new knowl-
edge. As is shown in Table 2, our TEPIN always outperforms DPIN and SPIN. For instance,
CAMSE obtains the highest Sn 0.794 and F-measure 0.650 fromWTEPIN; MCL achieves 0.481
as its F-measure fromWTEPIN, which is 6% and 46% higher than that achieved fromWDPIN
andWSPIN respectively; in addition, MCL achieves 0.353 as its F-measure from TEPIN, which
is 12% and 49% higher than that achieved from DPIN and SPIN respectively; ClusterONE
algorithm also achieves the highest Sn and F-measure from TEPIN. Although the values of Sp
obtained from TEPIN (WTEPIN) are little lower, which is mainly due to their higher #PC, the
values ofMKC are always greater than those achieved from DPIN (WDPIN). Obviously, our
Deviation Degreemethod is superior to the state-of-the-art three-sigma method in practice for
recognizing the active time points of proteins.

Performance of weighted approach. Table 2 also exhibits the validity of our weighted
approach. For instance, applying CAMSE algorithm, the F-measure obtained fromWTEPIN,
WDPIN and WSPIN are 36%, 18% and 28% higher than that achieved from TEPIN, DPIN and
SPIN, respectively. Applying MCL algorithm, we find a 28% reduction (in contrast to TEPIN)
in the number of the predicted protein complexes identified fromWTEPIN, which is mainly
due to the removal of the edges with negative weight. Nevertheless, the F-measure obtained
fromWTEPIN, WDPIN andWSPIN are 36%, 44% and 39% higher than that obtained from
TEPIN, DPIN and SPIN, respectively. In short, our weighted approach dramatically enhances
the efficiencies of the PINs, which greatly improves the accuracy of protein complexes
identification.

In conclusion, the time-evolving dynamic network TEPIN constructed with our new
method can reveal the dynamic evolutionary procedure of protein interactions more precisely
than the other networks, which naturally leads the prediction of temporal protein complexes

Fig 3. The protein complexes labeled as 550.1.213 predicted fromWTEPIN andWDPIN. (A) shows the real complex labeled as 550.1.213 in the known
protein complex set. (B) and (C) are the protein complexes with the identical label predicted fromWTEPIN andWDPIN by CAMSE algorithm respectively. For
each predicted protein complex, the proteins shown in red are involved in the real complex, while those shown in blue are not.

doi:10.1371/journal.pone.0153967.g003
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Fig 4. Percentage comparison of known protein complexes matched by the predicted protein complexes detected from unweighted and weighted
networks.

doi:10.1371/journal.pone.0153967.g004
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get significantly improved. Moreover, the weighted TEPIN offers powerful support for reveal-
ing the biological properties of protein interactions, which further optimizes the detection of
protein complexes.

Analysis of Function Enrichment
Wemanage to implement the function enrichment analysis to validate the efficiency of our
Deviation Degreemethod. Using the tool GO::TermFinder (http://www.yeastgenome.org/cgi-
bin/GO/goTermFinder.pl), we calculate the p-values of the predicted protein complexes identi-
fied fromWTEPIN and WDPIN by CAMSE algorithm. The other predicted protein complexes
are left out in this section for the reason that they have relatively weaker performance accord-
ing to previous analyses. Besides, owing to the inconvenience of dealing so many predicted pro-
tein complexes, here, only the ones containing at least 20 proteins account for our analysis,
which still ensures the fairness of comparisons. As a result, we get 301 and 329 predicted com-
plexes fromWTEPIN andWDPIN respectively.

As is shown in Table 3, figures in parentheses are the amounts of the predicted complexes
with p-values falling into the corresponding intervals, while percentages denote the ratio of

Table 2. Performance comparison of SPIN, DPIN and TEPIN.

Algorithms Networks #AS #PC #MPC MKC Sn Sp F-measure #Perfect

CAMSE WTEPIN 9.0 2906 1599 647 0.794 0.550 0.650 28

WDPIN 9.8 2893 1389 449 0.693 0.480 0.567 21

WSPIN 8.7 1150 734 487 0.560 0.638 0.597 11

TEPIN 4.9 2401 925 526 0.633 0.385 0.479 16

DPIN 4.3 2433 967 468 0.607 0.397 0.480 19

SPIN 8.7 1274 586 414 0.474 0.460 0.467 0

MCL WTEPIN 5.6 1630 672 568 0.576 0.412 0.481 32

WDPIN 5.7 1317 576 426 0.475 0.437 0.455 24

WSPIN 3.9 741 269 438 0.301 0.363 0.329 54

TEPIN 5.8 2276 608 505 0.521 0.267 0.353 18

DPIN 6.9 2202 538 394 0.446 0.244 0.316 12

SPIN 5.1 957 226 340 0.238 0.236 0.237 20

ClusterONE TEPIN 3.5 1744 583 518 0.517 0.334 0.406 18

DPIN 3.8 1689 598 400 0.474 0.354 0.405 11

SPIN 3.7 613 180 257 0.183 0.294 0.225 15

#AS: the average size of predicted protein complexes;

#PC: the total number of predicted protein complexes;

#MPC: the number of predicted protein complexes matched by known protein complexes;

#MKC: the number of known complexes matched by predicted protein complexes;

#Perfect: the number of known complexes perfectly matched by predicted protein complexes.

doi:10.1371/journal.pone.0153967.t002

Table 3. Function enrichment analysis of predicted protein complexes detected fromWTEPIN andWDPIN.

Network #PC <E-15 [E-15, E-10) [E-10, E-5) [E-5, 0.01) > = 0.01

WTEPIN 301 34.9% (105) 27.6% (83) 27.2% (82) 9.0% (27) 1.3% (4)

WDPIN 329 22.8% (75) 25.2% (83) 35.0% (115) 15.2% (50) 1.8% (6)

#PC: the total number of predicted protein complexes.

doi:10.1371/journal.pone.0153967.t003

Weighted Dynamic PIN and Temporal Protein Complex

PLOS ONE | DOI:10.1371/journal.pone.0153967 April 21, 2016 13 / 17

http://www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl
http://www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl


those complexes to the total predicted complexes. The proportion of predicted protein com-
plexes with biological significance detected fromWTEPIN is up to 98.7%. Despite of an 8.5%
reduction in the total number of predicted protein complexes (denoted by #PC), the number of
the complexes with p-values falling into interval [0, E-15) obtained fromWTEPIN advances
40% in contrast to WDPIN; while the number and proportion of predicted protein complexes
with no or weak biological significance derived fromWTEPIN are evidently less than that
derived fromWDPIN. In short, our WTEPIN has a distinct advantage in statistically signifi-
cant, indicating our Deviation Degreemethod outperforms three-sigma method in practice for
identifying the activities of proteins.

Table 4 provides ten examples of the predicted protein complexes with very small p-values
identified fromWTEPIN. In each row, the proteins shown in bold are involved in the known
protein complex that matches best with the predicted complex, while the additional uninvolved
proteins within the predicted protein complex probably share the similar functions with this
complex. For instance, for the No.1 predicted protein complex, 6 proteins are not involved in
its matched known protein complex, of which 4 proteins (namely yil021w, ygl070c, ydr404c
and yor151c) share the similar annotations—DNA-directed RNA polymerase—with the real
protein complex. The No.6-10 predicted protein complexes are detected fromWTEPIN but
excluded fromWSPIN. We obtain 774 extra predicted protein complexes from our WTEPIN

Table 4. Some examples of the predicted protein complexes with small p-values detected fromWTEPIN.

No. p-value Predicted protein complex GO term OS

1 4.37e-
44

YOR224C YPR110C YOR341W YOR116C YNR003C YKL144C YJR063W YJL011C
YBR154C YPR190C YPR187W YPR010C YOR207C YNL248C YNL113W YBR245C

YGR005C YIL021W YGL070C YDR404C YOR151C

RNA polymerase activity | AmiGO 0.16

2 1.57e-
38

YCR057C YPR144C YPR137W YPL217C YPL126W YOR310C YOR078W
YNR054C YNL132W YNL075W YMR300C YMR128W YMR093W YML130C
YLR409C YLR222C YLR197W YLR186W YLR175W YLR129W YLL011W

YKR060W YKL099C YJR002W YJL109C YJL069C YJL033W YHR196W YHR169W
YHR148W YGR145W YGR128C YGR090W YGL171W YGL120C YER082C
YDR449C YDR382W YDR365C YDR324C YDR299W YDL213C YDL148C
YDL014W YCL059C YBR247C YBL004W YNL061W YPL043W YNL207W

YLR180W YDL208W YPL012W YHR089C YDR060W YOL010W YPL094C YNL064C
YGR210C YDR034C YDR502C

snoRNA binding |AmiGO 0.50

3 1.16e-
37

YPR110C YPR187W YPR010C YOR224C YOR210W YOR207C YOR116C
YNR003C YNL248C YNL151C YNL113W YKR025W YKL144C YJR063W YJL011C

YDL150W YBR154C YOR332W YNL308C YNL229C YMR285C YLR086W

DNA-directed RNA polymerase activity |
AmiGO

0.45

4 3.15e-
37

YOR116C YPR190C YPR187W YPR110C YOR224C YOR207C YNR003C YNL151C
YNL113W YMR116C YKR025W YKL144C YKL060C YJL011C YFR037C YDR045C

YDL150W YBR154C YOR341W YBR245C YMR091C YCR052W YGL070C

RNA polymerase III activity | AmiGO 0.54

5 7.02e-
36

YJR063W YPR187W YPR110C YPR010C YOR341W YOR340C YOR224C
YOR210W YNL113W YDR156W YNL248C YBR154C YBR228W YBR220C

YBR187W YOR116C YKL144C YOR207C YNR003C YBR245C

DNA-directed RNA polymerase activity |
AmiGO

0.51

6 7.24e-
11

YHR099W YCL010C YBR198C YDR448W YGL066W YOR244W YNL189W
YHR090C YGR002C YFL024C YEL018W YDR392W YDR359C YDR146C

histone acetyltransferase activity |
AmiGO

0.16

7 7.17e-
08

YGR252W YOL148C YDL140C YPR187W YOR224C YOR151C YOL145C YLR418C
YJR017C YGR136W YER125W YDR167W YBR279W YMR236W YBR081C

RNA polymerase II activity | AmiGO 0.13

8 3.54e-
07

YIL035C YOR061W YOR039W YPL235W YPR110C YNL107W YML112W YJL081C
YGR274C YGR040W YGL150C YDR243C YDR190C YDL225W YDL002C YBR245C

YGL019W

ATP-dependent 3'-5' DNA helicase
activity |AmiGO

0.24

9 2.11E-
07

YOL148C YLR055C YDR392W YDR167W YBR081C YMR236W YGR252W
YPR086W YER148W YKR001C YOR151C YDL140C

transcription factor activity, transcription
factor binding | AmiGO

0.26

10 2.50E-
07

YDR167W YBR081C YOL148C YDR392W YLR055C YER148W YPR086W
YNL039W YKR001C YFR034C YER164W YBR245C

transcription factor activity, transcription
factor binding | AmiGO

0.13

doi:10.1371/journal.pone.0153967.t004
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in total, of which 706 (91.2%) with p-value less than 0.01, explaining our network is more help-
ful to analyze the protein interaction networks. Given the incompleteness of known protein
complex set, the predicted protein complexes with small p-values are highly likely to be true
protein complexes, and our weighted TEPIN provides many novel biological knowledge that
cannot be detected from the original SPIN.

Fig 5 illustrates the dynamic evolutionary procedure of the first predicted temporal protein
complex shown in Table 4. This protein complex exactly share five Gene Ontology terms—
such as RNA polymerase activity | AmiGO with the lowest p-values—under three different
time points, meaning this predicted complex can perform five different biological functions.
We analyze the active time points of 21 proteins involved in this predicted protein complex.
After the disassembly of the complex at time point 9 (Fig 5(A)), eight proteins are reactivated
at other time points to perform functions with their partners (not shown), namely ygl070c,
yil021w, ygr005c, ybr245c, yor151c, ydr404c, yor341w and ypr190c; while other 12 proteins are
reassembled at time point 21 to form the original protein complex, namely yor224c, ypr187w,
yor116c, ynr003c, ykl144c, yjr063w, yjl011c, ybr154c, ypr010c, yor207c, ynl113w and ypr110c,
which is shown in Fig 5(B). At time point 32, except ygr005c, all of these 21 proteins are assem-
bled again to form a protein complex with the same Gene Ontology terms as before, which is
shown in Fig 5(C). Such a progress reveals the dynamic assembly process of protein complex.
In addition, as we know that each cycle of yeasts’ gene expression data GSE3431 contains 12
time points, from this example we can see that the protein complex is always assembled at the
8th or 9th time point in each metabolic cycle, thus the changing process of this protein complex
reflects the periodicity of yeasts’metabolism.

Conclusions
Protein complex is a fundamental unit formed with highly connected proteins and often pos-
sesses specific biological functions [26]. In biology, protein interaction networks (PINs) are not
static—they dynamically change over time and are responsive to the stimuli caused by external
environment. Nevertheless, the static PINs couldn’t inform us temporal and contextual signals.
As temporal protein complexes can better reflect the real-world dynamic molecular mecha-
nisms inside the cellular systems [27], it is crucial to construct time-evolving dynamic PINs to
reveal the dynamics within PINs. Although a few available dynamic PINs perform well in

Fig 5. Dynamic evolutionary procedure of a predicted temporal protein complex. The red proteins are unchanged in this procedure; the blue ones
shown in (A) are absent in (B), and then reappear in (C); and the green protein shown in (A) is absent in both (B) and (C).

doi:10.1371/journal.pone.0153967.g005
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practice for mining temporal protein complexes, they often involuntarily exclude many pro-
teins with low or high expression levels, which lead the dynamics in PINs cannot be revealed
effectively.

In this paper, we develop a Deviation Degreemethod with capability to successfully identify
the active time points of proteins based on the deviation degree of gene expression curves. We
construct a time-evolving PIN (TEPIN) which eliminates the disadvantages in other methods
for constructing dynamic PINs. Further, we weight the TEPIN to depict the biological proper-
ties of protein interactions, as well as to diminish the impacts of the inherent false negatives
and false positives in PINs. The experimental results show that the predictions of protein com-
plexes on TEPIN outperform those on the other networks in terms of various evaluation mea-
surements, which indicates the approach can reveal the dynamic evolutionary procedure of
protein interactions more correctly than the other networks. Moreover, the weighted TEPIN
further optimizes the detection of protein complexes. We obtain huge amount of predicted
protein complexes with strong biological significance and provide helpful biological knowledge
to the relate researchers. In addition, our analysis of the dynamic evolutionary procedure of a
predicted temporal protein complex verifies the fact that protein complexes are assembled just-
in-time.

Time-evolving dynamic PIN eliminates the noises which exist in static PIN and provides
increased reliability for uncovering the dynamic protein assembly progress for cellular organi-
zation [28]. Therefore, it has important implications to our knowledge of the dynamic organi-
zation characteristics in cellular systems to construct effective dynamic PIN.
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