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A B S T R A C T

The electroencephalogram (EEG) constitutes a relevant tool to study neural dynamics and to develop brain-
machine interfaces (BMI) for rehabilitation of patients with paralysis due to stroke. However, the EEG is easily
contaminated by artifacts of physiological origin, which can pollute the measured cortical activity and bias the
interpretations of such data. This is especially relevant when recording EEG of stroke patients while they try to
move their paretic limbs, since they generate more artifacts due to compensatory activity. In this paper, we study
how physiological artifacts (i.e., eye movements, motion artifacts, muscle artifacts and compensatory move-
ments with the other limb) can affect EEG activity of stroke patients. Data from 31 severely paralyzed stroke
patients performing/attempting grasping movements with their healthy/paralyzed hand were analyzed offline.
We estimated the cortical activation as the event-related desynchronization (ERD) of sensorimotor rhythms and
used it to detect the movements with a pseudo-online simulated BMI. Automated state-of-the-art methods (linear
regression to remove ocular contaminations and statistical thresholding to reject the other types of artifacts)
were used to minimize the influence of artifacts. The effect of artifact reduction was quantified in terms of ERD
and BMI performance. The results reveal a significant contamination affecting the EEG, being involuntary muscle
activity the main source of artifacts. Artifact reduction helped extracting the oscillatory signatures of motor
tasks, isolating relevant information from noise and revealing a more prominent ERD activity. Lower BMI
performances were obtained when artifacts were eliminated from the training datasets. This suggests that ar-
tifacts produce an optimistic bias that improves theoretical accuracy but may result in a poor link between task-
related oscillatory activity and BMI peripheral feedback. With a clinically relevant dataset of stroke patients, we
evidence the need of appropriate methodologies to remove artifacts from EEG datasets to obtain accurate es-
timations of the motor brain activity.

1. Introduction

The electroencephalogram (EEG) allows studying the oscillatory
activity associated to voluntary movement, which is a major area of
interest within the fields of neurology and neurophysiology (Ramos-
Murguialday and Birbaumer, 2015). The degree of motor cortex in-
volvement during motor tasks has been largely studied and quantified
by means of the event-related desynchronization of the alpha and beta
rhythms (Pfurtscheller and Lopes da Silva, 1999). The existence of a
tool to assess and quantify cortical involvement during motor tasks has

served, for instance, to characterize the pathological patterns of cortical
activation of patients with motor disorders, such as stroke or spinal cord
injury (Kaiser et al., 2012; López-Larraz et al., 2015; Park et al., 2016).
It has also allowed to discover differences in oscillatory activity be-
tween stroke patients suffering subcortical and cortical lesions (Park
et al., 2016; Ray et al., 2017; Stępień et al., 2011) and to study their
cortical reorganization over time (Tangwiriyasakul et al., 2014b).

Measuring the cortical signatures of movement with EEG has also
allowed the development of non-invasive systems that interpret those
signals in real-time to create brain-machine interfaces (BMI) with
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rehabilitative or assistive purpose (Chaudhary et al., 2016; Lebedev and
Nicolelis, 2017; López-Larraz et al., 2018b). Different devices, including
robotics and prosthetics, have been controlled by patients using brain
activity only, to facilitate the movement of their paralyzed arms and
legs (Hortal et al., 2015; Ibáñez et al., 2017; López-Larraz et al., 2016).
The use of these systems to provide a contingent proprioceptive feed-
back has been demonstrated to promote neural plasticity and motor
learning in healthy individuals and patients (Mrachacz-Kersting et al.,
2012; Mrachacz-Kersting et al., 2016; Ramos-Murguialday et al., 2012).
Further, BMI-based rehabilitation interventions have proven their suc-
cess in promoting clinical improvements after stroke and spinal cord
injury (Ang et al., 2015; Biasiucci et al., 2018; Donati et al., 2016; Ono
et al., 2014; Pichiorri et al., 2015; Ramos-Murguialday et al., 2013;
Trincado-Alonso et al., 2018). The key point of these interventions is to
establish a link that associates the neural activity related to voluntary
movement and the peripheral feedback to facilitate plasticity by Heb-
bian mechanisms (Jackson and Zimmermann, 2012).

The main limitation of EEG recordings, either for neurophysiolo-
gical assessment or for BMI development, is its low signal to noise ratio
and easiness to get contaminated. Generally, several tens of repetitions
(i.e., trials) of the same task have to be recorded and averaged to derive
an accurate estimate of the brain process of interest, or to calibrate the
classification algorithm for the BMI (Graimann and Pfurtscheller,
2006). Interferences of electrical or physiological origin (i.e., artifacts)
contaminate the EEG signals, potentially biasing the information and
interpretations that can be extracted from these data. Electrical artifacts
can be avoided by following good practices, such as recording the EEG
data in an electrically shielded room, using battery-powered devices,
and minimizing electrode impedances (Hammond and Gunkelman,
2001; Nunez and Srinivasan, 2006). When these artifacts are produced
by the sources of stimulation used by a BMI (e.g., closed-loop electric or
magnetic stimulation), they can induce a bias in the estimation of EEG
power. Different methods have been proposed to avoid this phenom-
enon, such as ignoring or interpolating the contaminated portions of
signal (Hoffmann et al., 2011; Walter et al., 2012) or using median
filtering to minimize the peaks (Insausti-Delgado et al., 2017). Phy-
siological artifacts can be largely reduced by instructing the subjects on
how to avoid them; however, sometimes their occurrence is unavoid-
able. The most common physiological contaminations of EEG record-
ings are caused by: (1) electrooculographic (EOG) activity, which
generates electrical currents due to eyelid movements and movements
of the retinal dipoles (Schlögl et al., 2007); (2) motion artifacts, with
low-frequency, high-amplitude oscillations as a result of (involuntary)
head or body movements during the execution or attempt of other
movements (Castermans et al., 2014); and (3) muscular artifacts, which
produce power increases in high-frequencies of the EEG due to the
overlap with the spectral bandwidth of muscle activity
(Muthukumaraswamy, 2013).

Dozens of methods are currently available to try to minimize the
influence of each type of artifact in EEG recordings (Croft and Barry,
2000; Muthukumaraswamy, 2013; Urigüen and Garcia-Zapirain, 2015).
However, there are four important problems missing in the literature
that can be of crucial importance, especially when working with EEG of
patients with motor paralysis (e.g., due to stroke). Firstly, most of the
works study the effects of “cleaning” the artifacts on the resulting sig-
nals only; not quantifying, for instance, the differences in the estimation
of cortical activation or in BMI performance (Urigüen and Garcia-
Zapirain, 2015). Secondly, they generally measure the influence of ar-
tifacts in healthy individuals, although there might be differences in
how these contaminations affect data of healthy vs. paralyzed subjects
(López-Larraz et al., 2017a), since patients generate more compensa-
tory activity during attempts of movement. Thirdly, assuming that ar-
tifacts are just additive noise that lowers the signal-to-noise ratio can be
problematic; if the artifacts are somehow correlated with the studied
task (e.g., muscular contamination of the EEG due to excessive con-
traction during movement attempt), they can be learned by the BMI

classifier, leading to an optimistic bias in its performance (Castermans
et al., 2014). Fourthly, in addition to the EEG artifacts, compensatory
movements of limbs not related to the task are commonly ignored, al-
though they can also bias the measurement of cortical activity (Ramos-
Murguialday et al., 2010).

Given the growing interest in the use of EEG and EEG-based BMIs to
improve the assessment and motor rehabilitation of patients with pa-
ralysis due to stroke, the appropriate cleaning of these signals might be
of paramount importance to obtain accurate estimations of brain acti-
vation. This work aims at measuring the influence of physiological ar-
tifacts in EEG recordings of stroke patients on the quantification of
cortical activity and for the use of rehabilitative BMI systems. We ex-
pect that more restrictive artifact rejection procedures will lead to a
more accurate estimation of the cortical activity during a motor task,
which should also result in a better link between the brain and the
paralyzed muscles in a BMI therapy. We analyzed a clinically relevant
dataset of 31 severely paralyzed stroke patients to study the effects of
rejecting EEG and EMG artifacts from an electrophysiological and from
a neurotechnological point of view.

2. Materials and methods

2.1. Patients

Thirty-one chronic stroke patients (19 male, mean age
54.0 ± 11.7 years, range 29–73, time since stroke
60.3 ± 58.2months, range 10–232) were recruited for this study.
Inclusion criteria were: (1) hand paralysis with no finger extension; (2)
minimum time since stroke 10months; (3) age between 18 and
80 years; (4) no psychiatric or neurological condition other than stroke;
(5) no cerebellar lesion or bilateral motor deficit; (6) no pregnancy; (7)
no epilepsy or medication for epilepsy during the last 6 months; (8)
eligibility to undergo magnetic resonance imaging (MRI); and (9)
ability to understand and follow instructions. Demographic and clinical
data of the patients can be found in Table 1. Further details about the
lesion location and the brain areas affected by the stroke in each patient
can be found in Supplementary Table 1 and Supplementary Fig. 1. The
experiments were conducted at the University of Tübingen, Germany.
The experimental procedure was approved by the ethics committee of
the Faculty of Medicine of the University of Tübingen, and all the pa-
tients provided written informed consent.

2.2. Experimental design and procedure

The patients were asked to perform an assessment task in which
they had to move their healthy hand, or to attempt to move their pa-
ralyzed hand, while their electroencephalographic (EEG) and electro-
myographic (EMG) activity was recorded. Each patient performed be-
tween 4 and 6 blocks, each of which contained, in a random order, 17
trials of movement execution (healthy hand) and 17 trials of movement
attempt (completely paralyzed hand). The number of blocks recorded
depended on the tiredness of the patients, as in some cases they re-
quested to stop the measurements before finishing the 6 expected
blocks.1 Audiovisual cues guided the patients regarding the phases of a
trial: rest (random duration between 4 and 5 s), movement execution/
attempt (4 s), and an inter-trial interval that was included every three
trials (random duration between 8 and 9 s). The patients were asked to
perform (or try to perform) openings and closings with their healthy (or
paretic) hand at a comfortable personal pace during the 4 s of the
movement execution/attempt interval (generally, it took them around
1.5 s to perform a complete open-close cycle). Before starting the first

1 In a post-hoc analysis, we verified that there were no significant differences
due to the unequal amount of trials for each patient in terms of estimated
cortical activity and BMI accuracy.
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block, they were instructed to minimize compensatory movements and
any other source of contamination for the EEG activity during the rest
and movement intervals.

2.3. Data recording and preprocessing

EEG activity was recorded using a commercial Acticap system
(BrainProducts GmbH, Germany), with 16 electrodes placed on Fp1,
Fp2, F3, Fz, F4, T7, C3, Cz, C4, T8, CP3, CP4, P3, Pz, P4, and Oz (ac-
cording to the international 10/20 system). The ground and reference
electrodes were placed on AFz and FCz, respectively. Vertical and
horizontal electrooculography (EOG) was also recorded to capture eye
movements. Electromyographic activity was recorded using bipolar Ag/
AgCl electrodes (Myotronics-Noromed, USA) from four muscle groups
of each arm: extensor carpi ulnaris, extensor digitorum, external head of
the biceps and external head of the triceps. All signals were synchro-
nously recorded at 500 Hz.

The EEG data were filtered between 0.1 and 48 Hz with a 4-th order
causal Butterworth filter. The signals were trimmed down to 7-s trials,
from −3 to +4 s with respect to the movement cue. Although the
shortest duration of the rest intervals was 4 s, we decided to consider
only the last 3 s to ensure that the patients were in resting state.

2.4. Artifact rejection procedures

The artifact rejection procedures were designed to identify and
minimize the influence of four types of contaminations that can fre-
quently occur when measuring EEG activity during movement execu-
tions or attempts: electrooculographic contaminations, motion artifacts,

muscle artifacts, and compensatory movements with other limbs. For
that, we relied on the recorded EEG and EMG activities. Three different
methods were proposed and compared between them and with no ar-
tifact rejection: (1) artifact rejection based on EMG activity only; (2)
artifact rejection based on EEG activity only; (3) artifact rejection based
on EMG and EEG. The EMG activity was used to identify undesired
compensatory movements with the arm that the patients should keep
relaxed. The EEG (and EOG) activity was used to detect electrooculo-
graphic contaminations, motion artifacts and muscle artifacts. These
artifact rejection procedures were applied to the available set of trials of
each patient: i.e., to all the trials of the patient when applied for
quantifying the brain activation, and only to the trials used to train the
BMI for detecting the movement execution/attempts (see Sections 2.5
and 2.6). The processing of artifacts was done on a single trial basis: i.e.,
each trial was processed and marked as clean or as contaminated, and
when marked as contaminated it was discarded.

2.4.1. Artifact rejection based on EMG
The EMG activity was used to identify trials with undesired move-

ments of the arms, which might generate cortical activity that masks the
activity of interest (more than physiologic artifacts, these trials corre-
spond to an incorrect performance of the requested task). This method
is referred to as “EMG rejection”. We defined as artifacts those trials
that had: (1) muscular activations in any of the recorded muscles during
the rest intervals; or (2) muscular activations in the muscles of the
opposite arm to the one requested to move (e.g., compensatory move-
ments with the healthy arm during the attempt of movement of the
paretic hand).

The processing of the EMG signals was as follows. First, the EMG of
each trial was high-pass filtered at 20 Hz with a 4th-order non-causal
Butterworth filter. The waveform length (WL) was computed in 200ms
windows with a sliding step of 20ms, as in (Ramos-Murguialday et al.,
2010). The WL values of the rest interval (i.e., [−3, 0] s) of each trial
were averaged, and the mean and standard deviation (SD) between
trials were used to compute the rejection threshold: i.e., 3 SD above the
mean. Those rest intervals presenting WL values higher than this
threshold for a duration longer than 200ms were considered artifacts
and discarded. Subsequently, the mean and SD of the non-rejected trials
were computed and used to re-calculate the rejection threshold (i.e., 3
SD above the new mean). Those trials in which this threshold was ex-
ceeded for> 200ms were considered as artifacts if: (1) the activation
occurred in any muscle during the rest interval (i.e., [−3, 0] s); or (2)
the activation occurred in any of the muscles of the opposite arm to the
moving one during the movement interval (i.e., [0, 4] s).

2.4.2. Artifact rejection based on EEG
Our method to reject artifacts relying on EEG activity was first

presented in (López-Larraz et al., 2017a) and aims at eliminating the
three main (physiological) sources of contamination: eye movements,
motion artifacts, and muscle artifacts. This procedure is referred to as
“EEG rejection” and involves one step of EOG removal (or correction)
and two steps of rejection of trials with artifacts. The influence of eye
movements on the EEG was corrected by using linear regression on the
EOG data; a method that constitutes one of the state-of-the-art proce-
dures to remove undesired ocular activity while keeping the relevant
brain information (Kobler et al., 2017; Urigüen and Garcia-Zapirain,
2015). On the other hand, motion artifacts and muscle artifacts are
more difficult to “clean” (i.e., to filter the contamination while main-
taining the amount of trials), and there is disagreement in the literature
about the effectiveness of techniques to correct these contaminations
(Kline et al., 2015; Muthukumaraswamy, 2013; Urigüen and Garcia-
Zapirain, 2015). Therefore, we implemented a statistical procedure to
identify trials containing artifacts and to completely discard them. Note
that not all the EEG channels were considered for the identification of
artifacts, but only the ones that were involved in the corresponding
analysis (see Sections 2.5 and 2.6). For instance, when detecting the

Table 1
Patients demographic data. Lesion side indicates the damaged hemisphere.
Lesion type indicates if the stroke affected subcortical areas only (S) or cortical
and subcortical areas (C+ S). cFMA stands for combined Fugl-Meyer assess-
ment, which comprises hand and arm motor scores combined, excluding co-
ordination, speed and reflexes (range 0–54 points, with 54 points indicating
normal hand/arm function).

ID Gender Age (yr) Time since stroke
(mo)

Lesion side Lesion type cFMA

1 M 60 14 R C+ S 13
2 F 52 156 L C+ S 5.5
3 F 66 23 L C+ S 16.5
4 F 54 10 L C+ S 8
5 M 58 28 R C+ S 8.5
6 M 62 10 R C+ S 1
7 F 73 23 R C+ S 1
8 M 60 130 L S 9.5
9 F 36 16 L C+ S 11
10 M 57 122 R S 17
11 M 47 80 R S 12
12 M 51 16 L C+ S 3.5
13 M 69 89 R C+ S 26
14 F 35 28 R C+ S 11
15 F 72 44 L S 2
16 F 55 17 R S 0.5
17 M 66 48 R C+ S 7.5
18 M 69 72 L S 5.5
19 F 55 45 L S 16.5
20 F 53 30 L S 5
21 F 35 60 R S 25.5
22 M 58 28 R C+ S 8.5
23 M 29 25 R C+ S 15
24 M 47 232 R C+ S 13.5
25 M 50 215 L S 33.5
26 M 48 45 R S 7.5
27 F 53 20 L S 17.5
28 M 40 53 R C+ S 3.5
29 M 70 23 L C+ S 8
30 M 40 46 L S 30.5
31 M 54 121 R C+ S 16

E. López-Larraz et al. NeuroImage: Clinical 20 (2018) 972–986

974



attempts of movement using the contralateral EEG electrodes, only the
contralateral electrodes and their neighbors (used to re-reference by
Laplacian derivations) were considered.

2.4.2.1. Removal of ocular artifacts. The horizontal and vertical
components of eye movements were removed from the EEG by using
linear regression between the EEG and EOG activities, as proposed in
(Schlögl et al., 2007). This method assumes that the measured EEG
signals are a linear combination between the brain activity and the
contamination due to eye movements:

= + ×X EEG b EOGc t c t c d d t, , , , (1)

where Xc,t represents the recorded EEG signals, measured in c electrodes
during t time points; EEGc,t is the actual brain activity; EOGd,t are the
derivations of electrooculographic activity (in our case d=2, with
horizontal and vertical EOG derivations); and bc,d are the coefficients
that represent the weights of the EOG contamination of each EEG
channel. The coefficients b are estimated as the product of the auto-
covariance matrix of the EOG derivations and the cross-covariance
between the EEG and EOG. After that, the brain activity clean of ocular
contaminations is calculated by subtracting the weighted
contaminations from the measured signals:

= − ×EEG X b EOG (2)

It is possible to estimate the coefficients b from a given segment of
data and clean such data (i.e., offline analysis), or to apply these
coefficients to new, unseen data (i.e., for online filtering). Therefore,
this method corrects the artifacts (i.e., removes the contamination) but
preserves the amount of trials.

2.4.2.2. Rejection of motion artifacts and muscle artifacts. The rejection
of these two types of artifacts was done using a similar statistical
method to the one used with the EMG activity (see 2.4.1). Motion
artifacts are generally characterized by low frequency oscillations,
while muscular artifacts can be observed in the EEG in high
frequencies. To capture those artifacts, we computed the spectral
power in delta ([1–4] Hz) and gamma ([30–48] Hz) for the rest and
for the movement intervals of each trial (i.e., one value per frequency
band and interval for each trial). The mean and SD of delta and gamma
power during the rest intervals were used to define the first rejection
threshold (3 SD above the mean of each band). All those trials
exceeding this threshold in the rest interval were discarded. We
recalculated the rejection threshold for each band using the rest
interval of the non-rejected trials only, and also discarded all the
trials that exceeded this new threshold in any of the bands in the rest or
in the movement intervals.

2.4.3. Artifact rejection based on EMG and EEG
The last method was the most restrictive and combined the use of

both EMG and EEG activity to identify trials with undesired move-
ments, eye movements, motion artifacts or muscle artifacts. This
method is referred to as “EMG+EEG rejection”. Firstly, trials with
undesired movements (i.e., malperformance of the task) were rejected
by using the method described in Subsection 2.4.1. Secondly, the re-
maining trials were processed with the methods detailed in Subsection
2.4.2 to eliminate eye movements, motion artifacts, and muscle arti-
facts.2

2.5. Quantification of cortical activity

The degree of cortical activation during motor execution and motor
attempt was quantified by computing the event-related synchroniza-
tion/desynchronization (ERS/ERD) of the central alpha ([7–13] Hz)
and central beta ([14–30] Hz) rhythms (Pfurtscheller and Lopes da
Silva, 1999). Fig. 1-A displays the flowchart with the processing steps to
compute the ERS/ERD. First, the artifact rejection methods were ap-
plied to the trials of each patient separately. Afterwards, the data of all
the patients were pooled together to study the average activation for
each condition.

The EEG signals were re-referenced using small Laplacian deriva-
tions to reduce the effect of volume conduction (Hjorth, 1975). Time-
frequency maps representing the cortical activity were computed using
Morlet Wavelets (Tallon-Baudry et al., 1997) in the frequency range
[1–50] Hz, with a frequency resolution of 0.25 Hz. In these time-fre-
quency maps, the percentage of relative power decrease with respect to
a resting-state baseline ([−2.5, −1] s) was calculated to obtain the
ERS/ERD patterns, and their statistical significance was estimated using
a bootstrap resampling method (Graimann and Pfurtscheller, 2006).

For each patient and artifact rejection method, the mean ERS/ERD
percentage in alpha and beta frequencies was computed from the time-
frequency maps of the channels C3 and C4 (i.e., as descriptors of the
left- and right-hemispheric sensorimotor cortex, respectively). For that,
the ERS/ERD values in the frequency ranges [7–13] Hz (alpha) and
[14–30] Hz (beta) were averaged in the time interval [0, 4] s. Higher
magnitude of ERD activity (i.e., more negative values) is related to
higher cortical activation during motor tasks (Pfurtscheller and Lopes
da Silva, 1999), while muscular contaminations tend to generate ERS
activity. Therefore, we would expect that cleaner EEG datasets display
ERD values of higher magnitude.

2.6. Movement execution/attempt detection

2.6.1. Design
We implemented a procedure to classify the brain activity corre-

sponding to rest and movement execution, or to rest and movement
attempt (the procedures were applied separately for the healthy and the
paretic hand) following our previous developments (López-Larraz et al.,
2017a, 2017b). Although the analysis was conducted offline, all the
methodologies were applied in a pseudo-online manner (using sliding
windows, causal filters and auto-regressive models), simulating a real-
time setup. Fig. 1-B displays the flowchart with the steps of the
movement execution/attempt detection algorithm.

We used a block-based N-fold cross validation strategy, where N
corresponded to the number of blocks recorded for each patient (N
varied across patients between 4 and 6 blocks). In each fold, one of the
blocks was kept apart for testing, and the rest of the blocks were used as
training dataset. When the artifact rejection methods were applied, they
were only applied to the training datasets. For the EOG artifact re-
moval, the coefficients for the regression were computed using the
training data only and applied posteriorly to the test trials, simulating
an online execution.

With this procedure, we simulated different scenarios in which we
process the data for training the BMI with different artifact rejection
procedures and observe the effects on performance. The test trials with
artifacts were not rejected; firstly, to simulate a real-time BMI use in
which test artifacts cannot be predicted, and secondly, to have a fixed
and unbiased test dataset for all the artifact rejection methods. Notice
that all the proposed methods can be applied in real-time during the
BMI operation to detect the artifacts in the test trials and, for instance,
stop the feedback if an artifact is detected. With our approach, we as-
sume that training the BMI with clean data is sufficient to characterize
the brain activity of interest, and that therefore, the presence of those
artifacts in the test trials should not bias the performance.

2 The order of this sequential process (EMG rejection followed by EEG re-
jection) was chosen to first eliminate the trials in which the task was performed
incorrectly, and then to compute the statistical parameters for rejection of
motion and muscle artifacts from the trials in which the task was performed
correctly. In a post-hoc analysis, we compared the effect of reversing this
process (EEG rejection followed by EMG rejection), obtaining no significant
differences between both approaches.
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2.6.2. Feature extraction
The 7-s trials (from −3 to +4 s with respect to the movement cue)

were re-referenced using small Laplacian derivations (Hjorth, 1975).
Unless otherwise specified, the BMI was trained with the activity of the
electrodes placed on the contralateral hemisphere to the involved limb
only: i.e., C3, CP3 and P3 if the right hand was involved; C4, CP4, P4 if
the left hand was involved. Only those electrodes and their neighbors
(used for the Laplacian) were considered for the artifact rejection.

We used one-second time windows to extract examples of EEG ac-
tivity corresponding to resting state and to movement (execution or
attempt). The examples of the rest class were extracted from the time
interval [−2, 0] s, and for the movement class they were extracted from
the interval [1, 3] s (since the reaction time in these patients may be
slow (Yilmaz et al., 2015)), using a sliding step of 0.25 s in both cases
(i.e., 5 windows of each class extracted from each trial). For each one-
second window, the average power in the alpha ([7–13] Hz) and the
beta ([14–30] Hz) frequency bands was computed for each of the three
contralateral electrodes (i.e., the feature vector of each one-second
window included 6 values). The power spectral density was computed
using an order-20 autoregressive model, with a frequency resolution of
1 Hz, based on the Burg algorithm (Burg, 1975). The feature vectors of
the training dataset were normalized to have zero mean and unit

variance. The normalization parameters (i.e., distribution mean and
variance) were stored and applied to the test set in the pseudo-online
validation of the BMI.

We also aimed at understanding how the artifacts can affect the
features (i.e., the frequency bands) and the electrodes (i.e., the cortical
positions) used to configure the BMI. Therefore, we repeated the pro-
cess described above after varying the following parameters. Firstly, we
evaluated the classification by using features of the alpha band only or
the beta band only. In these cases, only 3 features were included in the
feature vector: 1 frequency band for 3 electrodes. Secondly, we trained
the classifier using the EEG electrodes from both hemispheres (i.e.,
contra- and ipsilateral to the moving limb). In this case, 12 features
integrated the feature vectors (i.e., 2 frequency bands for 6 electrodes),
and the six electrodes and their neighbors were taken into account for
the artifact rejection.

A linear discriminant analysis (LDA) and a support vector machine
(SVM) with a radial basis function kernel were evaluated as re-
presentative examples of linear and nonlinear classifiers (Lotte et al.,
2007). The comparison between a linear and a non-linear classifier can
provide relevant information to understand how they behave with data
highly contaminated by artifacts. A linear classifier will trace the hy-
perplane that best separates between the data distributions of rest and

Fig. 1. Flowchart with the steps of each analysis. A) Steps for the quantification of cortical activity during the movement execution/attempt. The whole set of trials is
processed four times (i.e., with each of the artifact rejection methods and without artifact rejection) and the cortical activity is estimated for each of the four methods.
Notice that this procedure is performed separately for the movement executions with the healthy hand and the movement attempts with the paretic hand. B) Steps for
the pseudo-online classification of movement execution/attepmt. The set of trials considered for training is processed four times (i.e., with each of the artifact
rejection methods and without artifact rejection) and the four resulting training datasets are used to calibrate four classifiers. The test data is validated simulating an
online processing, where parameters calculated in the training dataset are applied to the test set (e.g., EOG coefficients and normalization parameters). This scheme is
performed as a N-fold cross validation, where N is the number of blocks recorded for each patient. Notice that this procedure is performed separately for the
movement executions with the healthy hand and the movement attempts with the paretic hand.
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movement. On the other hand, a non-linear classifier might be able to
draw complex boundaries and learn both the artifacts (higher power
with respect to rest) and the ERD activity (lower power with respect to
rest), distinguishing them from the rest and providing higher ac-
curacies.

2.6.3. Classification
The test blocks were classified simulating an online scenario. A one-

second sliding window was applied from −3 to +4 s on each trial
(notice that the first output was thus generated at t=−2 s), with the
classifier generating an output every 20ms.

The performance of the movement execution/attempt classifier was
quantified in terms of average decoding accuracy, computed as the
mean between the true positive rate (TPR) and the true negative rate
(TNR). The TPR measures the success of the classifier during the
movement period, which was considered the time interval [1, 4] s. The

TNR measures the success of the classifier during the rest period, con-
sidered as the interval [−2, 0] s.

2.7. Statistical analysis

Statistical analyses were performed to test if the different artifact
rejection methods had a significant influence on the electro-
physiological activity and on the performance of the classifier. We used
the Friedman's test for non-Gaussian data with repeated measures (i.e.,
within subject comparisons), considering the artifact rejection method
as factor, and the cortical activity (i.e., ERD in C3 or C4) or the de-
coding accuracy as dependent variables. Paired post-hoc comparisons
were performed using the Wilcoxon signed-rank test to analyze sig-
nificant differences between pairs. False discovery rate (FDR) correc-
tion was applied to control for the multiple comparisons, and statistical
significance was considered when corrected p-values were smaller than

Fig. 2. Estimated cortical activation with each of the artifact rejection methods. The time-frequency maps represent the event-related (de) synchronization (ERS/
ERD), averaged for all the patients, for each of the artifact rejection methods. Notice that the lateralized cortical positions of patients with the stroke in the right
hemisphere are swapped, simulating that all the patients have the stroke in the left hemisphere. The percentage of ERS/ERD is calculated with respect to the resting
baseline [−2.5,−1] s. The left gray area corresponds to the movements of the healthy (left) hand, while the right gray area corresponds to the attempts of movement
of the paretic (right) hand. Each of the four rows indicates one of the artifact rejection methods, encircled by dashed panels. The heads depict the ERD activity of each
of the 16 EEG electrodes, averaged for all the patients. The activity of the left (i.e., ipsilesional) and right (i.e., contralesional) hemispheres is detailed by zooming the
activity of C3 and C4 channels, respectively. Blue color indicates desynchronization, while red color represents synchronization with respect to the resting baseline.
The artifact rejection methods, especially the ones based on EEG and EMG+EEG, reduce the influence of artifacts that cause the appearance of alpha and beta
synchronization (i.e., ERS) during movement attempts, and enhance the ERD magnitude. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.).
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0.05. Correlation between the percentage of discarded trials and other
clinical/demographic/performance variables was studied using
Spearman's correlation coefficient.

3. Results

The average number of trials discarded for each patient by each
artifact rejection method varied significantly between the healthy and
the paretic limb (Wilcoxon signed-rank test, p < .05 for the three
methods after FDR correction). For the movements of the healthy hand,
29.7 ± 21.7% of the trials were discarded if the EMG rejection was
applied, 40.4 ± 12.5% for the EEG rejection, and 59.2 ± 15.9% for
the EMG+EEG rejection. For the movement attempts of the paretic
hand, the percentages of discarded trials were 39.2 ± 20.3% for the
EMG rejection, 49.2 ± 20.6% for the EEG rejection, and
69.5 ± 16.08% for the EMG+EEG rejection. The number of discarded
trials did not correlate significantly with any of the clinical and de-
mographic data of the patients: i.e., gender, age, time since stroke, le-
sion side, location of the stroke, lesion volume and Fugl-Meyer score
(Spearman correlation, p > .05 for the three methods and all the
variables after FDR correction).

3.1. Quantification of cortical activity

3.1.1. Effect of artifact rejection on ERS/ERD
To facilitate visualization, we rearranged the EEG data to simulate

that all the patients had the stroke in the left hemisphere. The later-
alized cortical positions of patients with the stroke in the right hemi-
sphere were flipped about the midline. Therefore, in subsequent ana-
lyses and figures, the left arm is always considered the healthy one,
while the right arm is always considered the paretic one. Likewise, the
left hemisphere of the motor cortex (represented by C3 cortical posi-
tion) was always the ipsilesional area, while the right hemisphere (re-
presented by C4 cortical position) corresponded to the contralesional
area.

Fig. 2 compares the estimated brain activation after applying each
of the artifact rejection methods. The time-frequency maps with the
event-related (de) synchronization patterns are shown for the move-
ment of the healthy hand (left) and for the movement attempt of the
paretic hand (right). As can be seen, the most restrictive artifact re-
jection (based on EMG+EEG; bottom panels of the figure) clearly
enhances the alpha and beta ERD in both hemispheres (i.e., ipsilesional
or contralesional), regardless of the role they play with respect to the
hand asked to move (i.e., contralateral or ipsilateral). On average for
the group of patients, the contralesional electrodes showed stronger
activation than the ipsilesional electrodes. Even when the patients at-
tempted to move their paretic hand, the contralesional (i.e., ipsilateral)
hemisphere was more active than the ipsilesional (i.e., contralateral)
hemisphere. This may be explained by the fact that there were more
patients with lesions involving the motor cortex, and these patients do
not generally show a significant activation of the ipsilesional hemi-
sphere during movement attempts but they activate the contralesional
hemisphere (Luft et al., 2004; Park et al., 2016).

Fig. 3 illustrates the differences in alpha and beta ERD according to
the artifact rejection method applied, and a summary of the statistic
comparisons performed. For the movements of the healthy hand (Fig. 3,
left panel), we first analyzed the ERD of the contralateral (i.e., con-
tralesional; C4 electrode) hemisphere. There was a significant effect of
the artifact rejection method on alpha ERD magnitude (χ2(3)= 11.48;
p= .009), with a significant difference in the post-hoc comparisons
between no artifact rejection and EMG+EEG rejection (p= .048); as
well as an effect on the beta ERD magnitude (χ2(3)= 19.06;
p= .0003), with significant differences in the post-hoc comparisons
between no artifact rejection and EMG+EEG rejection (p= .029) and
between EMG rejection and EMG+EEG rejection (p= .004). For the
ipsilateral hemisphere to the moved healthy hand (i.e., ipsilesional; C3

electrode), the effect on alpha ERD was not significant (χ2(3)= 7.80;
p= .0503), although it was for beta ERD (χ2(3)= 7.95; p= .047), with
significant differences in the post-hoc comparisons between EMG re-
jection and EEG rejection (p= .003) and between EMG rejection and
EMG+EEG rejection (p= .014).

For the attempts of movement of the paretic hand (Fig. 3, right
panel), we followed the same procedure. In the contralateral (i.e., ip-
silesional; C3 electrode) hemisphere, there was a significant effect of
the artifact rejection method on alpha ERD magnitude (χ2(3)= 14.52;
p= .002), with a significant difference in the post-hoc comparisons
between no artifact rejection and EMG+EEG rejection (p= .0007)
and between EMG rejection and EMG+EEG rejection (p= .007); si-
milarly, there was a significant effect on the beta ERD magnitude
(χ2(3)= 11.92; p= .008), with significant differences between no ar-
tifact rejection and EEG rejection (p= .028), between EMG rejection
and EEG rejection (p= .004), and between EMG rejection and
EMG+EEG rejection (p= .0009). For the ipsilateral hemisphere (i.e.,
contralesional; C4 electrode), the effect on alpha ERD was not sig-
nificant (χ2(3)= 5.00; p= .17), despite the mean differences were
higher than for the contralateral hemisphere (compare upper-left and
-right plots of the right panel in Fig. 3); whilst for the beta ERD it was
significant (χ2(3)= 8.60; p= .035), although none of the post-hoc
comparisons were significant after correction.

3.1.2. Influence of each component of the EEG artifact rejection
We also studied the influence of each of the three components of the

EEG artifact rejection procedure on the ERD: i.e., EOG removal, motion
artifact rejection (based on low frequencies—LowFreq), and muscle
artifact rejection (based on high frequencies—HighFreq); and com-
pared them with the combination of the three of them (i.e., EEG re-
jection). In Fig. 4, we show the alpha and beta ERD elicited by the
movement of the healthy hand and the movement attempt of the paretic
hand in the contralateral hemisphere. For simplicity, the statistical re-
sults reported below correspond to the contralateral hemisphere to the
involved limb. The results of the ipsilateral hemisphere are summarized
in Supplementary Fig. 2.

For the healthy hand (Fig. 4, left panel), there were no differences
between the four compared methods on alpha ERD (χ2(3)= 7.36;
p= .061), but there were significant differences on beta ERD
(χ2(3)= 10.09; p= .018), with significant differences between EEG
rejection and EOG removal (p= .046), and between EOG removal and
HighFreq rejection (p= .017). For the paretic hand (Fig. 4, right panel),
there were significant differences both on alpha ERD (χ2(3)= 9.80;
p= .020), with significant differences between EEG rejection and EOG
removal (p= .043), and between EOG removal and HighFreq rejection
(p= .004); as well as on beta ERD (χ2(3)= 14.16; p= .003), with
significant differences between EEG rejection and EOG removal
(p= .018), between EEG rejection and LowFreq rejection (p= .005),
between EOG removal and HighFreq rejection (p= .032), and between
LowFreq rejection and HighFreq rejection (p= .047).

3.2. Movement detection

3.2.1. Effects of artifact rejection
Fig. 5 shows the average results for the detection of movement ex-

ecution and attempt based on the linear classifier (LDA) combining
alpha and beta features extracted over the contralateral motor cortex.
The figure displays the performance of the classifiers, indicating the
percentage of outputs that are classified as movement (or movement
attempt) on each time instant (i.e., this value should be low in the rest
periods and high in the movement periods). We considered this con-
figuration of classifier and feature extraction procedure as the reference
for posterior comparisons. For the healthy hand (Fig. 5-left), there were
no significant differences in accuracy between the four methods to
process the artifacts (χ2(3)= 1.71; p= .63). For the paretic hand
(Fig. 5-right), the different artifact rejection methods led to significantly
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different accuracies (χ2(3)= 9.98; p= .019). Post-hoc comparisons
revealed that training the BMI without rejecting artifacts provided
significantly higher decoding accuracies than rejecting artifacts based
on EEG (p= .022) or based on EMG+EEG (p= .044).

When using a non-linear SVM classifier, the results were very si-
milar to the ones observed with the linear classifier (see Supplementary
Fig. 3). Paired comparisons between the four artifact processing
methods for LDA and SVM were conducted (separately for each hand),
showing no significant differences between the two classifiers in any
case (p > .05). Therefore, all the subsequent analyses are based on an
LDA-based classifier, since it is a simpler approach than the non-linear
SVM.

3.2.2. Importance of the number and type of trials rejected
Discarding trials with artifacts from the training dataset led to

average decreases in accuracy. One could think that this is due to the
reduction of the number of observations used for training the classifier,
and not to the fact that only the contaminated trials were rejected. To
avoid this possible bias, we conducted two analyses.

Firstly, we measured if there is a significant correlation between the
percentage of trials discarded by the different artifact rejection methods
and the performance of the classifier. We used Spearman correlation
with the data of all the subjects and artifact rejection methods and
found no significant correlation neither for the healthy hand
(r=−0.11; p= .25) nor for the paretic hand (r=−0.15; p= .20).

Secondly, we repeated the classification procedure but randomly
eliminating from the training dataset the same number of trials that
were rejected by the most restrictive method (i.e., based on
EMG+EEG). This process was repeated 10 times for each fold of each
patient. Fig. 6 shows the average results for this procedure with the
reduced training dataset, compared with the training datasets without
artifact rejection and with EMG+EEG artifact rejection (as displayed
in Fig. 5). As for the analysis presented in the previous section, no

significant differences in performance were found between the three
procedures for the healthy hand (χ2(2)= 2.20; p= .33). For the paretic
hand, the rejection method had a significant effect on decoding accu-
racy (χ2(2)= 8.11; p= .017). Post-hoc comparisons showed that the
EMG+EEG artifact rejection led to significantly lower performances
than if no trials were rejected (p= .017), or if random trials were re-
jected from the training data (p= .0015); while not rejecting or re-
jecting random trials from the training dataset led to not significantly
different results (p > .05).

3.2.3. Effects in the different frequency bands
When the linear classifier was trained with features of the alpha

band only, the artifact rejection method had no significant influence on
performance either for the healthy (χ2(3)= 4.69; p= .20) or for the
paretic hand (χ2(3)= 6.25; p= .10). Similarly, for the classifier trained
with the beta band only, no differences between artifact rejection
methods in the healthy (χ2(3)= 2.11; p= .55) nor the paretic hand
(χ2(3)= 0.66; p= .88) were found.

To measure possible interactions between these features and the
artifact rejection method, we fitted a linear model, considering accu-
racy as dependent variable, and artifact rejection method (4 levels) and
type of features (3 levels: alpha+beta, alpha, and beta) as factors. For
the healthy hand, the type of features was a significant factor
(F2,11= 3.84, p= .022), with alpha+beta configuration providing
significantly higher accuracies than alpha only (p= .048) and beta only
(p= .039). For the paretic hand, again the type of features was a sig-
nificant factor (F2,11= 21.15, p=2.1× 10−9), with alpha+beta con-
figuration providing significantly higher accuracies than alpha only
(p= .046) and beta only (p=1.83×10−9), and alpha being also sig-
nificantly higher than beta (p=3.40×10−5). Fig. 7 displays the per-
formances of alpha, beta, and alpha+beta configurations for each of
the four artifact processing methods when using the BMI for the healthy
or paretic hand.

Fig. 3. Temporal evolvement of ERS/ERD in alpha (i.e., [7–13] Hz) and beta (i.e., [14–30] Hz) frequencies for the four artifact processing methods. Notice that the
lateralized cortical positions of patients with the stroke in the right hemisphere are swapped, simulating that all the patients have the stroke in the left hemisphere.
The percentage of ERS/ERD is calculated with respect to the resting baseline [−2.5, −1] s. The left panel corresponds to the movements of the healthy (left) hand,
while the right panel corresponds to the attempts of movement of the paretic (right) hand. Within each panel, plots corresponding to the ipsilesional (left column)
and contralesional (right column) hemispheres, and to alpha (upper row) and beta (bottom row) frequencies are included. Each plot shows the average ERD for each
of the four artifact processing methods, indicated by the different colors. The results of the statistical analyses are indicated by the colored squares and horizontal
lines in the shaded panel at the bottom-left of the plots. The presence of the “Signif. Different” panel indicates a significant effect of artifact rejection method on ERD
magnitude (in the interval [0, 4] s), while the horizontal lines between pairs indicate the pairs of methods with significantly different ERD after correction for
multiple comparisons.
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3.2.4. Influence of each EEG artifact rejection component
We also evaluated the effect that each of the three EEG artifact re-

jection components (namely EOG removal, motion artifacts rejection,
and muscle artifacts rejection) had on decoding accuracy. Fig. 8 shows
the results for the healthy and the paretic hand, comparing five

configurations: no artifact rejection, complete EEG artifact rejection (as
reported in the previous results), EOG artifact removal only (EOG),
motion artifact rejection only (based on low frequencies—LowFreq),
muscle artifact rejection only (based on high frequencies—HighFreq).
For the healthy hand, there were no significant differences in accuracy
(χ2(4)= 3.19; p= .52). For the paretic hand, there was a significant
effect on performance due to the EEG artifact rejection method
(χ2(4)= 16.24; p= .003). Post-hoc comparisons revealed significant
differences between no artifact rejection and the complete EEG artifact
rejection (as already reported in 3.1.1; p= .02), between EEG rejection
and EOG removal (p= .0003), between EEG and HighFreq rejection
(p= .004), between EOG removal and LowFreq rejection (p= .01), and
between EOG removal and HighFreq rejection (p= .02).

3.2.5. Effects when using both hemispheres
Providing contingent feedback associated to the activation of the

contralateral (i.e., ipsilesional) hemisphere to the paralyzed limb
during attempts of movement can lead to motor recovery in stroke
patients (Ramos-Murguialday et al., 2013). Combining the activity of
both hemispheres can lead to higher decoding accuracies than using
only the ipsilesional one (López-Larraz et al., 2017b), despite there is no
evidence supporting that this can also facilitate recovery.

We also investigated how the artifact rejection methods influenced
the movement detection based on the activity of both hemispheres
(Fig. 9). For this, both the artifact rejection and the feature extraction
considered the electrodes placed on the left and right hemispheres. In
this case, we found a significant effect of the artifact rejection method
for the healthy hand (χ2(3)= 22.85; p=4.35×10−5), with sig-
nificant differences in performance between no artifact rejection and
EMG+EEG artifact rejection (p= .0007), and between EMG and
EMG+EEG artifact rejection (p= .0015). For the paretic hand, there
were also significant differences in accuracy dependent on the rejection
method (χ2(3)= 33.00; p=3.22× 10−7); paired comparisons showed
significant differences in performance between no artifact rejection and
EEG rejection (p= .0001), no artifact rejection and EMG+EEG re-
jection (p= .0001), EMG rejection and EEG rejection (p= .011), and
EMG rejection and EMG+EEG rejection (p= .0005).

4. Discussion

EEG recordings are a relevant tool to study neural dynamics and to
develop brain-machine interfaces (BMI) for motor rehabilitation of se-
verely paralyzed stroke patients. The present study evidences the im-
portance of appropriate methodologies to remove artifacts in EEG re-
cordings of stroke patients to obtain accurate estimations of the motor
brain activity. Firstly, removing the contaminations improves the

Fig. 4. Temporal evolvement of ERS/ERD in alpha (i.e., [7–13] Hz) and beta
(i.e., [14–30] Hz) frequencies for the EEG artifact rejection, and for each of its
components separately. Notice that the lateralized cortical positions of patients
with the stroke in the right hemisphere are swapped, simulating that all the
patients have the stroke in the left hemisphere. The percentage of ERS/ERD is
calculated with respect to the resting baseline [−2.5, −1] s. The left panel
corresponds to the movements of the healthy (left) hand, while the right panel
corresponds to the attempts of movement of the paretic (right) hand. Within
each panel, the activity of the contralateral hemisphere (i.e., contralesional for
the healthy hand, and ipsilesional for the paretic hand) for alpha (upper row)
and beta (bottom row) frequencies is shown. Each plot shows the average ERD
for each of the four methods, indicated by the different colors and types of line.
The results of the statistical analyses are indicated in the shaded panel at the
bottom-left of the plots. The presence of the “Signif. Different” panel indicates a
significant effect of artifact rejection method on ERD magnitude (in the interval
[0, 4] s), while the horizontal black lines between pairs indicate the pairs of
methods with significantly different ERD after correction for multiple com-
parisons.

Fig. 5. Average performance with a linear classifier
(LDA-based) for the healthy (left) and the paretic
(right) hands with each of the four artifact proces-
sing methods. On each panel, the lines represent the
percentage of classifier outputs identified as move-
ment, averaged for all the patients, and the shades
indicate the standard error of the mean. Notice that
the values before t=0 correspond to false positives,
while the values after t= 0 correspond to true po-
sitives. The shaded gray area indicates the con-
fidence interval of the chance level (alpha=0.01),
computed on the basis of all the test trials, according
to (Müller-Putz et al., 2008). The results of the sta-
tistical analyses are indicated by the colored squares
and horizontal lines in the shaded panel at the
bottom-right of the plots. The presence of the “Signif.
Different” panel indicates a significant effect of ar-
tifact rejection method on the average BMI accuracy,
while the horizontal lines between pairs indicate the

pairs of methods with significantly different accuracy after correction for multiple comparisons.
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quantification of the EEG-cortical activation during motor tasks.
Secondly, when this activity is classified by a BMI to detect movement
(or movement attempt), artifacts can cause an optimistic bias in the
performance. This implies that training a BMI with a dataset not
properly cleaned from artifacts can weaken the link that associates
brain activation and proprioceptive feedback, which is hypothesized to
be key to promote motor recovery (Ramos-Murguialday et al., 2013).

4.1. Methods for identifying and rejecting the artifacts

A large variety of methodologies can be applied to try to minimize
the influence of artifacts on EEG data (Croft and Barry, 2000;
Muthukumaraswamy, 2013; Urigüen and Garcia-Zapirain, 2015). Sev-
eral methods allow removing (i.e., correcting) certain types of artifacts
and reconstructing the EEG signals after cleaning the undesired com-
ponents. These methods are especially useful for removing eye con-
taminations, since they are easy to be characterized, captured and fil-
tered (Urigüen and Garcia-Zapirain, 2015). Among these methods,
linear regression and independent component analysis (ICA) have been
proven as the most efficient ones to remove ocular artifacts (Klados
et al., 2009; Kobler et al., 2017; Schlögl et al., 2007; Urigüen and
Garcia-Zapirain, 2015); although there is certain controversy about
how the use of ICA may introduce additional sources of variance to the
EEG and negatively impact the signals of interest (Pontifex et al., 2016).

However, for muscle and motion artifacts, these techniques may not be
so effective. On the one hand, linear regression and adaptive filtering
require a reference signal (as for instance, the EOG activity), which is
hardly available for body motions and for all the muscles that may
contaminate the EEG (e.g., shoulder, neck and cranial muscles)
(Urigüen and Garcia-Zapirain, 2015). On the other hand, despite ICA
has also been used in offline analyses to clean artifactual components
such as motion and muscle artifacts, it has two limitations that hinder
their direct applicability to BMI-based rehabilitation therapies for pa-
tients with paralysis. Firstly, it is not trivial to decipher what compo-
nents correspond to artifacts, and for this reason they are generally
selected by visual inspection (Pereira et al., 2017; Seeber et al., 2016;
Wagner et al., 2016), which makes it unpractical for a BMI therapy.
Secondly, when patients try to move their paralyzed limb, these types of
artifacts can be highly correlated with the brain activity of interest,
which can reduce the capacity of the algorithm to remove the con-
taminations. For these reasons, statistical methods have been proposed
as a simple way of rejecting outlier values with respect to a threshold on
certain signal descriptors (e.g., amplitude, variance, power in a fre-
quency band, etc.) (López-Larraz et al., 2014; Nolan et al., 2010). This
allows analyzing the EEG signals after removing the influence of motion
and muscle artifacts, among others.

We used automated state-of-the-art methods to minimize the influ-
ence of artifacts. The types of artifacts that we tried to detect and

Fig. 6. Average performance for the healthy (left)
and the paretic (right) hands analyzing the influence
of the number of trials rejected from the training
dataset. On each panel, the lines represent the per-
centage of classifier outputs identified as movement,
averaged for all the patients, and the shades indicate
the standard error of the mean. Notice that the va-
lues before t=0 correspond to false positives, while
the values after t= 0 correspond to true positives.
The shaded gray area indicates the confidence in-
terval of the chance level (alpha=0.01), computed
on the basis of all the test trials, according to
(Müller-Putz et al., 2008). The results of the statis-
tical analyses are indicated in the shaded panel at the
bottom-right of the plots. The presence of the “Signif.
Different” panel indicates a significant effect of the
method on the average BMI accuracy, while the
horizontal lines between pairs indicate the pairs of
methods with significantly different accuracy after

correction for multiple comparisons.
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Fig. 7. Interaction plots studying the effects on de-
coding accuracy of the artifact rejection methods
and the frequency bands used to extract the features
for the BMI classifier. Only the factor “type of fea-
ture” was significant for the linear model. The ver-
tical black bars denote statistical significance be-
tween pairs of types of features after correction for
multiple comparisons. The whiskers on each point
show the standard error of the mean.
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eliminate were: 1) undesired movements (monitoring EMG to avoid
trials with movements during the baseline intervals or involving the
limb that was asked to keep relaxed); 2) eye contaminations; 3) motion
artifacts; and 4) muscle artifacts. Eye contaminations were removed
with a linear regression (Schlögl et al., 2007), while the other three
types of artifacts were identified with a trial-based statistical thresh-
olding and rejected. The rejection based on EMG activity identified the
trials with inappropriate movements, which, if not discarded, might
affect the quantification of the cortical activity (Ramos-Murguialday
et al., 2010). The rejection based on EEG activity, and especially the
one based on high frequencies (i.e., identification of muscle artifacts)
was the one that contributed the most to enhance the estimated cortical
activation, measured as the ERD. Although we cannot guarantee that
the methods we used identified and rejected all the artifacts in the
signals, they are sufficient to investigate if and to what extent the ar-
tifacts influenced the measured brain activity.

It is not trivial to determine what the optimal procedure is to
eliminate artifacts from EEG activity. In environments where external
interferences are introduced, for instance, by closed-loop electric or
magnetic stimulation, ad-hoc studies should be conducted to find the
best strategy that minimizes their influence (Hoffmann et al., 2011;
Insausti-Delgado et al., 2017; Walter et al., 2012). Physiological arti-
facts have different origins, and different procedures are required to
minimize them. For instance, in the context of the present study with
severely paralyzed stroke patients, muscle artifacts were the ones af-
fecting to a higher extent both ERD magnitude and BMI performance.

Therefore, the rejection based on high frequencies of the EEG had the
strongest influence. Rejection based on low frequency EEG and elec-
trooculographic activity had a smaller impact on ERD and BMI per-
formance. This is probably due to the fact that we based our analyses on
alpha and beta frequency bands (i.e., [7–30] Hz), but also because the
patients performed a grasping task, which elicits less eye and head
movements, in contrast to other movements such as reaching or
walking (Ibáñez et al., 2014; López-Larraz et al., 2016; Shiman et al.,
2017; Velu and de Sa, 2013). Therefore, the methodology employed to
remove contaminations from EEG activity should always be carefully
designed according to the aim of the study and the particularities of the
protocol to be conducted.

4.2. Influence on the quantification of cortical activity

We showed that rejecting trials with artifacts helps to capture more
accurately the brain activation during motor execution and motor at-
tempt. The values of the ERD were always higher in absolute value
(since the ERD is measured with negative values (Graimann and
Pfurtscheller, 2006)) using the most restrictive artifact rejection
method (i.e., based on EMG+EEG activity). The rejection of artifacts
revealed a stronger contralesional activation during the attempt of
movement of the hand, which could not be appreciated without re-
moving artifacts (cf. Fig. 2). This contralesional activation is a known
phenomenon that has already been described in fMRI studies (Grefkes
et al., 2008; Rehme et al., 2011; Ward et al., 2003). Proper cleaning of

Fig. 8. Average performance for the healthy (left)
and the paretic (right) hands analyzing the influence
of the different components of the EEG artifact re-
jection. On each panel, the lines represent the per-
centage of classifier outputs identified as movement,
averaged for all the patients, and the shades indicate
the standard error of the mean. Notice that the va-
lues before t=0 correspond to false positives, while
the values after t= 0 correspond to true positives.
The shaded gray area indicates the confidence in-
terval of the chance level (alpha=0.01), computed
on the basis of all the test trials, according to
(Müller-Putz et al., 2008). The results of the statis-
tical analyses are indicated in the shaded panel at the
bottom-right of the plots. The presence of the “Signif.
Different” panel indicates a significant effect of the
method on the average BMI accuracy, while the
horizontal black lines between pairs indicate the
pairs of methods with significantly different accu-
racy after correction for multiple comparisons.

Fig. 9. Average performance for the healthy (left)
and the paretic (right) hands when the BMI was
trained with the activity of both hemishperes. On
each panel, the lines represent the percentage of
classifier outputs identified as movement, averaged
for all the patients, and the shades indicate the
standard error of the mean. Notice that the values
before t=0 correspond to false positives, while the
values after t= 0 correspond to true positives. The
shaded gray area indicates the confidence interval of
the chance level (alpha=0.01), computed on the
basis of all the test trials, according to (Müller-Putz
et al., 2008). The results of the statistical analyses
are indicated in the shaded panel at the bottom-right
of the plots. The presence of the “Signif. Different”
panel indicates a significant effect of the method on
the average BMI accuracy, while the horizontal black
lines between pairs indicate the pairs of methods
with significantly different accuracy after correction

for multiple comparisons.

E. López-Larraz et al. NeuroImage: Clinical 20 (2018) 972–986

982



EEG contaminations is a crucial step for future analyses that aim at
characterizing specific brain activation patterns after stroke. Further
research could be conducted to investigate how EEG activity varies
according to the location of the stroke, revealing which brain structures
contribute most to the magnitude of the ERD, and complementing
previous fMRI studies (Luft et al., 2004).

Although artifacts also influenced the brain activity related to the
movements of the healthy hand, the effect was more evident for the
activity elicited during the movement attempts of the paretic hand. This
probably reflects the fact that the attempts of movement with a paral-
yzed limb require extra efforts that generate more frequent and larger
artifacts (e.g., head and eye movements or contractions of neck and
cranial muscles) and compensatory movements with other body parts.
In general, the beta band was more affected than alpha, presumably due
to its proximity to the spectral bandwidth of muscle activity
(Muthukumaraswamy, 2013). This reveals why the EEG artifact rejec-
tion based on high frequencies contributed the most to cleaning these
artifacts (cf. Fig. 4).

The artifact rejection method based on EMG activity discarded al-
most 40% of the trials of the paretic hand and 30% of the healthy hand.
Interestingly, it never improved the measurements of cortical activity
compared to not rejecting artifacts. This suggests that the undesired
movement components detected by the EMG rejection may not sig-
nificantly influence the estimated brain activity. However, this result
should be interpreted with caution. The fact that the estimations of
cortical activation did not change significantly after our EMG rejection
does not imply that compensatory movements do not affect the activity.
The subjects should always be carefully instructed to avoid compen-
satory activity with other limbs, and their compliance with the task
should be monitored. Furthermore, certain tasks can be more prone to
cause other limbs to move during the unsuccessful attempts; for in-
stance, the task in this study (i.e., grasping) may require less compen-
sation with the trunk or with the healthy arm than a reaching task. If
those contaminated trials are not rejected, their processing can result in
an inaccurate estimation of cortical activation, not corresponding to the
task that is under investigation (Pineda et al., 2000), which can bias the
conclusions or hamper the BMI-based rehabilitation therapy. Still, we
observed that the combination of EMG and EEG rejection led to slightly
higher values of brain activation, although the differences were not
statistically significant (see, for instance, how in the right plots of the
left panel of Fig. 3, the black line is always more negative than the blue
line during the movement period; or how in Fig. 2, the fourth row
displays a stronger activation than the third row). For these reasons, we
would recommend researchers to carefully analyze their datasets and
identify possible contaminations that may be cleaned by the proposed
EMG rejection: i.e., discarding those trials with muscular activation
during the rest intervals, or activation of the other limbs.

4.3. Implications for brain machine interfaces

The differences that we observed in the brain activity with the ar-
tifact rejection methods also translated into differences in BMI classi-
fication accuracy. We already demonstrated in a previous study that
eliminating EOG, motion and muscle artifacts decreased, in general, the
BMI performance (López-Larraz et al., 2017a). We confirmed those
results and observed that additionally rejecting the trials with un-
desired movements (based on the EMG activity) did not change sig-
nificantly the performance of the BMI classifier trained with the elec-
trodes of the contralateral hemisphere only. Interestingly, when the
BMI classifier relied on cortical information from both hemispheres, the
differences between artifact rejection methods were larger, especially
for the paretic limb. This is likely due to the higher degree of con-
tamination that we found in the ipsilateral hemisphere during the at-
tempts of movement. In addition, it has important implications for BMIs
using the contralesional activity to detect movement attempts of stroke
patients (Ang et al., 2015; Antelis et al., 2017; López-Larraz et al.,

2018a, 2017b; Ono et al., 2014; Tangwiriyasakul et al., 2014a), since
the training data should be more carefully cleaned to avoid biasing the
classifier with artifacts.

We did not find any evidence supporting that linear or non-linear
classifiers are more prone to being contaminated with artifacts, and
very similar performances were obtained when using LDA- or SVM-
based classifiers. This result supports the idea that in this type of BMI
for movement detection, the features and processing of the data have a
stronger influence than the classifier itself (Bashashati et al., 2015). In
fact, we could observe that combining features based on alpha and beta
frequencies to train the BMI classifier had a significantly positive im-
pact on performance.

4.4. Implications for clinical practice

Brain machine interfaces have demonstrated their efficacy for re-
habilitation after paralysis (Ang et al., 2015; Biasiucci et al., 2018;
Donati et al., 2016; Ono et al., 2014; Pichiorri et al., 2015; Ramos-
Murguialday et al., 2013; Trincado-Alonso et al., 2018). However, this
technology is still in a preliminary stage, and there is a great margin for
investigation and improvement before it becomes one standard tool in
the portfolio of clinical treatments for motor rehabilitation (Asín Prieto
et al., 2014; López-Larraz et al., 2018b). The results presented in this
study demonstrate, on the one hand, that rejecting trials with artifacts
from the EEG datasets helps to better quantify the brain activity of
stroke patients during motor tasks; and on the other hand, that after
rejecting the artifacts from the training datasets, the obtained BMI
performances are lower. However, it detects significantly better the
brain activity related to the motor task, guaranteeing a better link be-
tween brain and muscles, shown to be key for motor rehabilitation
(Ramos-Murguialday et al., 2013). Therefore, for an actual BMI inter-
vention, we would recommend cleaning the training datasets with all
the available information; meaning that EEG rejection should necessa-
rily be conducted, while EMG rejection could be included or not de-
pending on the protocol and the availability of EMG signals.

We have shown in a previous study that drops in performance of
EEG-based movement intention detection might be due to the presence
of artifacts in the test data (López-Larraz et al., 2017a). This suggests
that when artifacts are removed from the training dataset, the classifier
does not learn those patterns, and therefore avoids their possible bias in
the BMI control, since it is not able to recognize them as relevant in-
formation. The important question that arises is: What is the influence
that this drop in performance has in rehabilitation? To date, we can
only speculate that it is not the general BMI performance (as measured
in this or in previous papers) the responsible for the success of the
therapy. More specifically, we conjecture that it is the accurate and
contingent link between the activation of the neuronal populations in
the motor network and the peripheral feedback in the paralyzed limbs
what supports recovery (Jackson and Zimmermann, 2012). As shown in
this paper, artifact rejection is an efficient way to improve the char-
acterization of the brain activity responsible for motor commands.
Therefore, it should be able to improve the contingent association be-
tween brain and muscles and intensify the neuroplastic and re-
habilitative effects of BMI-based therapies.

4.5. Limitations and perspectives

In this study, we focused on quantifying the brain activation by
means of the event-related desynchronization/synchronization (ERD/
ERS) of the alpha and beta rhythms. These EEG correlates of movement
are the most widely used in BMI rehabilitative therapies with stroke or
SCI patients (Ang et al., 2015; Biasiucci et al., 2018; Donati et al., 2016;
Ono et al., 2014; Pichiorri et al., 2015; Ramos-Murguialday et al.,
2013). Other correlates, such as the movement-related cortical poten-
tials (MRCP) have also been proposed for rehabilitative BMI systems,
due to its good temporal precision (Mrachacz-Kersting et al., 2012;
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Mrachacz-Kersting et al., 2016), that can facilitate Hebbian plasticity,
and their capacity to encode information about different movements
(Schwarz et al., 2018). However, MRCPs require asynchronous para-
digms (i.e., no visual/auditory cues are used to guide the patients),
since the use of cues reduces their amplitude (Savić et al., 2014), and
they are more easily contaminated by motion artifacts (Castermans
et al., 2014). Consequently, further research should evaluate the re-
sponse of BMIs relying on these correlates in the presence of artifacts.

Despite we conducted the simulations of the BMI in a pseudo-online
fashion, it was still an offline analysis that does not allow capturing the
possible artifacts or influences that can appear during a real-time use of
this type of systems. Our results help understanding how to process the
EEG datasets before calibrating a BMI for being used in closed-loop
rehabilitation. However, during the closed-loop operation, artifacts also
occur. Some of them, such as the EOG contaminations, can be effec-
tively filtered in real-time, while for other types of artifacts, auto-
matized procedures for removal are not sufficiently precise. Our ap-
proach assumed that having a clean training dataset is enough to
appropriately model the activity that we want to detect, so that in real-
time, muscle and motion artifacts do not bias the BMI performance.
However, notice that it may also be possible to implement an online
system that detects the artifacts, based on the same procedures we
presented here, and completely stops the feedback when contamina-
tions are detected. For instance, a real-time detector of compensatory
movements with other limbs may stop the movement of the re-
habilitative device in a BMI therapy when the patient activates muscles
that should remain relaxed (Wright et al., 2014).

The BMI design that we used was rather simple in terms of the
feature extraction and the classification algorithms. We estimated the
spectral power of the alpha and beta frequencies with an auto-re-
gressive model and used a linear discriminant analysis as a classifier.
There are several studies investigating how to optimize the feature
processing and the classification algorithms (Bashashati et al., 2007,
2015; Brunner et al., 2011; López-Larraz et al., 2018a; Lotte et al.,
2007), and therefore, our approach may not be the best available
method in terms of classification accuracy. Our motivation for using
this design was based on our previous work (Ramos-Murguialday et al.,
2013), which proved the BMI rehabilitation efficacy (coupled with
physiotherapy) of the contingent association between ipsilesional ac-
tivity and peripheral feedback during movement attempts in stroke
patients. We hypothesize that more advanced BMI methodologies (e.g.,
common-spatial patterns (Blankertz et al., 2008; Sannelli et al., 2016))
may lead to higher global performances, but still would be sensitive to
the presence of artifacts in the training datasets, and this might result in
a poorer rehabilitation efficacy. However, further research should be
conducted to verify the response of other BMI designs with the presence
or absence of artifacts in the data.
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