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Nearly all living organisms, from cyanobacteria to humans, have an internal circadian
oscillation with a periodicity of approximately 24 h. In mammals, circadian rhythms regulate
diverse physiological processes including the body temperature, energy metabolism,
immunity, hormone secretion, and daily sleep-wake cycle. Sleep is tightly regulated by
circadian rhythms, whereas a misalignment between the circadian rhythms and external
environment may lead to circadian rhythm sleep disorders (CRSD). CRSD includes four
main kinds of disorders: the advanced sleep-wake phase disorder (ASPD), the delayed
sleep-wake phase disorder (DSPD), the irregular sleep-wake rhythm disorder and the non-
24-h sleep-wake rhythm disorder. Recent studies have begun to shed light on the genetic
basis of CRSD. Deciphering the genetic codes for ASPD and DSPD has so far been more
successful than the other CRSDs, which allow for the development of animal models and
understanding of the pathological mechanisms for these disorders. And studies from
humans or animal models implicate CRSDs are associated with adverse health
consequences, such as cancer and mental disorders. In this review, we will summarize
the recent advances in the genetics, underlying mechanisms and the adverse effects on
health of ASPD and DSPD.
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INTRODUCTION

Sleep is fundamental to the health of human, and remains one of the greatest mysteries in science. The
timing, depth, and duration of sleep is regulated by the circadian system (termed process C) and the sleep
homeostat (termed process S), which is known as the two-process model (Borbely, 1982). Process S
reflects how sleep pressure accumulates during wakefulness and is discharged during sleep. It operates like
an internal timer that measures the tendency to fall asleep when the subject is awake and the tendency to
wake up when the subject is asleep. Process C (i.e. circadian clock) functions to restrict sleep within a time
of day that is ecologically appropriate (Ashbrook, Krystal et al., 2020). In mammals, the suprachiasmatic
nucleus (SCN) at the hypothalamus is the pacemaker of circadian clocks. After SCN lesion, the circadian
rhythm in the sleep-wake cycle is completely eliminated, although ultradian rhythms of 2–4 h periodicity
persist (Eastman, Mistlberger et al., 1984). The SCN also receives direct retinal input via the
retinohypothalamic tract (RHT), which enable the central clock to entrain to external light/dark cues
(Hastings, Maywood et al., 2018). According to the two-process model, it is the interaction of process C
and process S that determines when we wake and sleep (Franken & Dijk, 2009).
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Sleep is tightly regulated by the circadian rhythms. In optimal
conditions, circadian rhythm is aligned with light/dark cycle,
work, family, and social obligations (Mahowald & Schenck,
2005). However, environmental light/dark cycle changes (such
as shift work, jet lag, nighttime light exposure etc.) and/or genetic
abnormalities impair proper entrainment of the circadian system,
resulting in chronic circadian rhythm sleep disorder (CRSD)
(Sehgal & Mignot, 2011; Haus & Smolensky, 2013; Khosravipour,
Khanlari et al., 2021). Accumulated evidences suggest that CRSD
may be detrimental to physical health and mental function, with
increase in the incidence of obesity, cancer, metabolic syndrome,
cardiovascular diseases and metal disorders (Kettner et al., 2016;
Musiek &Holtzman, 2016; Papantoniou et al., 2018; Rijo-Ferreira
& Takahashi, 2019; Sancar and Van Gelder, 2021).

In recent years, great progress has been made in deciphering
the genetic basis for CRSD, such as ASPD and DSPD. Based on
these discoveries, reliable animal models have been established to
understand the pathological mechanisms as well as the potential
adverse influences for these disorders. Intriguingly, studies on the
CRSD-related human genetics also improve our understanding in
the operating mechanisms underlying circadian clock.

The Molecular Mechanism of Circadian
Rhythms
Circadian rhythms are endogenous biological processes, through
which, all organisms can predict and adapt to the environmental
changes corresponding with the day-night cycle and adjust their
physiological functions and behaviors accordingly (Song &

Rogulja, 2017). Light is the main cue for the entrainment of
circadian rhythms to the external environment, and the SCN
functions as a pacemaker responsible for this coordination
process. Moreover, circadian clock can be also entrained by
hormones, body temperature or feeding/fasting (Claustrat,
Brun et al., 2005; Asher & Sassone-Corsi, 2015). Actually, it
turns out that circadian clocks exist in almost all cells and tissues
in our body (Dibner, Schibler et al., 2010; Koronowski & Sassone-
Corsi, 2021).

The mammalian circadian clock is fundamentally based on
the transcriptional-translational feedback loops (Figure 1). At
the core of this molecular network are two transcription factors:
circadian locomotor output cycles kaput (CLOCK) and brain
and muscle aryl hydrocarbon receptor nuclear translocator-like
1 (BMAL1). They heterodimerize and bind to E-box elements
(CACGTG) located at the promoters of clock genes as well as a
large number of clock-controlled genes (CCGs). This
mechanism drives the expression of Period genes (Per1–3)
and Cryptochrome genes (Cry1/2). PER and CRY proteins
gradually accumulate in the cytoplasm and PER proteins are
phosphorylated by casein kinase Iδ (CKIδ) and CKIε. PER, CRY
and CKI proteins form a complex and translocate to the nucleus
to inhibit the transcriptional activity of the CLOCK-BMAL1.
This negative-feedback loop takes approximately 24 h to
complete. Meanwhile, there are additional feedback loops
driven by CLOCK: BMAL1. RORα promotes while REV-
ERBα inhibits Bmal1 transcription via binding to the ROR
element (RRE) motif on the Bmal1 promoter (Figure 1).
And DEC1 and DEC2 are two suppressors for CLOCK-

FIGURE 1 | Molecular framework of the mammalian circadian clock.
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BMAL1 heterodimer. The transcription of Rorα, Rev-erbα,
Dec1 and Dec2 is positively regulated by CLOCK-BMAL1,
and negatively regulated by PER1, PER2, CRY1 and CRY2
(Honma, Kawamoto et al., 2002; Patke, Young et al., 2020;
Takahashi, 2017; Ueda, Hayashi et al., 2005).

Circadian Rhythm Sleep Disorders
Circadian rhythm sleep disorders (CRSDs) are conditions that
the internal circadian rhythms are not properly aligned with the
external environment. CRSDs are divided into four main types,
including advanced sleep phase disorder (ASPD), delayed sleep
phase disorder (DSPD), irregular sleep-wake rhythm and non-
24-h sleep-wake disorder. Although the environmental, social,
and/or occupational schedules may lead to sleep disturbance,
some individuals may also be genetical predisposed to the
development of CRSD (Chong, Ptacek et al., 2012). It is
estimated that ~33% of sleep quality variance and ~40% of
sleep pattern variance are contributable to genetic differences
(Heath, Kendler et al., 1990).

Advanced Sleep Phase Disorder
Individuals with advanced sleep phase disorder usually feel very
sleepy and have to go to bed early in the evening (generally
between 6–9 pm) and wake up very early in the morning
(generally between 2–5 am). The sleep, temperature, and
melatonin rhythms shift forward 3–4 h as compared to the
normal persons (Jones, Campbell et al., 1999). However, their
sleep quality and duration are normal as average peoples when
they are allowed to sleep at their desired times (Ito & Inoue,
2015).

ASPD is a rare disorder with a strong genetic trait. The
research team led by Louis J Ptáček and Ying-Hui Fu at the
University of California at San Franscisco (UCSF) have made
great contributions to decipher the underlying genetic
mechanisms of ASPD. In 1999, Jones et al. reported three
families with ASPD, which show autosomal dominant
inheritance (Jones et al., 1999). In 2001, Toh et al.
identified an S662G mutation in hPer2, located near the
telomere of chromosome 2q, as the causative mutation for
one of these ASPD pedigrees (Table 1). Ser662 is located

within the CKIε binding region in PER2, and S662G mutation
leads to decreased phosphorylation of PER2 in vitro (Toh,
Jones et al., 2001). It should be noted that the tau mutant
hamsters with short-period behavioral rhythms (~20 h in
homozygotes, and ~22 h in heterozygotes) have a missense
mutation in the CKIε gene.

Although phosphorylation of PER2 by CKIε retards the
nuclear entry of PER2(Vielhaber, Eide et al., 2000) and
decreases the stability of PER2 protein (Keesler, Camacho
et al., 2000), S662G mutation does not affect PER2
degradation or nuclear localization (Xu, 2007). Interestingly,
studies from Xu et al. suggest that Ser662 of PER2 is not
phosphorylated by CKIε; however, a phosphate at S662 is
required for CKIε to phosphorylate other residues in PER2.
They further generated transgenic mice carrying S662G hPER2
gene, which faithfully recapitulate the ASPD phenotype in human
(Xu, Toh et al., 2007).

In 2005, Xu et al. found a T44A mutation in human CKIδ
gene co-segregates with the ASPD phenotypes in another
pedigree (Table 1) (Xu, Padiath et al., 2005). The T44A
mutant kinase has significantly lower enzymatic activity
than wild-type kinase. Both drosophila and mice carrying
the T44A hCKIδ exhibit abnormal circadian rhythms.
Transgenic mice carrying T44A hCKIδ show a shorter
circadian period, recapitulating the ASPD phenotype in
human; however, the T44A hCKIδ transgenic flies show a
longer circadian period, suggesting divergent regulatory
mechanisms in mammalian and fly clocks. Although
transgenic mice carrying wild-type (WT) CKIδ have
abnormal circadian period, WT CKIδ transgene further
shortens the circadian period in the S662G hPER2
transgenic mice, indicating that CKIδ may regulate
circadian period through PER2 in vivo.

In 2016, Hirano et al. identified a missense mutation
(A260T) in hCry2 gene that is associated with ASPD
(Table 1). The Ala260 is located in the flavin adenine
dinucleotide (FAD) binding domain of CRY2 protein, and
the A260T mutation alters the conformation of CRY2 protein
and increases its affinity to the E3 ubiquitin ligase FBXL3, thus
promoting the degradation of CRY2. The transgenic mice

TABLE 1 | Genes implicated in human circadian rhythm sleep disorders.

Sleep Disorder Gene Mutation Phenotypes
in transgenic mice

References

Advanced Sleep Phase
Disorder (ASPD)

Per2 S662G Advanced Phase of circadian activity; ~2 h shorter Period (τ) Toh et al. (2001)
Xu et al. (2007)

CK1δ T44A A shorter circadian Period (τ) Xu et al. (2005); Brennan et al.
(2013)

H46R \ Brennan et al. (2013)
Cry2 A260T Advanced Phase of circadian activity; A shorter circadian Period (τ) Hirano et al. (2016)
Per3 P415A/H417R Mild depression-like phenotype; Longer circadian behavioral period; ~4-h

phase delay in light-dark cycles (LD 4:20)
Zhang et al. (2016)

Delayed sleep phase
disorder (DSPD)

Per3 Polymorphisms \ Pereira et al. (2005); Archer
et al. (2010)

Cry1 c.1657+3A > C \ Patke et al. (2017); Onat et al.
(2020)
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carrying hCRY2-A260T have advanced phase of sleep-wake
behavior in a light-dark cycle and a shortened circadian
period in constant darkness, mimicking the ASPD
phenotype in human (Hirano, Shi et al., 2016).

Zhang et al. identified two rare variants in PER3 (P415A
and H417R on the same allele) in ASPD patients accompanied
with increased depressive mood and global seasonality scores
(Table 1). P415A/H417R-PER3 is less stable and has reduced
repressive activity than WT PER3. In addition, this mutation
fails to stabilize PER1/2 proteins as WT PER3. The circadian
period of hPER3-P415A/H417R transgenic mice under
constant light (LL) is significantly longer than the controls,
and hPER3-P415A/H417R transgenic mice show a ~4-h phase
delay in activity onset and offset time under 4-h light/20-h
dark cycles versus controls, which seems contradict to the
APSD in human. Yet, flies expressing hPER3-P415A/H417R
show significantly earlier activity offset time under light-dark
cycle (LD) and shorter circadian period under constant
darkness (DD) as compared with hPER3-WT flies, which
recapitulate the APSD in human (Zhang et al., 2016).

Mammalian Timeless (mTim) is as a homolog of
Drosophila Timeless (dTim) (Koike, Hida et al., 1998),
which is a core component of the Drosophila clock and
functions as negative regulator necessary for generating
rhythmicity and photoentrainment in flies (Engelen,
Janssens et al., 2013). Conditional knockdown of mTim
protein expression in the rat SCN disrupted SCN neuronal
activity rhythms and altered levels of known core clock
elements (Barnes, Tischkau et al., 2003). Recently, the
Kurien et al. identified an ASPD-associated TIM-R1081X
mutation by using unbiased whole-exome sequencing. The
TIM-R1078X knock-in mice exhibit FASP phenotype with
altered photic entrainment but normal circadian period.
Furthermore, the TIM-R1078X variant lead to a decrease of
TIM accumulation in the nucleus and affinity for CRY2,
resulting in destabilization of PER/CRY complex and a
shortened period in mouse embryonic fibroblasts (Kurien,
Hsu et al., 2019).

Delayed Sleep Phase Disorder
Delayed sleep phase disorder (DSPD) is characterized by a persistent
and intractable delay of sleep onset and offset time comparing to
normal person, generally more than 2 h. People with DSPD are
unable to fall asleep and wake up at socially acceptable times,
resulting in excessive daytime sleepiness (Micic, Lovato et al.,
2016). According to a large population-based study with 10,220
adolescents aged 16–18 years conducted in Hordaland County of
Norway, the prevalence of DSPD in the general population is
estimated to 3.3%, and significantly higher among girls (3.7%)
than boys (2.7%) (Sivertsen, Pallesen et al., 2013).

DSPD also has a strong heredity and familial tendency (Barclay,
Eley et al., 2010; Koskenvuo, Hublin et al., 2007). In 2001, Ancoli-
Israel et al. reported a DSPD pedigree with a bilineal mode of
inheritance, as both the paternal and maternal branches contained
affected individuals (Ancoli-Israel, Schnierow et al., 2001). Per3 is the
first gene to be associated with DSPD. Ebisawas et al. identified six
variants in hPer3 inDSPD individuals, and one haplotype is found to

be significantly associated with DSPD (Ebisawa, Uchiyama et al.,
2001). Furthermore, the contribution of a variable-number tandem-
repeat polymorphism in the coding region of PER3 to extreme
diurnal preference (ASPD or DSPD) is also investigated (Table 1).
Archer et al. demonstrated that the shorter allele (PER3(4/4)) is
strongly associated with DSPD. Consistently, homozygous Per3
knockout mice display a free-running period of 30min shorter
than the WT mice (Zhang, Hirano et al., 2016).

Recently, Patke et al. report a missense mutation (c.1657+3A >
C) in hCry1 as a causative factor in a DSPD pedigree (Table 1)
(Patke, Murphy et al., 2017). This mutation disrupts the splicing
recognition site before exon11, resulting in the deletion of exon 11
with an in-frame deletion of 24 amino acids of CRY1 (CRY1Δ11).
The CRY1Δ11 shows enhanced inhibition on CLOCK-BMAL1
heterodimer. This gain-of-function CRY1 variant causes reduced
expression of a variety CLOCK-BMAL1 targets and lengthens the
period of circadian molecular rhythms. Intriguingly, CRY1Δ11
mutation has a frequency of up to 0.6% in the general Caucasian
population, suggesting it may be responsible for the abnormal
sleep patterns in a sizeable human population.

The Adverse Consequences of Circadian
Rhythm Sleep Disorders
It is well known that disrupted circadian rhythms are
associated with a variety of diseases, such as cancer, mental
disorders, and metabolic disorders (Bass & Lazar, 2016; Ruan,
Yuan et al., 2021). Studies on human with familial CRSD or
corresponding genetically modified animal models provide
further insight into this connection.

Xu and colleagues take advantage of S622G-PER2 transgenic
mice, which mimic human ASPD, to investigate the effect of
disrupted circadian clock on cell cycle progression and
tumorigenesis. Their found that the X-ray induced apoptosis was
markedly attenuated in cells from PER2-S662G:Per2−/− mice as
compared with those from the control mice. And PER2-S662G
mutation leads to an increased E1A- and RAS-mediated
oncogenic transformation. In addition, the expression profiles of
p21 and Cyclin D, two clock-controlled cell cycle genes, change
significantly in the embryonic fibroblast cells taken from PER2-S662
mutantmice. These findings suggest that the ASPD-associated PER2-
S662G mutation may enhance tumorigenesis (Gu, Xing et al., 2012).

Several studies reported that individuals with CRSD accompany
with some neuropsychiatric symptoms. For instance, the individuals
carrying the CKIδ-T44A mutation, show ASPD as well as migraine
(Brennan, Bates et al., 2013). And individuals carrying the CRY1Δ11
variant show a combination of DSPD and attention deficit/
hyperactivity disorder (ADHD) (Onat et al., 2020). Nevertheless,
the mechanisms how these mutations lead to neuropsychiatric
symptoms are still elusive.

Individuals carrying PER3-P415A/H417R show ASPD
accompanied by higher Beck Depression Inventory and
seasonality scores. Consistently, hPER3-P415A/H417R
transgenic mice also show a mild depression-like
phenotype, and Per3 knockout mice also present with
depression-like behavior, suggesting a role for PER3 in
mood regulation (Zhang et al., 2016).
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CONCLUSION AND PERSPECTIVE

Great advances have been made in the genetic basis of circadian
rhythm sleep disorder in the past 20 years. These human genetic
studies not only accelerate the understanding the mechanisms
underlying circadian regulation, but also provide great
opportunity to understand the connection between disrupted
circadian rhythms and human health. However, most studies
focus on the genetics of ASPD and DSPD, whereas few gene
mutation was characterized on the irregular sleep-wake rhythm
disorder and the non-24-h sleep-wake rhythm disorder although
these disorders may also have a genetic component. It also should
be noted that most CRSD-related genetics studies are based on
rare and specious pedigrees. Nowadays, the biobanks, such as
United Kingdom Biobank, which deposit both genetic and
phenotypic information for huge number of individuals are
available. One can predict that population-based whole
genome-wide genetic analysis and/or cross-phenotypic analysis
will greatly improve our understanding on the genetic basis of
CRSDs and their consequences on the human health.
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