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A B S T R A C T   

Understanding sex differences in behavioral and molecular effects of stress has important implications for un
derstanding the vulnerability to chronic psychiatric disorders associated with stress response circuitry. The 
amygdala is critical for emotional learning and generating behavioral responses to stressful stimuli, and pre
clinical studies indicate that amygdalar endocannabinoid (eCB) signaling regulates emotional states. This study 
measured eCB contents in the basolateral (BLA) and central (CeA) amygdala of male and female rats exposed to 
predator odor stress (bobcat urine) and tested for contextual avoidance 24 h later. Stressed females had lower 
levels of 2-arachidonoyl glycerol (2-AG) in the BLA and higher levels of anandamide (AEA) in the CeA, while 
exposure to bobcat urine did not affect amygdalar eCB contents in males. We previously reported that female rats 
exposed to bobcat urine exhibit blunted acoustic startle reactivity (ASR) 48 h after predator odor stress. 
Therefore, we tested the hypothesis that intra-BLA injection of a diacylglycerol lipase (DAGL) inhibitor (which 
would be expected to reduce 2-AG levels in BLA) and intra-CeA injection of a fatty acid amide hydrolase (FAAH) 
inhibitor (which would be expected to increase AEA levels in CeA) would mimic previously observed predator 
odor stress-induced reductions in ASR. Contrary to our hypothesis, microinjections of either the DAGL inhibitor 
DO34 into the BLA or the FAAH inhibitor URB597 into the CeA significantly increased ASR in females compared 
to vehicle-treated rats. These findings describe sex-specific effects of predator odor stress on amygdalar eCBs, and 
new roles for amygdalar eCBs in regulating behavior in females.   

1. Introduction 

Stress is associated with the onset and severity of several psychiatric 
disorders, including post-traumatic stress disorder (PTSD) and depres
sion (Bangasser and Valentino, 2014). Notably, women are two to three 
times more at risk to develop these disorders (Breslau, 2009; Kessler 
et al., 2005) and the symptomatology, development, and responsiveness 
to treatment differ between genders (Altemus et al., 2104; Young and 
Pfaff, 2014). Unfortunately, the current biological knowledge of the 
mechanisms behind sex disparities is scarce compared with the abun
dant clinical evidence, which remains mostly unexplained. 

The endocannabinoid (eCB) system has attracted attention for its 
role in numerous behavioral and brain functions, and as a therapeutic 
target in neuropsychiatric disease states (Patel et al., 2017). The eCB 

system is composed of two cannabinoid receptors, CB1 and CB2 (Mat
suda et al., 1990; Munro et al., 1993); two major endogenous lipid li
gands, N-arachidonoyl ethanolamine (anandamide, AEA (Devane et al., 
1992);) and 2-arachidonoyl glycerol (2-AG (Sugiura et al., 1995);); and 
the enzymes involved in biosynthesis, transportation, and degradation 
of endogenous ligands (Hu and Mackie, 2015; Micale and Drago, 2018). 
The biosynthesis of 2-AG is mediated by the conversion of diacylglycerol 
to 2-AG by the enzyme diacylglycerol lipase (DAGL), and its metabolism 
is primarily driven by the enzyme monoacylglycerol lipase (Blankman 
and Cravatt, 2013). The biosynthesis of AEA, on the other hand, is 
complex and seems to involve multiple redundant pathways, whereas its 
metabolism is almost entirely mediated by the enzyme fatty acid amide 
hydrolase (FAAH (Blankman and Cravatt, 2013);). In addition to bind
ing to cannabinoid receptors, AEA is also an endogenous ligand for the 
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nonselective cation channel, transient receptor potential vanilloid type 1 
(TRPV1) (Zygmunt et al., 1999). 

The amygdala plays a critical role in promoting homeostasis by 
regulating physiological and behavioral responses to stress (Zhang et al., 
2021), and a growing body of work demonstrates that amygdalar eCB 
signaling is involved in the regulation of emotional states (Di et al., 
2016; Gray et al., 2015; Gunduz-Cinar et al., 2013; Lim et al., 2016; 
Marsicano et al., 2002; Morena et al., 2019). In humans, FAAH inhibi
tion attenuated the activation of the amygdala, which is consistent with 
effects observed with anxiolytic agents (Paulus et al., 2021). In a pre
clinical model of traumatic stress, rats that exhibited prolonged 
anxiety-like behavior after exposure to the fox pheromone 2,5-dihy
dro-2,4,5-trimethylthiazoline (TMT) also had an increase in 2-AG 
levels within the amygdala (Lim et al., 2016). In contrast, systemic 
2-AG augmentation was associated with a stress-resilient phenotype in 
mice, and BLA 2-AG signaling was required for adaptation to repeated 
traumatic stress (Bluett et al., 2017). Despite increasing evidence that 
eCBs are implicated in the modulation of behavioral and emotional re
sponses, results are controversial and much remains unknown about the 
specific roles of individual eCB ligands within the amygdala, especially 
in females. 

Our laboratory uses predator odor stress (bobcat urine) to divide 
adult Wistar rats into groups that exhibit high (Avoiders) or low (Non- 
Avoiders) avoidance of a predator odor-paired context, mirroring 
avoidance symptoms in some but not all humans exposed to stress 
(Albrechet-Souza and Gilpin, 2019). Prior work from our group has 
shown clear differences in some behaviors (e.g., alcohol drinking 
(Edwards et al., 2013; Weera et al., 2020), nociception (Itoga et al., 
2016)) but not others (e.g., anxiety-like behavior (Whitaker and Gilpin, 
2015)) after exposure to predator odor stress in Avoider versus 
Non-Avoider animals. In a study published recently, we reported that 
female rats, regardless of their status as Avoiders or Non-Avoider, 
exhibit blunted acoustic startle reactivity (ASR) 2 days after exposure 
to bobcat urine (Albrechet-Souza et al., 2020). The current study was 
designed to extend upon those findings by testing the hypotheses that 1) 
predator odor (i.e., bobcat urine) stress would alter eCB levels in 
amygdala sub-nuclei (i.e., BLA and CeA) of adult male and female Wistar 
rats and 2) drug manipulations of BLA and CeA eCB enzymes would 
mimic stress effects on ASR in female rats. 

2. Material and methods 

2.1. Animals 

Eight-week-old male and female Wistar rats (N = 80; Charles River; 
Raleigh-NC, USA) were housed in same-sex pairs in a humidity- and 
temperature-controlled (22 ◦C) vivarium on a 12-h reversed light-dark 
cycle (lights off at 7:00 a.m.). Animals had ad libitum access to food 
and water throughout the experiments and were handled daily for 3 min 
for 7–10 days before the initiation of experimental protocols. Neither 
gonadal hormones (estrogen or testosterone) nor estrus cycles were 
tracked. All procedures were approved by the Institutional Animal Care 
and Use Committee of the Louisiana State University Health Sciences 
Center and were in accordance with the National Institutes of Health 
guide for the care and use of Laboratory animals (NIH Publications No. 
8023, revised 1978). All efforts were made to minimize animal suffering 
and to reduce the number of animals used. 

2.2. Study design 

Rats were exposed to bobcat urine and tested for avoidance of the 
odor-paired context 24 h later (n = 17 males and 16 females); unstressed 
Controls were never exposed to predator odor (n = 7 males and 8 fe
males). At day 2 post-stress, rats were euthanized by decapitation under 
isoflurane anesthesia and brains were rapidly collected for analysis of 
eCB contents in the amygdala. Separate cohorts of experimentally naïve 

females (n = 32) received intra-BLA microinjections of the DAGL in
hibitor (DO34) or intra-CeA microinjections of the FAAH inhibitor 
(URB597) and were tested for ASR. At the end of the experiment, rats 
were euthanized by decapitation under isoflurane anesthesia and brains 
were sliced in cryostat for verification of cannula placement. 

2.3. Predator odor stress 

Rats were tested in a 5-day place conditioning procedure (Albre
chet-Souza and Gilpin, 2019; Albrechet-Souza et al., 2020) that began 
after the acclimatization period. Rats were allowed 5 min of free 
exploration of the apparatus (3-chamber pre-test session), which con
sisted of three large chambers (36 cm length × 30 cm width × 34 cm 
height) with different types of floor texture (circles, grid or rod floor) 
and patterned walls (circles, white or stripes), separated by a small 
triangular connecting chamber. The apparatus was thoroughly cleaned 
between animals with Quatricide® PV in water at a concentration of 
1:64 (Pharmacal Research Labs; Waterbury-CT, USA). For each rat, the 
chamber that exhibited the most deviant time score of the three (i.e., 
highly preferred or highly avoided) was excluded from all future ses
sions for that rat. On the next day (day − 2 in Fig. 1A), each rat was 
allowed 5 min to explore the two chambers that would eventually be 
used for the conditioning procedure for that rat. Rats were assigned to 
Stress or Control groups that were counterbalanced for magnitude of 
baseline preference for one chamber versus the other (i.e., groups were 
assigned such that mean pre-existing preference for each of the two 
chambers was approximately zero for Stress and Control groups). For 
rats in the Stress group, an unbiased and counterbalanced design was 
used to determine which chamber (i.e., more preferred or less preferred) 
would be paired with bobcat urine for each rat. On the next day (day − 1 
in Fig. 1A), each rat was placed in one of the two chambers with the 
guillotine door shut without urine for 15 min (neutral exposure). On day 
0, rats were placed in the other chamber with the guillotine door shut 
and a sponge soaked with 3 ml of bobcat urine (Lynx rufus; Maine 
Outdoor Solutions; Hermon-ME, USA) was placed under the floor (rats 
could not contact the sponge) for 15 min (odor exposure). Controls were 
treated identically to odor-exposed rats, but the sponges did not contain 
bobcat urine. On day 1, rats were allowed to explore the two chambers 
for 5 min (post-exposure session). All testing was conducted using in
direct dim illumination (one 60W white light facing the wall providing 
approximately 10 lux in the apparatus) and all sessions were recorded. 
Avoidance was quantified as a difference score calculated as time spent 
in odor-paired chamber on day 1 minus time spent in the same chamber 
on day − 2. Rats that exhibited >10-s decrease in time spent in the 
odor-paired context were classified as Avoiders; all other bobcat 
urine-exposed rats were classified as Non-Avoiders. All animals were 
tested during the dark phase of the light-dark cycle, between 9:00 a. 
m.–12:00 p.m. 

2.4. Endocannabinoid extraction and analysis 

Rats were euthanized by decapitation under isoflurane anesthesia 2 
days after exposure to bobcat urine during the dark phase of the light- 
dark cycle, between 9:00 a.m.–11:00 a.m. Brains were rapidly 
dissected, snap-frozen in − 30 ◦C isopentane, and stored at − 80 ◦C until 
microdissection. BLA and CeA tissue samples were taken from frozen 
coronal brain sections (500 μm thick) using a 17-gauge punch tool on a 
cryostat, in accordance with Paxinos and Watson (2007). Tissue punches 
were stored at − 80 ◦C until homogenization. The lipid extraction pro
cess was performed as described by Morena et al. (2015). Briefly, brain 
tissue was weighed and placed into borosilicate glass culture tubes 
containing 2 ml of acetonitrile with 5 pmol of [2H8] AEA and 5 nmol of 
[2H8] 2-AG for extraction, and homogenized with a glass rod. Tissue was 
sonicated for 30 min on ice water and incubated overnight at − 20 ◦C to 
precipitate proteins, then centrifuged at 1500×g to remove particulates. 
The supernatants were transferred to a new glass tube and evaporated to 
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dryness under N2 gas. The samples were reconstituted in 200 μl of 
acetonitrile and dried again under N2 gas. Lipid extracts were suspended 
in 200 μl of acetonitrile and stored at − 80 ◦C until analysis. Measure
ments of 2-AG and AEA were performed by liquid chromatography mass 
spectrometry as previously detailed (Qi et al., 2015). 

2.5. Stereotaxic surgery 

Separate cohorts of experimentally naïve female rats were anes
thetized with isoflurane and surgically implanted with 26-gauge can
nulas (Plastics One; Roanoke-VA, USA) aimed at the BLA or CeA. The 
stereotaxic coordinates, according with Paxinos and Watson (2007), 
were as follows: BLA = 2.4 mm posterior to bregma, ± 4.9 mm lateral to 
the midline, and 7.7 mm ventral to the skull; CeA = 2.3 mm posterior to 
bregma, ± 4.0 mm lateral to the midline, and 7.4 mm ventral to the 
skull. At the end of surgeries, rats were monitored to ensure recovery 
from anesthesia and were given 5–7 days to recover before the start of 
behavioral procedures. Rats were treated with the analgesic flunixin 
(2.5 mg/kg, s.c.) and the antibiotic cefazolin (20 mg/kg, i.m.) before the 
start of surgeries and once the following day. 

2.6. Drug treatment 

The DAGL inhibitor DO34 (1 μg in 0.3 μl; Sigma-Aldrich, catalog 
#SML2732) was dissolved in 70% dimethyl sulfoxide (McReynolds 
et al., 2018). The FAAH inhibitor URB597 (10 ng in 0.2 μl; 
Sigma-Aldrich, catalog #U4133) was dissolved in 5% polyethylene 
glycol, 5% Tween-80, and 90% saline (Gray et al., 2015; Morena et al., 
2014, 2016). On the day before the test day, rats received 1 sham in
jection, consisting of insertion of the 30-gauge injection needles into the 
cannulas for 2 min. On the test day, rats received bilateral intra-BLA 
infusions of DO34 or an equivalent volume of vehicle or intra-CeA in
fusions of URB597 or an equivalent volume of vehicle by using the in
jection needles connected by polyethylene tubing (PE-20) to 10-μl 
Hamilton microsyringes driven by an infusion syringe pump (KD Sci
entific Inc.; Holliston-MA, USA). The injection needles protruded 1 mm 
beyond the tips of the cannulas, and the injection volume was infused 
over a period of 30 s. The injection needles were retained within the 
cannulas for an additional minute after drug infusion to maximize 
diffusion and to prevent drug backflow into the cannulas. 

2.7. Acoustic startle response test 

Female rats were tested for ASR 45–60 min after vehicle or drug 
infusions. Rats were placed in a Plexiglas tube attached to an acceler
ometer inside a dark, soundproof chamber (San Diego Instruments; San 
Diego-CA, USA) and allowed to acclimate for 5 min (75-dB background 
noise) before the test session (Albrechet-Souza et al., 2020). This back
ground white noise was present throughout the session. The chamber 
and Plexiglas tube were cleaned with Quatricide between each animal. 
Before testing, an S-R calibrator tube was used to calibrate the chambers. 
The test session consisted of 30 trials with startle stimuli of three 
different decibel levels: 750-ms bursts of 90 dB, 105 dB or 115 dB white 
noise were randomly presented 10 times each, with each pair of pre
sentations separated by a 30-s fixed inter-trial interval. The maximum 
startle response (Vmax, arbitrary units) during the first 100 ms of each 
trial was recorded. 

2.8. Histology 

Female rats were euthanized by decapitation under isoflurane 
anesthesia. The brains were rapidly dissected, snap-frozen in − 30 ◦C 
isopentane, and stored at − 20 ◦C until sectioning. Coronal sections of 50 
μm were cut on a cryostat, mounted on gelatin-coated slides, and stained 
with cresyl violet. The sections were examined under a light microscope, 
and determination of the location of infusion needle tips within the BLA 
or CeA was made according with Paxinos and Watson (2007). Only rats 
with bilaterally accurate cannula placements were included in the data 
analysis. Three animals were excluded because of cannula 
misplacement. 

2.9. Statistical analysis 

Data are presented as mean and standard error of the mean (SEM), 
except where otherwise indicated. Statistical analysis and graph con
struction were performed using Graphpad Prism 9 (GraphPad; La Jolla- 
CA, USA). Effect size partial eta squared (ηp2) was calculated for sig
nificant main effects and interactions using IBM SPSS Statistics 27 (IBM; 
New York-NY, USA). Two-way analysis of variance (ANOVA) was per
formed to analyze change in time spent in odor-paired chamber and eCB 
contents in amygdala subnuclei – the variables in all cases were sex and 
stress condition. Startle reactivity was analyzed with two-way repeated 
measures (RM) ANOVAs – the variables were drug dose (between- 

Fig. 1. Avoidance behavior in male and 
female rats exposed to predator odor 
stress. A. Experimental design. Rats un
derwent the conditioned place aversion 
paradigm using bobcat urine. Controls 
were never exposed to predator odor 
stress. Avoidance behavior was 
measured 24 h post-stress (day 1). At day 
2 post-stress, rats were euthanized and 
brains were collected for analysis of 
endocannabinoid content in the amyg
dala. B. Change in time (mean ± SEM) 
spent in bobcat urine-paired chamber in 
rats indexed as Avoiders or Non- 
Avoiders. C. Avoidance distribution of 
stressed rats (Avoiders × Non-Avoiders). 
**** denotes P < .0001.   
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subject) and decibel level (within-subject). Fisher’s exact test was used 
to analyze differences in the proportion of Avoiders and Non-Avoiders in 
each sex. Student’s unpaired t-test was used to compare the magnitude 
of avoidance in male and female Avoiders. A priori Student’s unpaired t- 
tests were used to compare eCB contents between Avoiders and Non- 
Avoiders in each sex. In cases of significant ANOVA effects, appro
priate post hoc comparisons were performed. Statistical significance 
threshold was set at P < .05. 

3. Results 

3.1. Avoidance behavior in male and female rats 

Timeline of the experimental procedure is shown in Fig. 1A. Inde
pendent of sex, Avoiders exhibited significantly greater avoidance of the 
odor-paired chamber at 24 h post-exposure (F (1, 29) = 50.30, P <
.0001; ηp2 = 0.634) relative to Non-Avoiders (Fig. 1B). There was no 
significant difference in the magnitude of avoidance between male and 
female Avoiders (t = 1.00, P = .33) or in the proportion of animals that 
met Avoider criteria in both sexes (Fig. 1C; P = .49). 

3.2. Stress effects on endocannabinoid content in the amygdala of male 
and female rats 

Because we did not find significant differences in amygdalar eCB 
contents between Avoider and Non-Avoider males (BLA 2-AG: t = 0.59, 
P = .56; BLA AEA: t = 0.93, P = .36; CeA 2-AG: t = 1.47, P = .16; CeA 
AEA: t = 0.47, P = .64) nor between Avoider and Non-Avoider females 
(BLA 2-AG: t = 1.51, P = .16; BLA AEA: t = 1.23, P = .25; CeA 2-AG: t =
0.96, P = .35; CeA AEA: t = 0.34, P = .73), rats exposed to bobcat urine 

were pooled into a group designated Stress and compared to unstressed 
Controls, segregated by sex. 

A two-way ANOVA yielded significant main effects of sex (F (1, 32) 
= 4.58, P = .04; ηp2 = 0.125) and stress (F (1, 32) = 5.10, P = .03; ηp2 =

0.138), as well as a sex × stress interaction effect (F (1, 32) = 4.54, P =
.04; ηp2 = 0.124) on 2-AG levels in the BLA following exposure to bobcat 
urine. Tukey’s post-hoc comparisons revealed that stressed females 
exhibited lower levels of 2-AG in the BLA relative to Control females (P 
= .01) (Fig. 2A). There was also a significant sex × stress interaction 
effect (F (1, 37) = 4.67, P = .03; ηp2 = 0.112) on AEA levels in the CeA. 
Tukey’s post-hoc comparisons revealed that stressed females exhibited 
higher levels of AEA in the CeA relative to Control females (P = .01) 
(Fig. 2D). 

There were no effects of sex (F (1, 32) = 0.03, P = .85) or stress (F (1, 
32) = 0.14, P = .70) on AEA levels in the BLA (Fig. 2B), nor were there 
effects of sex (F (1, 37) = 3.18, P = .08) or stress (F (1, 37) = 0.01, P =
.91) on 2-AG levels in the CeA (Fig. 2C). 

3.3. Startle reactivity in female rats injected with intra-BLA DO34 

Fig. 3A shows correct placements of intra-BLA cannulas. Fig. 3B is a 
representative photomicrograph of the drug injection site in the BLA. A 
two-way RM ANOVA showed that females that received intra-BLA mi
croinjections of DO34 exhibited significantly higher ASR (F (1, 12) =
5.34, P = .03; ηp2 = 0.308) relative to vehicle-injected females. As ex
pected, we also found a significant decibel effect (F (2, 24) = 86.61, P <
.0001; ηp2 = 0.878) (Fig. 3C). 

Fig. 2. Endocannabinoid content in the amygdala of 
male and female rats exposed to predator odor stress. 
At day 2 post-stress, rats were euthanized, and brains 
were rapidly dissected and snap-frozen. Basolateral 
(BLA) and central (CeA) amygdala tissue samples 
were taken from frozen coronal sections; analyses of 
2-arachidonoyl glycerol (2-AG) and anandamide 
(AEA) were performed by liquid chromatography 
mass spectrometry. A. 2-AG levels in the BLA of 
Controls and stressed rats. B. AEA levels in the BLA of 
Controls and stressed rats. C. 2-AG levels in the CeA 
of Controls and stressed rats. D. AEA levels in the CeA 
of Controls and stressed rats. Data presented as mean 
± SEM. * denotes P < .05.   
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Fig. 3. Intra-basolateral amygdala (BLA) D034 modulates acoustic startle reactivity (Vmax) in female rats. A. Correct placements of intra-BLA cannulas. Each di
agram corresponds to a coronal section of the rat brain according to the bregma (Paxinos and Watson, 2007). B. Representative photomicrograph of injection site in 
the BLA after cresyl violet staining. C. Acoustic startle response in female rats microinjected with vehicle or the diacylglycerol lipase inhibitor DO34 in the BLA. Data 
presented as mean ± SEM. * denotes P < .05. 

Fig. 4. Intra-central amygdala (CeA) URB597 modulates acoustic startle reactivity (Vmax) in female rats. A. Correct placements of intra-CeA cannulas. Each diagram 
corresponds to a coronal section of the rat brain according to the bregma (Paxinos and Watson, 2007). B. Representative photomicrograph of injection site in the CeA 
after cresyl violet staining. C. Acoustic startle response in female rats microinjected with vehicle or the fatty acid amide hydrolase inhibitor URB597 in the CeA. Data 
presented as mean ± SEM. * denotes P < .05. 
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3.4. Startle reactivity in female rats injected with intra-CeA URB597 

Fig. 4A shows correct placements of intra-CeA cannulas. Fig. 4B is a 
representative photomicrograph of the drug injection site in the CeA. A 
two-way RM ANOVA yielded significant main effects of drug (F (1, 13) 
= 12.38, P = .0038; ηp2 = 0.488) and decibel (F (2, 26) = 118.70, P <
.0001; ηp2 = 0.901), as well as a drug × decibel interaction effect (F (2, 
26) = 4.29, P = .024; ηp2 = 0.248) on ASR in females that received intra- 
CeA microinjections of URB597. Bonferroni’s multiple comparisons 
revealed that, at 105 dB and 115 dB, URB597-injected females exhibited 
higher ASR in comparison with vehicle-injected females (P = .019 and 
.017, respectively) (Fig. 4C). 

4. Discussion 

A better understanding of sex-specific stress effects is critical to 
advance our understanding of the mechanisms involved in the etiology 
of stress-related disorders and improving treatments for such conditions. 
Female rats had lower levels of 2-AG in the BLA and higher levels of AEA 
in the CeA 2 days after exposure to bobcat urine, while predator odor did 
not affect amygdalar eCB content in males. Contrary to our hypothesis, 
microinjections of either the DAGL inhibitor DO34 into the BLA or the 
FAAH inhibitor URB597 into the CeA significantly enhanced ASR in 
experimentally naïve females compared to vehicle-treated rats. These 
findings describe sex-specific effects of predator odor stress on amyg
dalar eCBs, and new roles for amygdalar eCBs in regulating behavior in 
females. 

In line with previous studies, bobcat urine exposure elicited avoid
ance in a subset of animals (Albrechet-Souza et al., 2020; Edwards et al., 
2013; Weera et al., 2020). We found that, in rats exposed to bobcat 
urine, 35% of males were classified as Avoiders versus 50% of females, 
with similar magnitude of avoidance behavior 24 h post-stress (Fig. 1). 
The proportion of female Avoiders was slightly higher than our previous 
report (37%; Albrechet-Souza et al., 2020), suggesting potential differ
ences between cohorts (the definition of Avoider and Non-Avoider was 
the same across studies). These findings are interesting in light of 
epidemiological studies showing that women are at higher risk for 
development and maintenance of behaviors associated with traumatic 
events (Breslau, 2009; Kessler et al., 2005). 

We found that predator odor stress elicits sex-specific alterations in 
eCB content in the amygdala (Fig. 2). Female rats showed lower levels of 
2-AG in the BLA and higher levels of AEA in the CeA 2 days after 
exposure to bobcat urine. There were no differences in amygdalar eCB 
levels between female Avoider and Non-Avoider rats, suggesting a 
general stress-related response to bobcat urine exposure. Conversely, 
male rats did not exhibit any significant alterations in amygdalar eCBs 2 
days after predator odor stress. While previous work has reliably found 
dynamic changes in amygdalar AEA, and sometimes in 2-AG as well, 
immediately following exposure to acute stress in males (Gray et al., 
2015; Hill et al., 2009; Patel et al., 2005; Rademacher et al., 2008; 
Yasmin et al., 2020) the current data demonstrate that persistent 
changes in amygdalar eCB levels do not occur in males, at least after 
predator odor stress. 

Following repeated exposure to stress, males have been found to 
have sustained reductions in 2-AG content in the amygdala (Qin et al., 
2015), suggesting that males may develop similar changes as seen here 
in females, but only after more persistent exposure to stress. Moreover, 
with our current experimental design, we cannot rule out that rapid, 
transient changes could have occurred in amygdalar eCBs after termi
nation of bobcat urine exposure in male rats. Future work should 
examine the post-stress temporal profile of eCB expression in more 
depth to understand if these changes are functionally relevant to sex 
differences in vulnerability to traumatic events. 

Our findings also contrast with those of Lim et al. (2016) who have 
previously showed a sustained elevation in amygdalar 2-AG content in 
male Sprague-Dawley rats for 14 days after exposure to TMT. 

Discrepancies between the work of Lim et al. and our study may be due 
to differences in the rat strains, specificity of brain area, predator scents 
and experimental design. Rat strains exhibit different eCB levels in the 
amygdala after stress exposure (Jennings et al., 2016). Furthermore, 
whereas we measured eCBs in specific amygdala subnuclei 24 h after 
exposure to the bobcat urine-paired context (i.e., 48 h after bobcat urine 
exposure), Lim et al. measured 2-AG levels in the whole amygdala at 
various time points (30 minutes–14 days) following TMT exposure. 
Finally, different predator odors have been shown to induce distinct 
profiles of defensive behaviors and hypothalamic c-fos expression in 
rodents (de Oliveira Crisanto et al., 2015; Maestas-Olguin et al., 2021). 

Previous studies that measured eCBs in the brains of female animals 
are scarce. In mice, females had higher AEA levels, but not 2-AG levels, 
in the whole amygdala compared to control groups immediately after a 
fear-potentiated startle test (Kirchhoff et al., 2019). Acute alcohol 
withdrawal reduced AEA content in the BLA and 2-AG content in the 
ventromedial prefrontal cortex of male, but not female Wistar rats 
(Henricks et al., 2017). Contrary to our results, that report indicated that 
females had significantly less AEA in the BLA at baseline compared to 
males. Rats in that study were exposed to intermittent alcohol vapor or 
to the chamber without alcohol vapor for six weeks, thus they were older 
at the time of euthanasia than animals in the current study. This is 
important to note because age-related alterations in the expression of 
eCBs, key enzymes and receptors involved in eCBs function have been 
reported in both rodent and human brains (Kwok et al., 2017). 

Our observed reductions in 2-AG levels in the BLA of stressed females 
is interesting in the context of prior work showing that enhanced 
amygdala 2-AG signaling promotes resilience to adverse effects of acute 
traumatic stress and facilitates adaptation to repeated stress exposure 
(Bluett et al., 2017). Future studies will help to identify whether lower 
levels of 2-AG in the BLA is related to higher risk for stress-related dis
orders in females. Moreover, as discussed earlier, it will be interesting to 
include other time points to evaluate whether differences in amygdalar 
eCB levels between males and females might actually reflect sex dif
ferences in temporal profile of eCB contents. 

Divergent effects of AEA versus 2-AG signaling manipulations on fear 
memory have been recently reported in females (Morena et al., 2021). 
While systemic elevation of 2-AG signaling reduces freezing and facili
tates extinction via activation of CB1 in female rats exposed to an 
auditory fear conditioning paradigm, elevated AEA signaling at TRPV1 
increases freezing, fear generalization and impairs fear extinction 
(Morena et al., 2021). TRPV1 can be activated by high AEA levels 
(Bialecki et al., 2020; Di Marzo, 2008; Zygmunt et al., 1999) and, unlike 
CB1, its activation promotes membrane depolarization, increases 
neuronal firing rate and facilitates neurotransmitter release (Bialecki 
et al., 2020; Marinelli et al., 2003; Musella et al., 2009; Xing and Li, 
2007). Thus, it is possible that the increase in AEA content observed in 
the CeA of female rats after exposure to predator odor can favor AEA 
signaling at TRPV1s. Future work is required to understand this rela
tionship in more depth, exploring the effects of direct TRPV1 
manipulations. 

Exaggerated startle response is considered a hallmark symptom of 
PTSD (American Psychiatric Association, 2013) and is predictive of 
disease severity (Able and Benedek, 2019). However, investigations of 
startle responsivity in male and female patients with PTSD have pro
duced mixed results (Medina et al., 2020; Morgan et al., 1996). In a 
recent study, we reported that female rats exhibit blunted ASR 2 days 
after exposure to bobcat urine, whereas predator odor stress does not 
affect ASR in males without a history of alcohol consumption (Albre
chet-Souza et al., 2020). We tested here whether pharmacological ma
nipulations of amygdalar eCB synthesis and degradation would mimic 
these effects of predator odor stress on ASR in females. We found that 
both acute DAGL inhibition in the BLA (Fig. 3) and acute FAAH inhi
bition in the CeA (Fig. 4) significantly enhanced ASR in experimentally 
naïve females. Although contrary to our initial hypothesis, these results 
are consistent with previous findings showing that, in female rats, AEA 
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and 2-AG signaling can affect the expression of fear-related behaviors in 
opposite directions (Morena et al., 2021). 

5. Conclusions 

In conclusion, we report robust sex differences in amygdalar eCB 
contents after exposure to predator odor stress. Female rats had lower 
levels of 2-AG in the BLA and higher levels of AEA in the CeA after 
exposure to bobcat urine, while predator odor did not affect amygdalar 
eCBs in males. Contrary to our hypotheses, inhibition of 2-AG synthesis 
in the BLA and inhibition of AEA hydrolysis in the CeA enhanced startle 
reactivity in females. Our findings highlight the importance of 
leveraging sex differences in investigations of the neurobiological 
regulation of behavior, and describe a new role for amygdalar eCBs in 
regulating behavior in female animals. 
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