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Abstract

Cardiomyopathies have been linked to changes in structural proteins, including intermediate 

filament (IF) proteins located in the cytoskeleton. IFs associate with the contractile machinery 

and costameres of striated muscle and with intercalated disks in the heart. Synemin is a large IF 

protein that mediates the association of desmin with Z-disks and stabilizes intercalated disks. It 

also acts as an A-kinase anchoring protein (AKAP). In murine skeletal muscle, the absence of 

synemin causes a mild myopathy. Here, we report that the genetic silencing of synemin in mice 

(synm −/−) causes left ventricular systolic dysfunction at 3 months and 12–16 months of age, 

and left ventricular hypertrophy and dilatation at 12–16 months of age. Isolated cardiomyocytes 

showed alterations in calcium handling that indicate defects intrinsic to the heart. Although 

contractile and costameric proteins remained unchanged in the old synm −/− hearts, we identified 

alterations in several signaling proteins (PKA-RII, ERK and p70S6K) critical to cardiomyocyte 

function. Our data suggest that synemin plays an important regulatory role in the heart and that the 

consequences of its absence are profound.
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1. Introduction

Heart diseases are the leading cause of death globally, affecting 1 in every 3 deaths [1,2]. 

Cardiomyopathy (CM) represents a collection of diverse abnormal conditions of the heart 

muscle having as a common denominator the reduced ability of the heart to pump blood. 

Dilated and hypertrophic myopathies are the most common forms of CM.

Dilated cardiomyopathy (DCM) is characterized by enlargement of the ventricles, thinning 

of the ventricular wall, non-specific histological features, increased diastolic and systolic 

volumes and a low ejection fraction [3,4]. Fifteen genes related to DCM are associate with 

defects in sarcomeric, sarcolemmal and cytoskeletal proteins, such as dystrophin, desmin, 

titin and myosin [4,5].

Hypertrophic cardiomyopathy (HCM) is characterized by heart remodeling, increased heart 

mass and abnormal diastolic function that result in heart failure and premature death [3,6]. 

Genes related to HCM typically encode contractile proteins which play important roles in 

force generation [7–9].

All 3 major elements of the cytoskeleton – intermediate filaments (IFs), microfilaments, 

and microtubules — play important roles in striated muscle, with the IFs being the most 

resistant to strain and thus most likely to play a key role in stabilizing the myoplasm during 

contraction and relaxation. IFs also influence cell shape and motility, anchor cell structural 

components, support nuclear architecture, and modulate the propagation of signals within 

cells [10–13]. The major IF proteins of mature striated muscle are the nuclear lamins, 

desmin, several keratin subunits, including K8, K18 and K19, and synemin [14–16]. Here 

we focus on synemin and its role in the heart.

Synemin is a large IF protein that can be expressed in one of two isoforms, α (~210 

kDa), and β (~180 kDa) [17,18]. Unlike desmin, and keratins 8 and 18, and 8 and 19, 

synemin is incapable of forming stable IFs on its own and thus requires other IF proteins 

to form heterofilaments [19]. In neonatal cardiomyocytes, α-synemin stabilizes junctional 

complexes at the sarcolemma, whereas β-synemin appears to mediate the association of 

desmin with Z-disks [20]. In addition to desmin, synemin can associate with vimentin in 

developing heart muscle [19,21]. Synemin is also an A-kinase anchoring protein (AKAP) 

involved in regulating the phosphorylation of proteins at the sarcolemma and Z-disks via 

protein kinase A [22,23]. In its role as an AKAP, synemin may regulate the activities of key 

signaling cascades in the heart, such as those controlled by Akt, PKA RII, and MAPKs such 

as ERK 1/2 [23,24].

We have studied mice lacking synemin to determine the consequences of its absence on 

the structure and function of mature cardiac muscle. Our findings suggest that, although 
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the organization of the myoplasm is not altered in the absence of synemin, cardiac muscle 

lacking synemin shows a mixed hypertrophic and dilated cardiomyopathic phenotype, with 

features of left ventricular (LV) systolic dysfunction as early as 3 months old, and LV 

hypertrophy and dilatation at older ages (12–16 mo old). Year-old synemin-null mice also 

show an increase of ~30% in the total body weight. Defects linked to the absence of synemin 

are endogenous to cardiomyocytes, as both Ca2+ transients and contractile shortening are 

altered in cells isolated from the synemin-null heart, compared to controls. The absence 

of synemin also alters the levels of several proteins in signaling pathways that have been 

associated with cardiomyopathy. Our results suggest that synemin is essential for cardiac 

health.

2. Materials and methods

2.1. Animals

Synemin-null (synm −/−) animals were generated by inserting cDNA encoding β

galactosidase into the synemin gene by homologous recombination and have been described 

elsewhere [25]. We used synm −/− mice at young (3 mo) and old ages (12–16 mo) and 

age-matched male C57Bl/6 controls (WT) for all studies reported here. Animals subjected 

to closed chest catheterization were anesthetized with 2.5% isoflurane inhalation (VetEquip, 

Pleasanton, CA) with oxygen at 0.8 l/min at 14.7 Psi (21 °C) and then euthanized by cervical 

dislocation. All of our protocols were approved by the Institutional Animal Care Committee 

of the University of Maryland School of Medicine.

2.2. Echocardiography

Transthoracic M-mode echocardiography using high-resolution ultrasound biomicroscopy 

was performed using the Vevo 2100 imaging system (Fiji-VisualSonics, Toronto, ON, 

Canada) equipped with a 40-MHz scanhead. Images of the LV in the parasternal short-axis 

view were obtained at the level of the papillary muscles under light anesthesia (inhalation of 

1.2–1.5% isoflurane in oxygen). A core temperature of 37.5 °C was maintained during the 

measurement via a thermoregulated platform (THM 150, Indus Instruments, Houston, TX). 

Data were calculated according to generally accepted formulae, as we have used previously 

[26].

2.3. Left ventricular pressure-volume (PV) loop analysis

Under 2–2.5% of isoflurane inhalation, animals were orally intubated and ventilated via a 

rodent ventilator (Model 683, Harvard Instruments, Holliston, MA), at a tidal volume of 

10–12 ml/kg BW with a ventilatory rate of 60–100 breaths/min. The right carotid artery 

was cannulated with a conductance catheter (1.2 French, Transonic-Science, London, ON, 

Canada), and its tip was positioned into the LV. A P10 silicone tube was cannulated into 

the left jugular vein for administration of 0.9% sodium chloride (0.1 ml/g BW/h). Midline 

laparotomy was performed, and the inferior vena cava (IVC) was visualized at the level 

of the origin of the right renal vein after the abdominal tissues were gently retracted with 

37 °C wet (0.9% sodium chloride) gauze. A 4–0 silk suture was placed around the IVC 

and exteriorized through the abdominal wound. The wound was covered with the warm wet 

gauze. After 10–15 min stabilization under 1.5% isoflurane, the loop data were recorded via 
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the ADVantage System (ADV500, Transonic-Science), prior to and during temporary IVC 

occlusion created by pulling of the IVC suture for approximately 10 s. The IVC occlusion 

was repeated 3 times at intervals of at least 5 min. Following PV loop recordings, the 

catheter tip was repositioned to the aorta for blood pressure (BP) recordings. The data were 

analyzed offline with LabChart Pro (Version 8.1.5, ADInstruments, Sydney, Australia). All 

the indices were defined according to generally accepted formulae [27].

2.4. Contractile and calcium measurements

Ventricular myocytes were enzymatically isolated from WT and synm −/− mice as 

previously described [28]. Myocytes were maintained in Tyrode's solution (in mM: 140 

NaCl, 5.4 KCl, 0.5 MgCl2, 0.33 NaH2PO4, 11 glucose, 5 HEPES, and 1.8 CaCl2, pH 

7.4), at room temperature and used for experiments up to 4 h after dissociation. Prior to 

experiments, myocytes were loaded with 5 µM Indo-1 AM (TEFLABS Inc., Austin, TX) 

for 30 min at room temperature. Myocytes were then washed to remove extracellular dye 

and left for 30 min for de-esterification. Afterwards, myocytes were placed in a custom 

imaging chamber on an inverted microscope equipped with a dual PMT fluorescence system 

(Ionoptix), Sutter DG-4 excitation source, and a high-speed sarcomere length camera system 

(Aurora), all controlled by Fluorotrack software (Aurora, ON, Canada). Unloaded myocytes 

were paced at 1 Hz (2 ms, square pulses, 40 V) to elicit contractions while simultaneous 

measures of sarcomere length (SL) and Indo-1 fluorescent transients were collected.

2.5. Hematoxylin and eosin staining

Frozen cross sections, 5–8 µm thick, were fixed with cold acetone, air dried, immersed 

in Harris hematoxylin (Sigma-Aldrich, St. Louis, MO) for 5 min, then in Scotts Bluing 

reagent (ThermoFisher Scientific) for 1 min, followed by 10 rapid dips in Wright Eosin 

staining, with rinsing steps of tap water between solution changes, and finally through a 

gradient of increasing concentrations of ethanol, as previously described [25]. Coverslips 

were mounted with Permount (ThermoFisher Scientific). The sections were observed under 

light microscopy (Zeiss Axioscope, × 20 objective and × 2 eyepiece), and representative 

digital images were captured.

2.6. Masson trichrome staining

Frozen cross sections of 5–8 µm were fixed with cold acetone, air dried, immersed in 

Bouin's solution for 20 min at 56 °C, then in Weigert's Iron Hematoxylin for 7 min. 

Additional staining was with Biebrich Scarlet-Acid Fuchsin for 6 min, phosphotungstic/

phosphomolybdic acid for 3 min, and then with Aniline Blue for 2 min. All solutions were 

from Sigma-Aldrich and each was followed by rinsing in tap water. Samples were then 

exposed to 1% acetic acid for 1 min, put through a gradient of increasing concentrations 

of ethanol, and finally washed with xylene. Coverslips were mounted in Permount and 

visualized by light microscopy, as above.

2.7. Immunofluorescence labeling

Frozen heart muscles were cryosectioned in 5–8 µm slices, fixed with cold 4% 

paraformaldehyde for 5 min, washed with PBS, permeabilized with Triton X-100 in 
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PBS (1% w/v) for 15 min, washed with PBS and incubated overnight in Superblock 

(ThermoFisher Scientific) before incubation with antibodies. Chicken antibodies were 

against βI-spectrin (1:100) [29]; rabbit antibodies were to synemin (1:20) [25] and cardiac 

myosin (1:00, Abcam, Cambridge, MA), dystrophin and desmin (1:100, ThermoFisher 

Scientific, Waltham, MA); mouse antibodies were to obscurin (1:50) [30], and alpha

actinin (1:200; Sigma-Aldrich). Fluorescent phalloidin (1:200) was from Molecular Probes 

(Eugene, OR). Species-specific secondary antibodies coupled to Alexa Fluor 488 or Alexa 

Fluor 568 were from Molecular Probes/ThermoFisher Scientific. Samples were observed 

under confocal optics (LSM 510 Carl Zeiss, Oberkochen, Germany) with a × 40/NA 1.4 

objective with the pinhole set from 85 to 100 and the Airy unit < 1. The relative size 

of cardiomyocytes was determined measuring the minimal Feret's diameter [25,31] with a 

digital caliper, from nine randomly selected visual fields per heart, from images of frozen 

cross sections labeled with antibodies to dystrophin. Three hearts per group were analyzed.

2.8. Western blotting

Hearts from synm-null and control mice were dissected, followed by a slow freezing 

process, consisting of immersion in isopentane at −160 °C, then in liquid N2; samples 

were stored at −80 °C. Muscles were homogenized in cold lysis buffer using a TissueLyser 

(Qiagen, Germany). Lysis buffer consisted of Mammalian Protein Extraction Reagent 

(Pierce, Rockford, IL), 300 mM NaCl, 40 mM EDTA, 10 mM PBS, and 10 µg/ml 

protease inhibitor cocktail (Sigma-Aldrich). Lysates were subjected to centrifugation. 

The supernatant was boiled in SDS-PAGE sample buffer for 5 min and separated by 

SDS-PAGE on 4–15% gradient acrylamide gels (Bio-Rad, Hercules, CA). Proteins were 

electrophoretically transferred at 4 °C to a nitrocellulose membrane (Invitrogen, Carlsbad, 

CA) at 15 V overnight. The membrane was incubated with “blocking buffer” (0.1% 

Tween-20, 5% BSA in Tris-buffered saline (TBS) pH 7.4), then incubated with primary 

antibodies in the same buffer overnight, washed with TBS plus 0.1% Tween-20 and 

incubated on secondary antibodies diluted in blocking buffer for 1 h. After a 30 min wash, 

bands were visualized by chemiluminescence (Super Signal Chemiluminiscent Substrate; 

ThermoFisher Scientific).

We used rabbit antibodies to study signaling proteins in the extracts: to PKA-RII (1:1000) 

and to the phosphopeptide containing phospho-Ser 96 of PKA-RII (1:100, Millipore, 

Billerica, MA); to AKT and the peptide containing phospho-Ser 473 of AKT (both 

at 1:10,000; Cell Signaling Technology, Danvers, MA); to ERK1/2 and the peptide 

containing phospho-Thr 202 and phospho-Tyr 204 of ERK1/2 (both at 1:1000, Cell 

Signaling Technology); to 70S6K and the peptide containing phosphoThr 38 of 70S6K 

(both at 1:1000, Cell Signaling Technology); and to CREB and the peptide containing 

phospho-Ser 133 of CREB (both at 1:250, Upstate Biotechnology, Lake Placid, NY). Rabbit 

antibodies to desmin (1:10,000, ThermoFisher Scientific); and mouse antibodies to GAPDH 

(1:20,000, Ambion, Austin, TX) were used as loading controls. Horseradish peroxidase 

(HRP)-conjugated anti-rabbit IgG or anti-mouse IgG (1:10,000, KPL, Gaithersburg, MD) 

was used to visualize all bound antibodies. The blots were quantified with Image J software 

(NIH, Bethesda, MD). Results are presented as a ratio of the labeling of the antibodies 
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to each phosphopeptide compared to the total labeling of each protein, and normalized to 

GAPDH.

2.9. Statistics

All values are reported as mean ± SD with P < 0.05 considered statistically significant. 

Statistical significance was accessed with the paired Student's t-test, 1-way ANOVA for 

experiments done at the same age and the unpaired t-test and 2-way ANOVA with a Tukey 

post-hoc analysis for studies of the same genotype. For comparison of fiber diameters, we 

used Fisher's exact test χ2, 2-determinants.

3. Results

We studied the hearts of synm −/− mice in vivo and cardiomyocytes in vitro to assess the 

role of synemin in the structure and function of cardiac muscle in mice at young and older 

ages.

3.1. Echocardiographic data

We used echocardiography as a non-invasive method to evaluate changes of LV geometry 

and function in WT and synm −/− mice at young and older ages. The old (12 months) 

synm −/− hearts had greater LVDs (Fig. 1A, p < 0.05), which is likely consequent to 

reduced contractility, because LVDd (Fig. 1B) was not significantly different between the 

two groups. The young (3 months) synm-null hearts had significantly lower LVFS (Fig. 

1C p < 0.05) and LVEF (Fig.1D, p < 0.05), both indices associated with decreased LV 

contractility compared to young WT mice. The young synm −/− showed a significantly 

lower LV posterior wall thickness (LVPWs and LVPWd, Table A.1, p < 0.05 for both); 

calculated LV mass was not significantly different from the controls of the same age, 

however (Fig. 2E). Compared to the old WT mice, the old synm −/− also had significantly 

lower LVFS and LVEF (Fig. 1C, D, p < 0.05 both) and greater LVDs (Fig. 1A, p < 0.05). 

Unlike the young synm −/− mice, the old synm-null mice also demonstrated a greater LVDd 

compared to the old WT (Fig. 1B, p < 0.05), indicating LV dilation, and greater LV mass 

(Fig. 1E, p < 0.05), which suggests LV myocardial hypertrophy.

The hearts of old synm −/− mice showed a significantly greater LVDs, LVDd, LVFS, LVEF, 

LV mass (Fig. 1A–E, p < 0.05 for all) and heart rate (Table A.1, p < 0.05) compared to 

young synm −/−. Comparing the young and old WT, the latter had a significantly greater 

LVDd, LVFS, LVEF (Fig. 1B–D, p < 0.05), but lower LV mass (Fig. 1E, p < 0.05) and E/A 

ratio (Table A.1, p < 0.05).

LV M-mode images from one animal of each group is represented in Fig. 1F–I. Relative to 

the two WT mice, LV posterior wall was visually more flattened in the two synm −/− mice, 

which suggests a reduced fractional shortening during cardiac cycles.

In summary, echocardiography suggests that both young and old synm −/− showed reduced 

LV contractility, but only the old synm −/− had LV dilatation and hypertrophy.
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3.2. LV pressure-volume loop analysis

We next performed PV loop analysis to evaluate LV performance, as it is less confounded 

by loading conditions than echocardiography [27,32]. Our results were summarized in Fig. 

2A–J and in Table A.1.

Compared to 3-mo WT, the synm −/− mice at the same age had a significantly higher 

LVEDP (Table A.1, p < 0.05), which indicates increases in LV preload, and significantly 

lower values of those indices associated with LV systolic function, including LVEF (Table 

A.1), +dP/dt, Ees, PRSW, and +dP/dt-EDP (Fig. 2C, D, E, F respectively, p < 0.05). The 

last three indices were obtained under temporary occlusion of the inferior vena cava, which 

is considered as more “loading-independent” and therefore more specific for evaluation 

of LV systolic function (i.e. “contractility”) [27,32]. These results are consistent with our 

echocardiographic findings that LVEF and LVFS were reduced in young synm −/− heart.

The young synm −/− mice showed no significant changes in any other LV indices compared 

to the young WT, including global (HR, SV, and CO), LV diastolic (Tau, −dP/dt, and 

EDPVR) and vascular indices (MAP and Ea) (See Table A.1).

The old synm −/− mice showed significant increments in LVEDP (Table A.1, p < 0.05), 

and significant decrements in Ees, PRSW, +dP/dt-EDP (Fig. 2 D,E,F, p < 0.05), and LVEF 

(Table A.1) compared to old WT. Unlike the young synm −/−, the old null mice further 

demonstrated significant decreases in those indices associated with LV global performance, 

including SV, CO, and their normalized values by body weight, and SW (Fig. 2A, B, Table 

A.1, p < 0.05). Except for a significant decrease in −dP/dt, the old synm −/− mice showed no 

significant changes in other diastolic functional indices, Tau and EDPVR, nor any changes 

in MBP and Ea, compared to WT of the same age (Table A.1).

Compared to young WT mice, the old WT showed a significantly greater CO, and 

significantly smaller CO/BW, +dP/dt, and Ea (Table A.1, p < 0.05). The old synm −/− 

mice had a significantly lower +dP/dt, PRSW, +dP/dt-MAP, CO, CO/BW, SV/BW, SW, 

LVEF (Fig. 2A–F, Table A.1, p < 0.05) than the young synm −/− mice, suggesting a further 

deterioration of LV systolic function with age.

In summary, PV loop studies indicate that the LV systolic function (i.e., contractility) is 

compromised in synm-null hearts at both ages, and that more extensive deficits in cardiac 

function and global performance are apparent in the old synm-null mice.

3.3. Contractile and calcium measurements

The results obtained from cardiac catheterization and echocardiographic studies suggested 

a decrease in cardiac contractility. To address whether this effect was intrinsic to the 

cardiomyocyte, we examined contractility and Ca2+ signaling in single cardiomyocytes 

isolated from young and old mice that contracted under no-load conditions.

In response to contractions elicited by action potentials under no-load conditions, synm-null 

cardiomyocytes showed a significant decrease in the magnitude of sarcomeric shortening 

compared to WT myocytes (3 mo old: 5.7%* and 7.6%* respectively; 12 mo old: 5.6%* and 
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8.1%*, respectively, *p < 0.05; Fig. 3A, G). They also showed a significant decrease in the 

rate of shortening for both young and old synm −/− cells (Fig. 3B, H, p < 0.05) though not 

in the rate of relaxation (Fig. 3C, I). While alterations in contractility occurred independent 

of any alterations in Ca2+ handling in cardiomyocytes from young null mice, a decrease in 

the Ca2+ transient amplitude was identified in cardiomyocytes from the old synm −/− mice. 

Given the identified deficits in young and old synm-null cardiomyocytes, we conclude that 

the impact of the absence of synemin leads to changes that are at least in part intrinsic to the 

cardiomyocyte.

3.4. Morphology of old synemin–null hearts

Our identification of age-related functional alterations in the synm-null hearts led us to 

examine them for morphologic changes. We identified a significant increase in the mass 

of the old synm-null hearts (31% vs. control, p < 0.05) and observed obvious signs of 

ventricular hypertrophy (Fig. 4A, B), increased body weight (Fig. 4C) and characteristic 

patterns of hypertrophic CM compared to controls (Fig. 4D, E).

We next used histochemical and immunofluorescence methods to examine the morphology 

of the hearts from year-old mice to learn if the absence of synemin affects muscle structure 

at the tissue and cellular levels (see Fig. 5, A–F and I–J). Cross sections of frozen synm −/− 

hearts revealed a modest hypertrophy including a slightly higher number of nuclei (increase 

of 20%; p < 0.05; Fig. 5A and D; quantitated in Fig. 5G), a small increase in fibrosis (Fig. 

5B, E), and modest enlargement of cardiomyocytes, as indicated by an increase in the mean 

minimal Feret's diameter (11%; p < 0.05; Fig. 5C, F) compared to controls (quantitated in 

Fig. 5H).

We confirmed that synemin was absent from the myocytes in synm-null mice by 

immunofluorescence (Fig. 5I, J). Labeling of cross sections of WT heart showed the 

characteristic reticular structure containing synemin that surrounds the myofibrils within the 

interior of each fiber (Fig. 5I, insert). Synemin was also present at the sarcolemma, where 

dystrophin was also concentrated. Synemin within and at the periphery of cardiac myocytes 

was completely absent in cross sections of synm-null heart (Fig. 5J).

We further examined longitudinal cryosections of heart muscles from control (Fig. 6A–D 

and I–K) and synm-null mice (Fig. 6E–H and L–N) to learn if the organization of the 

contractile apparatus and of costameres was altered. The absence of synemin does not alter 

the organization of either sarcolemmal or costameric proteins in heart. The organization of 

M-bands, visualized with antibodies to obscurin, was unaffected in synm −/− myocytes (Fig. 

6A, E). IF structures at the level of Z disks, labeled with anti-desmin and anti-α-actinin, also 

appeared to be unaffected (Fig. 6 B,F and I,L). Additional studies with antibodies to cardiac 

myosin heavy chain (Fig. 6 J,M) and with fluorescein-phalloidin (Fig. 6 K,N), failed to 

show changes in the organization of A bands or I-bands, respectively. Similarly, β-spectrin 

at costameres was not significantly altered by the absence of synemin (Fig. 6 C,G). This is 

in keeping with our observations of sections of heart labeled with anti-dystrophin (Fig. 5 

C,F). These results suggest that synemin is not required for the normal architecture of the 

sarcomeres or costameres in old murine heart muscle (Fig. 6 D,H).
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3.5. Western blot analysis of signaling proteins

We prepared immunoblots of synm −/− and WT heart muscle and probed them with 

antibodies to several signaling proteins and their phosphorylated derivatives that are known 

to be active in the heart (Fig. 7A). The phosphorylated levels of the regulatory subunit 

II of protein kinase A (PKARII (Ser96)) (Fig. 7B) and the phosphorylated form of ERK 

1/2 (Thr202/Tyr204) (Fig. 7C), each decreased relative to unphosphorylated protein in 

synm-null heart compared to WT. By contrast, the phosphorylation of the ribosomal protein, 

70S6K (Thr389) relative to unphosphorylated 70S6K increased in the synm −/− tissue (Fig. 

7D). By contrast, the relative amounts of the phosphorylated forms of AKT and CREB 

did not vary significantly between synm-null and WT hearts (Fig. 7E,F). Desmin protein 

expression levels were also the same (Fig. 7G), consistent with the results shown in Fig. 

6B,F.

4. Discussion

Intermediate filaments (IFs) are associated with the contractile apparatus and the 

sarcolemma in striated muscle and play important roles in resistance to mechanical stress, 

force transduction, targeting of proteins and lipids, and regulation of key signaling pathways 

[10,11,15,33]. Although the major IF protein in mature striated myocytes is desmin, 

synemin and keratins are also abundant in mature muscle tissue [15,24,34]. Unlike desmin 

and the keratins, synemin is a large IF protein that can be expressed in two isoforms, α 
and β, and requires other IF proteins such as desmin to form heterofilaments [19]. We and 

others have previously reported that the absence of synemin in murine skeletal muscle is 

associated with a modest myopathy [25,35]. We also recently showed that the absence of 

synemin causes osteopenia in skeletal tissue [36]. Here we examine the heart, which like 

skeletal muscle and bone is of mesenchymal origin, and demonstrate that the absence of 

synemin in mice elicits some features of a mixed hypertrophic and dilated cardiomyopathy 

associated with significant changes in cardiac function. Our results support the conclusion 

that synemin plays an important role in the heart.

Although our study is the first to show altered cardiac function related to the absence of 

synemin, cardiomyopathies (CM) have previously been linked to other IF proteins. Dilated 

CM, arrhythmogenic right ventricular CM and mixed CM with arrhythmia are associated 

with abnormalities in proteins of the IF superfamily, such as desmin, lamin A and lamin 

C [37–44]. Concentric hypertrophy, cardiac dilation with compromised systolic function 

due to fibrosis, calcification, lateral misalignment of myofibrils, changes in the dimensions 

of individual cardiomyocytes, as well as decreases in active force generation, have been 

reported in desmin-null mice [38,44–46]. Increases in both desmin and vimentin have been 

reported in cardiac biopsies of patients with dilated CM [44]. Vimentin has been proposed to 

be an early diagnostic of myocardial sclerosis, due to its intense appearance in the interstitial 

tissue of diseased ventricular myocardium [47].

It is notable that heart rate during echocardiography was significantly higher in older than 

in younger synm −/− mice. We did not find this difference in our PV loop study, likely 

because of confounding effects of the deeper initial anesthesia, mechanical ventilation and 

thoracotomy. Although further study will be needed to determine the significance of the 
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change in heart rate, it may be linked to sympathetic hyperactivity associated with LV 

dysfunction and aging [48].

There is significant depression in LV in vivo systolic function in both young and old 

synm −/− hearts, documented by echocardiographic indices (LVEF and LVFS) and the 

“loading-independent” indices from PV loop analysis (Ees, PRSW, and +dP/dt-EDP), while 

LV afterload appears normal (no changes in MBP and Ea). Like desmin-null mice, the 

present study suggests that mice lacking synemin show features of both hypertrophic and 

dilated CMs as they reach 1 year of age. Additionally, old mice also show LV hypertrophy, 

indicated by increases in LV mass (echocardiography), cardiomyocyte size, and heart 

weight, as well as LV dilatation that is indicated by increases in LVDd (echocardiography). 

It is interesting that the young synm −/− heart presents marked LV systolic dysfunction 

but lacks LV hypertrophy and dilatation. Further study in neonatal or juvenile mice would 

further determine if the systolic dysfunction observed is truly an age-independent change.

Increments in myocyte size, in left ventricular mass and in diastolic pressure (reduced blood 

supply), a higher number of nuclei and an increase in fiber diameter are characteristic 

of hypertrophic disease. By contrast, an absence of changes in wall thickness, coupled 

with increases in LV diastolic and systolic volumes and systolic pressure, and decreases 

in LV ejection fraction and fractional shortening, together with cardiac remodeling, are 

indicative of dilated CM. Defects in many proteins, including proteins that regulate the 

organization and function of the sarcomere and sarcolemma, like myosin and desmin, have 

been linked to both types of cardiomyopathy. Defects in cellular signaling mechanisms also 

lead to hypertrophic cardiomyopathy [49–53]. As synemin is a structural protein associated 

with both sarcomeres and sarcolemma, and an AKAP that can indirectly regulate the 

phosphorylation state of nearby proteins [21,23,54], it is not surprising that its absence 

can lead to a mixed phenotype.

Although it is only one of 18 different AKAPs in the heart, synemin's AKAP activity 

and its absence in the synm-null heart may be responsible for the changes in the levels 

of signaling molecules reported earlier in skeletal muscle [24] and here in the heart. In 

particular, we find that the relative levels of phosphorylated PKAR II, 70s6K and ERK1/2 

change to small but significant extents in the whole synemin-null heart. Of these, PKARII 

and pERK1/2 are likely to be the most significant. PKA can be activated by a number of 

hormones and growth factors and can lead to physiologically significant changes in cardiac 

function through its ability to phosphorylate phospholamban and several contractile proteins 

[50]. ERK1/2, which can phosphorylate over 100 possible substrates, has also been linked to 

cardiovascular disease [54,55] and is likely to contribute to hypertrophy in the myocardium 

([56–59], but see [60]), consistent with our finding of a change in pERK1/2 levels in the 

myopathic synm −/− heart. Thus, our finding that PKARII and pERK1/2 are altered in 

synm-null hearts provides a possible molecular pathway underlying the cardiomyopathy we 

have characterized.

Our identification of deficits in contractility and Ca2+ signaling in synm-null 

cardiomyocytes (Fig. 3) is consistent with the decreased contractility and impaired ejection 

fraction in the heart. Within the cardiomyocytes, synemin is associated with both costameres 
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(α-synemin) and with the intermediate filament system surrounding the contractile apparatus 

at Z-disks (β-synemin) [20]. While its absence in the heart [61], skeletal tissue [36] 

or skeletal muscle [25] does not result in obvious structural alterations as detected by 

immunolabeling and confocal microscopy, its absence in bone results in the loss of 

trabecular and cortical bone related to defective osteoblast production [36], and measures 

of elastimetry [25] in skeletal muscle suggest that biomechanical deficits arise in synemin's 

absence, driven either by rearrangements of the protein complexes associated with the 

sarcolemma and sarcomere, or by changes in signaling. Based on this new evidence that 

synemin is involved in the function of the cardiomyocyte, our future studies will seek to 

define its biomechanical and regulatory roles in cardiac muscle.

5. Conclusion

Although the mechanisms remain to be discovered, our results show that synemin plays 

a physiologically significant role in cardiac muscle, and its absence leads to changes in 

structure and function associated with cardiomyopathy.
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Abbreviations

+ dP/dt maximal rate of left ventricular pressure rise

−dP/dt maximal rate of left ventricular pressure fall

+ dP/dt-EDP end-diastolic pressure adjusted maximal rate of left 

ventricular pressure rise

AKAP A-kinase anchoring protein

AKT protein kinase B also known as Akt

BP blood pressure

BW body weight

CM cardiomyopathy

CO cardiac output

CREB cAMP response element-binding protein
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DCM dilated cardiomyopathy

E/A the ratio of the early (E) to late (A) filling velocities of the 

left ventricle

ECM extracellular matrix

EDP end-diastolic pressure

EDPVR the slope of the end-diastolic pressure-volume relationship

EF ejection fraction

ERK 1/2 extracellular signal-regulated kinase 1/2

ESP end-systolic pressure

Ea effective arterial elastance

Ees the slope of left ventricular end-systolic pressure-volume 

relationship

FS fractional shortening

HCM hypertrophic cardiomyopathy

HR heart rate

IFs intermediate filaments

IVC inferior vena cava

LV left ventricle or left ventricular

LVDd LV end-diastolic dimension

LVDs LV end-systolic dimension

MAPKs mitogen-activated protein kinases

MBP mean blood pressure

PV Pressure-volume

PKA RII protein kinase A subunit II

PRSW preload recruitable stroke work

Pes pressure end-systolic

SL sarcomere length

SV stroke volume

SW stroke work

synm −/− synemin-null
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Tau isovolumic relaxation time constant

WT wild type mice
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Fig. 1. 
Echocardiographic results in synm-null mice at young and old ages. (A–E) Pooled data 

of left ventricular dimension (LVD) during systole (LVDs) (A), and diastole (LVDd) (B); 

LV Fractional shortening, LVFS (C); LV ejection fraction, LVEF (D); LV mass (E). (F–I) 

Representative M-mode images for WT and synm- null mice. n =15 at 3 mo old, and n = 7 

for 12 mo old; *p < 0.05, compared to WT at the same age; †p < 0.05 compared to the 3-mo 

mice of the same genotype.
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Fig. 2. 
Analysis of PV loop studies. Pooled data are shown as stroke volume by body weight 

(SV/BW) (A); cardiac output by body weight (CO/BW) (B); maximal rate of left ventricular 

pressure rise (+dP/dt) (C); chamber stiffness (Ees) (D); preload-recruitable stroke work 

(PRSW) (E); maximum derivative of change in systolic pressure in time related to the end 

diastolic pressure (+dPdtmax-EDP) (F). Representative diagrams of LV pressure volume 

loop analysis from young WT (G), young synm −/−(H), old WT (I), and old synm −/−

(J). Note that the two WT have the steeper slopes of the end-systolic PV relationship 

(Ees) relative to synm −/−, depicted as the straight line on the upper part of the loops, 

which indicates a greater LV contractility. The slopes of the end-diastolic PV relationship 

(EDPVR), depicted as an exponential curve on the bottom of the loops, were similar among 

the four animals. N=13 and 7 for young and old mice respectively. *p < 0.05, compared to 

WT of the same age; †p < 0.05, compared to the 3-mo mice with same genotype.
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Fig. 3. 
Contractility and Ca2+ transients in ventricular myocytes of WT and synm −/−mice at 3 

and 12 mo of age. Synm −/−myocytes (n =23 and 22 cells for 3 and 12 mo old mice, 

respectively) showed reduced sarcomere shortening with a slightly faster contraction phase 

but with no changes in relaxation kinetics compared to WT cells (A–C and G–I) (n = 25 and 

27 cells for 3 and 12 mo old mice, respectively; *p < 0.05). Synm −/−ventricular myocytes 

showed a decrease in the amplitude of the Ca2+ transient without changes in transient 

kinetics in cells from old but not young mice (D–F and J–L) (*p < 0.05). Representative 

traces of contractility and relaxation (upper traces) and Ca2+ transients (lower traces) in 

cardiomyocytes from young and old WT (black lines) and synm −/−(red lines) mice (M–N). 

(For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.)

García-Pelagio et al. Page 19

J Mol Cell Cardiol. Author manuscript; available in PMC 2018 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Older synm −/− mice show an increase in body weight and heart size compared to controls. 

Intact hearts of 13 month-old synm −/− and WT mice (A). Frozen cross sections of synm 

−/− and WT heart stained with hematoxylin and eosin (2×) (B). Body weight (BW) (C), and 

body and heart weight (HW) normalized to tibia length (TL) (D and E). *p < 0.05, n = 12; 

Scale bar = 1 mm.
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Fig. 5. 
Histological changes in cardiac muscle of synm −/− and WT mice. The images show the 

myoplasm of cardiocytes stained with hematoxylin and eosin in pink and nuclei in blue 

(A,D). Masson trichrome staining revealed small regions of fibrosis (white arrow) in synm 

−/− heart (inset in E) (B,E). Dystrophin labeling is similar in synm −/− and controls, but 

the sizes of myocytes appear larger in the synm-null (C,F). Graphs show a higher number 

of nuclei and enlargement of cardiomyocytes in synm −/− heart (G,H). Specificity of the 

antisynemin antibody in cross sections of WT and synm −/− heart (I,J). *p < 0.05. Scale 

bars: C, F´= 20 µm; I,J= 5 µm. Insets are enlarged 2.5×. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. 
Distribution of sarcolemmal and cytoskeletal proteins in cardiac muscle of synm −/− and 

WT mice (A,N). Frozen longitudinal cryosections of heart from synm-null and WT mice 

were immunolabeled for obscurin (A,E), desmin (B,F), β-spectrin (C,G), α-actinin (I,L), 

myosin heavy chain (J,M), and with fluorescent phalloidin (K,N). All structures appear 

similarly in WT and synm-null heart muscles. Scale bars =10 µm. Insets are enlarged 2.5×.
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Fig. 7. 
Changes in phosphorylation of signaling proteins in synm −/− heart muscle. Western blot 

assays were performed for 5 signaling proteins and their phosphorylated derivatives and for 

desmin (A). Phosphorylated forms of PKAR II (B) and ERK1/2 (C) decreased relative to 

their unphosphorylated forms in synm-null heart. By contrast, p70S6K increased relative to 

70S6K (D). There was a trend to higher phosphorylation levels for AKT (E) and CREB (F) 

in synm −/− mice, but these differences were not significant. Differences in desmin were not 

significant (G). *p < 0.05.
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