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ABSTRACT: Hydride transfer is widespread in nature and
has an essential role in applied research. However, the
mechanisms of how this transformation occurs in living
organisms remain a matter of vigorous debate. Here, we
examined dihydrofolate reductase (DHFR), an enzyme that
catalyzes hydride from C4′ of NADPH to C6 of 7,8-
dihydrofolate (H2F). Despite many investigations of the
mechanism of this reaction, the contribution of polarization of
the π-bond of H2F in driving hydride transfer remains unclear.
H2F was stereospecifically labeled with deuterium β to the
reacting center, and β-deuterium kinetic isotope effects were measured. Our experimental results combined with analysis
derived from QM/MM simulations reveal that hydride transfer is triggered by polarization at the C6 of H2F. The σ Cβ−H
bonds contribute to the buildup of the cationic character during the chemical transformation, and hyperconjugation influences
the formation of the transition state. Our findings provide key insights into the hydride transfer mechanism of the DHFR-
catalyzed reaction, which is a target for antiproliferative drugs and a paradigmatic model in mechanistic enzymology.
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■ INTRODUCTION

Hydride transfer, a ubiquitous event found in all living
organisms, has been subjected to intense investigation with
the aim of deciphering the physicochemical basis of enzyme
catalysis.1,2 Despite a wealth of studies,3−8 a model that
comprehensively illustrates the unparalleled catalytic power of
enzymes is still lacking. Irrespective of whether electrostatics,
dynamic coupling, and quantum tunneling contribute to an
enzyme’s rate acceleration, all existing theories are built on the
accepted principle of transition state stabilization.9,10 Hence,
the comprehensive characterization of enzyme transition states
is essential.
Using dihydrofolate reductase (DHFR) as a model system,

we explored the role played by hyperconjugation in driving
hydride transfer. DHFR catalyzes the reduction of 7,8-
dihydrofolate (H2F) to 5,6,7,8-tetrahydrofolate (H4F) via
transfer of the C4′ pro-R hydride from NADPH to the C6
Re-face of H2F (Figure 1).11 DHFR is central in regulating the
metabolic flux of the one-carbon cycle. Inhibitors of DHFR
have broad applications in pharmacotherapy,12 and trimetho-
prim, pyrimethamine, and methotrexate are frequently used in
therapy.13,14 There is, however, an emerging resistance to these
drugs, and a better understanding of the mechanism under-
lying DHFR catalysis is needed to aid the design of new anti-
DHFR drugs.13−17

The kinetic isotope effect (KIE) is a powerful tool to
investigate enzyme mechanisms.8,9,18−20 During DHFR
catalysis, hydride transfer to C6 and protonation of the N5
of H2F occur (see Figure 1). Accordingly, both N5 and C6 of
H2F change from sp2 to sp3 hybridization, while C4′ of
NADPH alternates from sp3 to sp2. Depending on the location
of the isotopic label, there are two main classes of KIE that can
be measured. Primary KIEs arise when atoms directly involved
in the chemical transformation are replaced by their heavy
counterparts.6,19,21−23 Primary KIE measurements for
NADPH(D) and heavy-atom (15N, 13C) isotope labeling of
the primary reacting centers have generated evidence in
support of a stepwise mechanism for DHFR from E. coli
(EcDHFR).21,22,24,25 Secondary α-deuterium KIEs (α-KIEs)
arising from the rehybridization of C4′ of NADPH provide
atomistic insights into local environmental changes during the
chemical transformation, as isotopic substitution influences the
rehybridization process of the primary atoms, which is
reflected as a change in reaction rate.23,26−28 However, despite
EcDHFR being one of the most studied enzymes, the role of
C6 rehybridization in H2F has never been investigated in
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detail. Because the four hydrogens on C7 and C9 of H2F are
located in positions β to C6, secondary β-deuterium isotope
effects (β-KIEs) can be measured to explore the extent of C6
rehybridization. In general, β-KIE values fall between 1.15 and
1.25, similar to those of α-KIEs (from 1.1 to 1.2),29 and this
has been attributed to hyperconjugation, a quantum
mechanical effect where σ Cβ−H(D) bonds partially donate
electrons to the neighboring electron-deficient π-bond.19,30−35

β-KIE measurements have been depicted in many enzyme
catalysts,36−44 and they have been exploited to investigate
reactions where hyperconjugation is likely to contribute to the
stabilization of the enzymatic transition state. These include

fumarate hydratase,36 subtilisin,37 β-lactamase,38,39 chorismate
synthase,40 purine nucleoside phosphorylase,41 DNA glyco-
sylases,42,43 and enzyme-catalyzed acyl transfer reactions.44

When the N5−C6 double bond is converted to a single bond
during EcDHFR catalysis, the magnitude of this σ → π* effect
can be different in the reactant and transition states (RS and
TS), provoking a variation of the Cβ−H stretching force
constants and leading to a measurable β-isotope effect. Given
the nature of hyperconjugation, β-KIEs are also conformation
dependent, with the maximum magnitude being obtained
when the σ Cβ−H(D) bond is aligned to the electron-deficient
π-network,35,45−47 and hence an angular dependence of the β-

Figure 1. Reduction of 7,8-dihydrofolate (H2F) in to 5,6,7,8-tetrahydrofolate (H4F) catalyzed by dihydrofolate reductase (DHFR). Hydrogens
located at the β positions of the C6 of H2F are highlighted. pABA-Glu = p-aminobenzoyl-L-glutamate.

Figure 2. Synthetic strategies to produce deuterium-labeled H2Fs. (a) Folic acid was converted into 6-formylpterin (6-FP) by oxidation with
sodium sulfite under acidic conditions.48 Subsequently, 6-FP was reduced to 6-hydroxymethylpterin (6-HMP) by dimethylaminoborane (DMAB).
Further reduction of 6-HMP by sodium dithionite affords 6-hydroxymethyl-7,8-dihydropterin (6-HMDP),49 which was enzymatically transformed
to H2F by the combined actions of 6-hydroxymethyl 7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS).25 (b)
Reduction of deuterated 6-FP (6-FP-d) with either (S)- or (R)-alpine borane offers an alternative route to stereoselectively introduce a deuterium
in 6-HMP.51 Cofactor recycling was operated by myokinase (MK) and pyruvate kinase (PK).25,50 Details can be found in the Supporting
Information.
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KIEs is expected. Nevertheless, because the preparation of the
corresponding deuterated H2F remains a nontrivial task, the
corresponding β-KIE measurement has not been conducted.
Here, a versatile synthetic strategy is described to produce

H2Fs that are regio- and stereospecifically deuterated at the C7
and C9 positions. The use of deuterated H2Fs in β-KIE
measurements combined with QM/MM simulations reveal
that the C6 hydride acceptor of H2F is polarized upon
approaching the TS. Conformation-dependent hyperconjuga-
tive effects play a key role in the progression of the hydride
transfer reaction from the RS to the TS.

■ RESULTS AND DISCUSSION
Chemoenzymatic Synthesis of Folate Deuterated on

C7 and C9. An adaptation of our chemoenzymatic synthesis
of dihydrofolate (H2F) was used for deuterium incorporation
at C7 and C9 of H2F (Figure 2).25 Folic acid from a
commercial source was transformed into 6-formylpterin (6-
FP) by oxidation with sodium sulfite under acidic conditions.48

Replacing exchangeable protons with their deuterated counter-
parts eventually leads to deuterium enrichment at the
aldehydic position (93%). Upon reduction with dimethylami-
noborane (DMAB) or its deuterated equivalent, 6-FP was
converted to 6-hydroxymethylpterin (6-HMP) or 6-HMP with
deuterium selectively incorporated at the C9 position (90%
enrichment). Further reduction of 6-HMP with sodium
dithionite led to 6-hydroxymethyl-7,8-dihydropterin (6-
HMDP). Likewise, the use of D2O in place of water led to
the incorporation of a deuterium atom at the C7 position of
the pterin ring (95% enrichment).49

6-HMDP is a metabolite of the folate de novo biosynthetic
pathway and thus can be transformed in vitro to H2F (Figure
2a) with 6-hydroxymethyl 7,8-dihydropterin pyrophosphoki-
nase (HPPK) and dihydropteroate synthase (DHPS).25 In the
first step, 6-HMDP was added with pyrophosphate by HPPK.
Formation of 6-hydroxymethyl-7,8-dihydropterin diphosphate
uses 1 equiv of ATP (6-HMDPpp); therefore, a regeneration
system of the cofactor based on myokinase (MK) and pyruvate
kinase (PK) was included.50 6-HMDPpp was subsequently
combined with p-aminobenzoyl-L-glutamic acid (pABA-Glu)
to afford H2F. The use of deuterated reagents in each synthetic
step allowed the production of [7-2H], [9-2H], [9,9-2H2],
[7,9-2H2] and [7,9,9-2H3] H2F, respectively.
Since hyperconjugation relies on the position of the β Cβ−H

bond with respect to the π*-bond, we predict that the
magnitude of the β-KIE is dependent on the dihedral angle
between Cβ−H and C6−N5.35,45−47 Consequently, (S)- and
(R)-[9-2H] H2F were produced by further modifying the
synthetic pathway (Figure 2b). Deuterated 6-FP (6-FP-d) was
reduced to (S)- and (R)-[9-2H] 6-HMP with (R)- and (S)-
alpine borane, respectively (Midland reduction, Figure
2b),51,52 and their absolute configurations were determined
by a Mosher ester analysis (Supporting Information).53 As
detailed above, (R)- and (S)-[9-2H] 6-HMP were chemo-
enzymatically converted in (S)- and (R)-[9-2H] H2F,
respectively. It should be noted that the stereochemistry at
C9 undergoes inversion during the nucleophilic displacement
catalyzed by DHPS from R to S and vice versa.54 Because both
(S)- and (R)-[9-2H] H2F share the same isotope source, 6-FP-
d, the degree of isotopic enrichment (93%) between them is
identical.
Experimental and Theoretical Determination of β-

KIEs. To investigate rehybridization of C6 of H2F in the

hydride transfer TS of EcDHFR, deuterated H2Fs produced in
this work were used to measure experimental β-KIEs (Figure 2,
Figures S1−S24, and Table 1). At pH 7.0 under pre-steady-

state conditions between 5 and 35 °C, inverse β-KIEs were
obtained (Table 1, Tables S1−S5, and Figures S26−S29; see
the Supporting Information for data collection and process-
ing). For racemic [7-2H] and [9-2H] H2Fs, the average β-KIEs
were of 0.96 ± 0.01 and 0.96 ± 0.01, respectively, over the
examined temperature range (Table S1).
β-Deuterium isotope effects mainly originate from hyper-

conjugation between an electron-deficient π-orbital and a
vicinal σ-donor.35 As previously shown in solvolysis
reactions,45,46 hyperconjugation is dependent on the dihedral
angle (ϕ) between the σ Cβ−H(D) and an electron-deficient
π-orbital, as they must align perpendicularly for maximum σ→
π* donation.35,45,46 Such a spatial requirement indicates that
the magnitude of the β-KIE is dependent on how the Cβ−
H(D) bond aligns to the electron-deficient π orbital. (R)-
[9-2H] and (S)-[9-2H] H2F (93% enrichment) gave average β-
KIEs of 0.960 ± 0.009 and 0.980 ± 0.005, respectively (Tables
S1 and S5 and Figure S26). The use of mono-, di-, and
trideuterated H2Fs revealed that the magnitude of the inverse
β-KIE was proportional to the increase in deuterium
enrichment (Tables S1−S5 and Figures S26−S29). The
magnitudes of the β-KIEs measured for monodeuterated
H2Fs ([7-

2H] and [9-2H] H2F) are lower than those measured
with [7,9-2H2] (0.95 ± 0.01) and [9,9-2H2] H2F (0.952 ±
0.006) (Table S1). This phenomenon becomes increasingly
evident when [7,9,9-2H3] H2F is used, where the β-KIE value
was 0.924 ± 0.006 between 5 and 35 °C (Table S1 and Figure
S26).
Initial structures of the RS and TS were selected from QM/

MM simulations corresponding to the minimum and
maximum of the reaction free energy profiles, which are
computed in terms of a potential of mean force (see the
Supporting Information for details and Figure S30). These
structures were fully optimized at the M06-2X/MM level with
the 6-31G* basis set considering the full flexible protein

Table 1. β-KIEs Measured between 5 and 35 °C for
Deuterated H2Fs

a

R1 R2 R3 R4 β-KIEav

[7-2H] H2F H H H/D
(racemic)

0.96 ± 0.01

[9-2H] H2F H/D
(racemic)

H H 0.96 ± 0.01

(R)-[9-2H] H2F D H H H 0.960 ± 0.009
(S)-[9-2H] H2F H D H H 0.980 ± 0.005
[9,9-2H2] H2F D D H H 0.952 ± 0.006
[7,9-2H2] H2F H/D

(racemic)
H/D

(racemic)
0.95 ± 0.01

[7,9,9-2H3] H2F D D H/D
(racemic)

0.924 ± 0.006

aEach value represents the average of the β-KIEs measured at 5, 10,
15, 20, 25, 30, and 35 °C for each compound (Table S1). Errors are
intended as standard deviations of the mean values.
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solvated in a box of water molecules. It is important to point
out that the potential energy barriers, which could slightly
change if a larger basis set was employed, are insensitive to
isotopic substitution; consequently, possible errors do not
affect the final evaluation of the KIEs. The resulting structures
were then characterized as being real minima (for the RS
structures) or saddle points (TS structures) by inspection of
the corresponding Hessian matrices. Similar to the case in
previous studies,55−57 Hessians were used to compute the
partition functions for each of the structures in the range of
temperatures of the experiments. KIEs were evaluated for each
pair of TS and RS structures from the ratio between their
partition functions. In this regard, considering that the β-H(D)
is not transferred during the present process and evaluation of
the rate constant is not required for KIE calculations, quantum
tunneling effects have not been considered. The final averaged
KIE values are found as the arithmetic mean of all individual
values for all the pairs of TS and RS structures. While it would
produce results that are negligibly different from a numerical
point of view, another possible strategy would be to obtain the
full averaged partition functions and then calculate the KIE.58

Our results are in excellent agreement with the experimental
values (Tables S1 and S6−S12). AM1 values, also reported in
this work (see Tables S6−S12), are very similar to those
obtained at the M06-2X/6-31G* level, pointing out the
convergence of our results with respect to the quantum
description.
The inverse β-KIEs, observed when the pro-R and/or pro-S

hydrogen atoms (HR and HS) of the C7 and C9 positions of
H2F are substituted by deuterium, originate from an increase in
the force constants associated with the movements of these
hydrogen atoms during the evolution from the RS to the TS.
The averaged values of the stretching and bending force
constants associated with these hydrogen atoms were obtained
at the M06-2X/MM level (Table 2). The values provided in

Table 2 illustrate an increase in the stretching force constants
of the four hydrogen atoms (H7R, H7S, H9R, and H9S) as the
hydride transfer advances from the RS to the TS, which can be
related to hyperconjugation (see above). A natural bond order
(NBO) analysis performed with Gaussian16 on the optimized
structures confirms that the delocalization of the electronic
density of the σ Cβ−H orbital on the antibonding N5−C6 π-
orbital stabilizes the system by a quantity up to 3.36 ± 0.09
kcal mol−1 in the RS.59,60

An analysis of the optimized structures shows how the
interatomic N5−C6 distance increases from 1.29 ± 0.01 Å at
the RS to 1.39 ± 0.03 Å at the TS. The change in distance
indicates that the π-bond between these two atoms is broken,
and it is associated with a decrease of electron density at C6

which facilitates hydride transfer (the charges on C6 of an
isolated H2F are 0.34 ± 0.01 and 0.49 ± 0.01 au at the RS and
TS geometry, respectively). The hyperconjugative effect
vanishes while the double bond is transformed into a single
bond, and then the electron population of the σ Cβ−H(D)
bond is increased. At the TS, the maximum stabilization energy
due to the mixing of the σ Cβ−H and the antibonding N5−C6
π-orbitals, as determined by the NBO analysis, is 2.54 ± 0.19
kcal mol−1. Consequently, the stretching force constant of this
bond is larger at the TS than that at the RS, resulting in an
inverse β-KIE when the respective hydrogens are replaced with
deuteriums. The ordering of the stretching force constants
associated with HR and HS in the TS can be rationalized by
considering the degree of overlap between the σ Cβ−H(D)
bonds and the N5−C6 π-bond (Figure 3). The N5−C6−C7−
HR and N5−C6−C7−HS dihedral angles (ϕ) at the TS are
−98 ± 4 and 147 ± 4°, respectively, indicating a larger overlap
with the N5−C6 bond and hence a greater electron donation
effect in the case of the C7−HR bond. This explains the smaller
value of the force constant of this hydrogen with respect to that
of C7−HS. For the C9 position, the values of the two N5−
C6−C9−H dihedral angles are much closer (−127 ± 2 and
120 ± 1° for HR and HS, respectively), in agreement with the
observed similarity between the two stretching force constants
(Table 2). This correlation between the bond orientation and
the force constants reinforces our interpretation of the
observed inverse KIEs.
According to the calculations, other force constants

associated with the hydrogen atoms in β positions are also
partially responsible for the inverse β-KIE. The bending
motions of HR−Cβ−HS show a substantial increase in the
corresponding force constant (Table 2); we attribute this
phenomenon to a “packing” effect at the TS. Effectively, the
hydrogen atoms on C7 and C9 experience a more crowded
environment at the TS than at the RS, thereby provoking a
tighter bending mode. In particular, the cofactor is
substantially closer to the substrate at the TS than at the RS
on one side to facilitate hydride transfer. The cofactor
approaches the substrate from the side of the H9R and H7S
atoms (Figure 3), replacements of which with deuterium lead
to a greater magnitude of inverse β-KIEs (Tables S11 and
S12). The distance of the H7S atom of the substrate to the
closer hydrogen atom of the cofactor is reduced from 2.51 ±
0.09 Å at the RS to 2.16 ± 0.05 Å at the TS. On the other side,
some active site residues also approach the substrate to
stabilize the TS. Thr46 is closer to C9 of the substrate at the
TS (the Cγ46-H9R distance is reduced from 3.83 ± 0.03 to
3.47 ± 0.05 Å), while Ile94 is in proximity to the C7 center
(the O94−H7S distance is reduced from 2.54 ± 0.03 Å at the
RS to 2.39 ± 0.01 Å at the TS). The “packing” effect around
the TS also contributes to increasing the force constants
associated with the β-hydrogens, resulting in a larger zero-
point energy and an inverse KIE upon deuterium substitution.
Interestingly, this packing effect was also described in a recent
theoretical study focused exclusively on protonation of N5 of
H2F.

61 Electrostatic stabilization clearly affects the whole N5−
C6 double bond and surrounding β-hydrogens in the
EcDHFR-H2F complex, implying that the role of the “packing
effect” stabilization goes well beyond modulating protonation
of N5 of H2F.

Table 2. M06-2X/MM Averaged Force Constants for Cβ−H
Stretching and H−Cβ−H Bending Motions at the Reactant
State (RS) and Transition State (TS)a

RS TS

C7−HR 5.23 ± 0.04 5.27 ± 0.03
C7−HS 5.40 ± 0.03 5.45 ± 0.02
C9−HR 5.26 ± 0.02 5.34 ± 0.02
C9−HS 5.25 ± 0.02 5.34 ± 0.04
HS−C7−HR 0.564 ± 0.001 0.596 ± 0.006
HS−C9−HR 0.637 ± 0.004 0.655 ± 0.007

aUnits are mdyn Å−1 and mdyn Å rad−2, respectively.
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■ CONCLUSIONS
In conclusion, our work illustrates how polarization triggers
hydride transfer in the DHFR catalysis. C6 of H2F possesses
strong carbenium ion character when it approaches the TS,
and the buildup of a partially positive charge is stabilized by the
surrounding σ Cβ−H bonds through hyperconjugation, a
phenomenon that is revealed here as an inverse β-KIE.
Furthermore, as hyperconjugation is most effective when the σ
Cβ−H bond is perpendicular to the π*-bond, the magnitude of
β-KIE depends on the stereochemistry. Computation indicates
an increase in the force constants of the bond motions
(stretching and bending) surrounding the β positions. The
charge distribution at the TS is stabilized by EcDHFR-H2F
interactions, which also contribute to the increase in the force
constant associated with β H(D) atom motions. Since C6 of
H2F must be polarized for hydride transfer to occur, our results
are in agreement with a stepwise mechanism where
protonation precedes hydride transfer.21,22,24,25,62 Because
polarization of the N5−C6 double bond in H2F and the
hyperconjugative effects play a non-negligible role in the
buildup of the TS of hydride transfer, those elements cannot
be ignored when DHFR is used as a model to answer
fundamental enzymology questions. Importantly, TS analysis
has been shown to be a powerful approach to the design of
enzyme inhibitors,9,20 and information derived from the work
reported here can be exploited for the design of DHFR
transition state analogues.
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