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Lung squamous cell carcinoma (LUSC) is one of the leading causes of tumor-driven

deaths in the world. To date, studies on the tumor heterogeneity of LUSC at genomic

level have only revealed limited therapeutic benefits. Therefore, system-wide research of

LUSC at proteomic level may further improve precision medicine strategies on individual

demands. To this end, we performed proteomic and phosphoproteomic study for LUSC

samples of 25 Chinese patients. From our results, two subgroups (Cluster I and II)

based on proteomic data were identified, which were associated with distinct molecular

characteristics and clinicopathologic features. Combined with phosphoproteomic data,

our result showed that spliceosome pathway was enriched in Cluster I, while focal

adhesion pathway, immune-related pathways and Ras signaling pathway were enriched

in Cluster II. In addition, we found that lymph node metastasis (LNM) was associated

with our proteomic subgroups and cell cycle pathway was enriched in patients with

LNM. Further analysis showed that MCM2, a DNA replication licensing factor involved

in cell cycle pathway, was highly expressed in patients with poor prognosis, which was

further proved by immunohistochemistry (IHC) analysis. In summary, our study provided a

resource of the proteomic and phosphoproteomic features of LUSC in Chinese patients.

Keywords: lung squamous cell carcinoma, proteomics, phosphoproteomics, clustering, lymph node metastasis,

cell cycle

INTRODUCTION

Lung cancer is the most malignant tumor with the highest morbidity and mortality in the
world (1, 2). Non-small cell lung cancer (NSCLC), as the most common histological types,
accounts for more than 80% of all types of lung cancer, in which lung adenocarcinoma
and lung squamous cell carcinoma (LUSC) are two major histopathological subtypes
(3). In previous studies, LUSC was identified with multiple mutations in cancer
driver genes such as TP53 and PTEN (4), and four LUSC mRNA expression subtypes
(primitive, classical, secretory, and basal) related with different biological processes
(proliferation, xenobiotic metabolism, immune response, cell adhesion) were identified (5).
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However, there is still a lack of effective targeted therapies, except
a few immunotherapies targeting at PD1 and PD-L1 (6–8). In
contrast to genetic features, proteomic characteristics are more
directive to reflect the pattern of LUSC as proteins are the
“executioners of life” (9, 10).

Recently, a proteogenomic study on LUSC from Western
patients has been conducted, which identified three proteomic
subtypes associated with immune biology (inflammatory
cluster), oxidation-reduction biology (redox cluster) and biology
associated with Wnt/stromal signaling (mixed cluster). This
study provided a resource and suggested therapeutic strategies
based on metabolism and immune for LUSC in Western
countries (11).

Global cancer statistics indicated that the occurrence of lung
cancer has been decreasing in Western countries but increasing
in developing countries (12, 13). In China, lung cancer ranks
the first among all malignant tumors due to its high incidence
andmortality rates (14). Preliminary researches indicated distinct
genomic features of lung cancer for Chinese patients (15). For
example, in NSCLC, EGFR mutation rate and EGFR mutational
signatures associated with the inflammatory microenvironments
were significantly higher in Chinese patients than those in
Western patients. In terms of LUSC, Chinese patients had more
frameshift indels in CDKN2A and more mutations in NFE2L2.
Therefore, proteomic studies of LUSC on Western patients
may not completely unveil the molecular features of LUSC at
proteomic level from Chinese patients.

A previous proteomic study of 10 Chinese patients
investigated the possible mechanism of bronchial epithelial
carcinogenesis and identified several molecules for early
detection, such as GSTP1, HSP1B, and CKB (16). However,
systematic proteomic study of LUSC sample in large Chinese
cohort is still limited. Besides, this previous work also did not
investigate protein phosphorylation, an important protein post-
translational modification essential for signaling conduction in
cancer (17–23). Exploring molecular mechanisms on proteome
and phosphoproteome of LUSC in a Chinese cohort will provide
valuable information for the development of targeted therapy.

In this study, the proteomic and phosphoproteomic
characteristics of LUSC samples in China were explored. Two
subtypes based on proteomic and phosphoproteomic features
were acquired. Combining clinicopathologic features, we
unveiled that lymph node metastasis (LNM) was associated with
clustering and related with patient prognosis possibly through
cell cycle pathway.

MATERIALS AND METHODS

Sample Collection
All biospecimens were obtained from the Cancer
Institute/Hospital, Peking Union Medical College & Chinese
Academy of Medical Sciences and Beijing Xuanwu Hospital,
with the approval of the Research Ethics Committee at
these two hospitals. By postoperative pathological analysis,
these biospecimens were diagnosed as LUSC without other
malignant tumors. All patients did not receive any radiotherapy,
chemotherapy intervention or targeted therapy before surgery.

The postoperative biospecimens were washed with physiological
saline on ice to remove blood, and then directly frozen in
liquid nitrogen for proteomic research. Judging tumor purity
based on HE-stained slides, 25 LUSC tissues with tumor
purity>50% were selected to build proteomic profiling and
phosphoproteomic profiling. The clinical information was
shown in Supplementary Table S1.

Protein Extraction
Protein extraction was proceeded in refrigeration room to avoid
protein digestion. The tissues were first washed by phosphate-
buffered saline (PBS) and quickly dissected using surgical
scissors. Then the total protein was extracted by 8M Urea
in 100mM NH4HCO3 (pH 8.0) containing Protease Inhibitor
(Roche) and Phosphatase Inhibitor (Roche) on ice for 30min,
followed by 3min sonication under the condition of 3 s on and 5 s
off with 30% power of JY92-IIN (NingBoXinZhi, China). Finally,
the protein solution was collected after centrifugation, and the
concentration was measured by BCA protein quantification kit
(Beyotime Biotechnology, China).

In-solution Digestion
Reaction of reduction was conducted at 56◦C for 30min, which
was followed by alkylation reaction at 25◦C for 30min without
light. Then the total protein was subjected to LysC (Mass Spec
Grade, Hualishi Scientific) with a protease: protein ratio of 1:100
(w/w) for digestion at 37◦C for 3 h. After being diluted by
four times with 100mM NH4HCO3 (pH 8.0), the protein was
digested with trypsin (Mass Spec Grade, Hualishi Scientific) with
a protease: protein ratio of 1:50 (w/w) at 37◦C for 16 h. The
digested peptides were then desalted by SepPak C18 cartridges
(Waters, Milford, MA).

TMT 6-Plex Labeling
Internal reference was adopted in the TMT labeling experiment.
For the internal reference, 6 tumor samples including different
clinical stages as well as differentiation were selected, the peptides
were mixed in equal amount as the internal reference in each
batch of TMT labeling experiments.

In TMT 6-plex labeling experiment, 200 µg peptides were
labeled in every channel of each batch. The “internal reference”
peptides were labeled with channel 126, and five tumor
peptides were labeled with other channels 127–131, respectively.
The isobaric labeling experiment was performed under the
instruction of TMT kit. Briefly, TMT reagents were dissolved
in ACN and added into peptides in 100mM triethylammonium
bicarbonate (TEAB). The labeling reaction was incubated for 1 h
at room temperature, then the labeling reaction was quenched by
5% hydroxylamine for 15min. After labeling efficiency test (the
percentage of TMT modification at lysine residue and peptide
N-termini >95%), the labeled peptides were combined at equal
amounts and then desalted by SepPak C18 cartridges (Waters,
Milford, MA). The 25 tumor samples were finally labeled into five
batches in the TMT 6-plex experiment.
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HPLC Fractionation for Proteomic Analysis
TMT-labeled peptides (200 µg) in every batch were fractionated
by reverse phase XBridge Prep C18 column (250×4.6mm
column containing 5µmparticles,Waters) using an Agilent 1100
HPLC System through a gradient from 3 to 90% buffer B (buffer
A: 2% ACN, 98% H2O; buffer B: 98 % ACN, 2% H2O, the pH
of both buffer A and buffer B was adjusted by NH4OH to pH =

10.0) with a flow rate of 1 ml/min for 90min. Twenty fractions
were obtained for every batch.

TiO2 Enrichment for Phosphoproteomic
Analysis
TMT-labeled peptides (1mg) in each batch were subjected to
enrichment by titanium dioxide (TiO2) as previously described
(24). Briefly, TMT-labeled peptides were incubated with TiO2

beads (GL Science, Japan) in loading buffer (5% TFA, 70%
ACN, 1M lactic acid) at 25◦C for 30min. Peptides with
nonspecific binding were washed away from beads with washing
buffer (0.5% TFA, 70% ACN). Enriched phosphorylated peptides
were eventually eluted with 4% ammonium hydroxide and
fractionated by home-made C18 tip (3µm particle size, Agela
Technologies Inc.) into 6 fractions.

LC-MS/MS Analysis
Proteomic and phosphoproteomic fractions were analyzed by
Orbitrap Fusion following an EASY-nLC 1000 system (Thermo
Fisher Scientific). A homemade reverse-phase C18 column
(20 cm × 75µm column containing 3µm particle, Dikma
Technologies Inc.) was used to separate peptides further through
a gradient from 5 to 90% buffer B (buffer A: 0.1% FA in 2% ACN,
buffer B: 0.1% FA in 90% ACN) in 70min for proteomic analysis
and in 110min for phosphoproteomic analysis, respectively.
Following nanoflow HPLC, Orbitrap precursor spectra were
collected fromm/z 450–1,500 (proteomic analysis) and m/z 350–
1,500 (phosphoproteomic analysis) with a resolution of 60,000
at m/z 200, AGC of 5.0e5 and maximum injection time of
50ms. In MS/MS acquisition, the top 15 precursors (proteomic
analysis) and top 20 precursors (phosphoproteomic analysis)
with intensity above 50,000 were selected to be fragmentized
by Higher-energy Collision Dissociation with the normalized
collision energy of 40%, then the fragment ions were detected in
the Orbitrap with a resolution of 15,000 at m/z 200, the isolation
window of 1 m/z, AGC of 5.0e5, dynamic exclusion of 50 s and
maximum injection time of 80 ms.

Database Searching
Raw files were processed by Proteome Discoverer (PD, version
2.2.0.388; Thermo Fisher Scientific) with the SEQUEST HT
search engine against the UniProt human protein database
(06/12/2018, 95,549 sequences) (25). TMT 6-plex was chosen
as a method for quantification. Acetylation (+42.0105 Da) on
protein N-termini and oxidation (+15.9949 Da) on Methionine
(M) were designated as dynamic modifications. TMT 6-plex
(+229.1629 Da) on Lysine (K) and peptide N-termini, and
carbamidomethyl (+57.0215 Da) on Cysteine (C) were set as
a static modification. For phosphoproteomic analysis, variable
modifications also included phosphorylation (+79.9663 Da) on

serine/threonine/tyrosine (S/T/Y). Trypsin/P was set as a specific
enzyme with no more than two missed cleavages. The tolerances
of MS and MS/MS were set at 10 ppm and 0.02 Da, respectively.
The Percolator algorithm (26) in PD was adopted to control
peptide spectrum matches at a false discovery rate (FDR) <1%
andmaximum delta Cn= 0.05. The cutoff of FDR at protein level
was set as 1%. For identification of phosphosites, the localization
probability threshold was set as 75% which was calculated by the
ptmRS algorithm (27).

Proteomic and Phosphoproteomic Data
Analysis
Sample Quality Control and Data Normalization
Protein or phosphopeptide intensity was normalized by the
median in each channel of five batches of TMT 6-plex
experiments through total proteins to calibrate sample loading
differences. The phosphosite and phosphoprotein intensity were
derived from the sum of phosphopeptide and phosphosite
intensity, respectively. For batch assessment, QC of internal
reference was analyzed by Pearson correlation. To rule out
abnormal samples, unimodal (Gaussian or normal) distribution
was tested by a density plot of log2-transformed TMT ratios for
the proteins. For data normalization, log2 TMT ratios for the
proteins or phosphosites /phosphoprotein were normalized by
z-score in each sample.

Proteomic and Phosphoproteomic Clustering
Robust proteomic clusters were derived by consensus clustering
(28), using the proteins with (1) no missing values; and (2)
the top 1,000 most varied proteins within twenty-four tumors.
Robust phosphoproteomic clusters were derived by consensus
clustering, using the phosphoproteins with (1) the number
of missing values<20%; and (2) the top 1,000 most varied
proteins within twenty-four tumors. For phosphoproteins, the
missing values were imputated using a KNN algorithm. The
data sets were clustered by k-means with k from 2 to 8 using
the ConsensusClusterPlus R package. The consensus matrix,
consensus CDF, delta area plot and silhouette plots were used to
assess the appearance of different k values.

Pathway Enrichment Analysis
For proteomic data, gene set enrichment analysis
(GSEA) (29) was conducted using gene set database
“c2.cp.kegg.v6.2.symbols.gmt” from the MSigDB. For
phosphoproteomic data, DAVID bioinformatics tool (30)
was used to perform Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis (31).

Immunohistochemistry (IHC) and Scoring
Paraffin-embedded LUSC tissue microarray (TMA) was
purchased from Shanghai Outdo Biotechnology Company
(Shanghai, China), which included 75 cases of LUSC patients
with complete clinical pathology data and follow-up information.
The TMA sections were baked at 65◦C for 4 h and deparaffinized
by xylene and ethanol, then incubated with 3% H2O2 for 10
minutes in the dark to remove endogenous peroxidase activity.
After antigen retrieval by the citrate repair solution (pH= 6.0) in
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a microwave oven for 10min, the sections were sealed with goat
non-immune serum (MXB Biotechnology Company, Fujian,
China) and incubated with a primary antibody for MCM2
or SAE1 at a 1:400 or 1:800 dilution (Abcam, UK) overnight
at 4◦C. Following incubation with the secondary antibody,
DAB kit (MXB Biotechnology Company, Fujian, China) was
applied for the chromogenic reaction. The sections were then
counterstained with hematoxylin (Beijing solarbio science &
technology Company, China). The staining results were analyzed
and scored independently by two experienced pathologists.
Based on the staining intensity and the positive percentage of
tumor cells, samples were scored as four grades from 0 to 3 (0,
negative; 1, weakly positive; 2, moderately positive; 3, strong
positive). A score of 2/3 was defined as high protein expression
and a score of 0/1 was defined as low protein expression.

RESULTS

Global Profiling of LUSC Proteomics and
Phosphoproteomics
To systematically investigate the characteristics of LUSC in
China, LUSC tissues of 25 patients with tumor purity >50%
were used to build proteomic and phosphoproteomic data
(Figure 1A). After database searching by PD-SEQUEST HT
(25, 32), 10,003 proteins were identified with high confidence
(FDR<1%), in which 9,907 were quantified. On average,
8,516 proteins per sample were identified, 8,360 proteins per
sample were quantified (Figure 1B). A total of 6,523 proteins
were quantified in all samples (Supplementary Table S2). To
control the variation among batches, the proteomic data of
five internal references from five batches were assessed using
Pearson correlation. The results displayed high correlations
among batches with an average Pearson correlation coefficient of
0.98 (Figure S1A, Supplementary Table S2). In order to rule out
samples with abnormal distribution of protein abundance, the
density plot of log2-transformed TMT ratios of proteins and dip
statistic (33) were used to characterize these distributions, which
showed that 25 samples were unimodal (Gaussian or normal)
distribution (Figure S1B, Supplementary Table S3). After data
normalization, each sample had a similar distribution with
log2-transformed TMT ratios centered at zero without batch
effect (Figure S1C, Supplementary Table S3). By subcellular
distribution analysis through Gene ontology database from
PANTHER14.1 (34), we found the most identified proteins were
nuclear proteins, followed by cytoplasmic proteins and organelle
proteins, which was consistent with Reference Proteomic
dataset and could reflect the real distribution in tissue without
subcellular preference. Most interestingly, a large number of
proteins (1,841 proteins) were annotated as cellular components
in extracellular space, suggesting that proteome in LUSC
could be related to the tumor microenvironment (Figure 1C,
Supplementary Table S4).

For phosphoproteomic analysis with database searching by
PD-SEQUEST HT (27), 13,721 unique phosphopeptides (FDR
<1% and delta Cn < 0.05) and 9,601 unique phosphosites
(localization probability > 0.75) on 3,786 proteins (FDR<1%)

were identified (Figure 1D, Supplementary Tables S5, S6). The
distribution of phosphoserine (pS), phosphothreonine (pT) and
phosphotyrosine (pY) sites was 92.34% (8,866), 7.32% (703), and
0.33% (32), respectively (Figure 1E, Supplementary Table S6).
Similarly, correlation of phosphosites in five internal references
were assessed to control variation among batches, which
displayed high correlation with average Pearson correlation
coefficient 0.789 (Figure S1D, Supplementary Table S7). After
data normalization, each sample had a similar phosphosite
distribution with log2-transformed TMT ratios centered at zero
without batch effect (Figure S1E, Supplementary Table S7).

Clustering Based on Protein Abundance
In the follow-up analysis, a sample with incomplete clinical
information was removed, the remaining 24 samples were
clustered by consensus clustering using k-means manner to
explore the proteomic difference among LUSC tissues. Visually,
the consensus matrix for k = 2 appeared to have the
cleanest separation between clusters (Figure 2A, Figure S2A).
The consensus CDF and delta area plot showed that there was
no significant increase in the area under the consensus CDF as
k increased from two (Figure S2B). Furthermore, the average
silhouette distance for k = 2 (0.14) was larger than k = 3 (0.09).
In addition, phosphoproteomic clustering analysis was also
performed, in which the top 1,000 most varied phosphoproteins
with less than 20% missing values within twenty-four tumors
were used because the number of identified phosphoproteins
were much less than the number of identified of proteins.
The phosphoproteomic clustering was almost consistent with
proteomic clustering (Figure 2A, Figures S3A,B). Therefore, 24
samples can be clustered to Cluster I (n = 12) and Cluster II
(n = 12). The clustering results were then verified by principal
component analysis, in which component 1 and component 2
accounted for 26.3% of the total data variation and the two
components can distinguish Cluster I and Cluster II (Figure 2B).

For 6,523 proteins which were quantified in all the 24 samples
(Supplementary Table S8), 435 proteins were significantly
upregulated in Cluster I and 266 proteins were significantly
upregulated in Cluster II (fold change> 1.5 and t-test p-value<
0.05) (Figure 2C). Gene set enrichment analysis (GSEA) showed
that spliceosome pathway was enriched in Cluster I, focal
adhesion and immune-related pathways (e.g. Complement and
coagulation cascades) were enriched in Cluster II (Figure 2D,
Supplementary Table S9). For spliceosome, various studies
have highlighted the significance of altered RNA splicing in
cancer (35). The leading edge proteins in the spliceosome
pathway were major spliceosome components and expressed
higher in Cluster I, including SF3B1 (splicing factor 3b subunit
1) which was identified with recurrent mutations in various
cancer (Figure 2E) (36, 37). In focal adhesion, some of the
leading-edge proteins were constituents which participate
in the structure linking membrane receptors and the actin
cytoskeleton, while others contribute to signal transduction,
including protein kinases and phosphatases (e.g., PTEN)
(Figure 2F). Immune-related pathways (e.g., complement and
coagulation cascades) were also enriched in Cluster II, which was
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FIGURE 1 | Proteomic and phosphoproteomic analysis of lung squamous cell carcinoma (LUSC). (A)Workflow of proteomic and phosphoproteomic profiling of LUSC.

(B) The number of identified and quantified proteins in proteomic profiling. (C) Subcellular distribution of LUSC gene products annotated with Gene Ontology. (D) The

number of identified and quantified phosphopeptides/sites/proteins in phosphoproteomic profiling. (E) Phosphosite distribution on S/T/Y phosphorylation residues.

similar to “inflammatory” subtype in previous data reported in
samples fromWestern countries (11).

Phosphoproteomic Analysis Based on
Clustering
In order to further investigate the differences in signaling
pathways between the two clusters, phosphoproteomic data
including 7,973 phosphosites (at least two values in each
cluster, Supplementary Table S10) was analyzed. The scatter
plot showed that 329 phosphosites on 224 proteins were
significantly upregulated in Cluster I and 333 phosphosites

on 264 proteins were significantly upregulated in Cluster II
(fold change> 1.5 and t-test p-value < 0.05) (Figure 3A).
Then proteins with up/down-regulated phosphosites were used

for KEGG pathway analysis via DAVID. Consistent with

proteomic analysis, spliceosome was enriched in Cluster I,

immune-related pathways and focal adhesion were enriched

in Cluster II (Figure 3B, Supplementary Table S11). Besides,

several proteins in Ras signaling pathway showed highly
phosphorylated sites in Cluster II, including BAD Ser-134
(Figure 3C). BAD Ser-134 was reported to be phosphorylated
by RAF, which leads to increased proliferation of cancer cells
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FIGURE 2 | Proteomic clustering of LUSC. (A) Consensus-clustering analysis of proteomic profiling using the top 1,000 most varied proteins with no missing values

within twenty-four tumors. Consensus-clustering analysis of phosphomic profiling using the top 1,000 most varied phosphoproteins with missing values <20% within

twenty-four tumors. (B) Principal Component Analysis (PCA) of two proteomic clusters. Red represented Cluster I, and blue represented Cluster II. (C) Scatter plot

depicting the fold change of protein abundance comparing cluster II with cluster I. Log2 fold changes were shown on the x-axis and –log10 p-values were shown on

the y-axis. The vertical dashed lines indicated fold change > 1.5 and the horizontal dashed line indicated p-value < 0.05 (t-test). (D) GSEA analysis of proteomic data

between cluster I and cluster II. The scatter plot showed the enriched KEGG pathways from the Molecular Signatures Database (MSigDB). Normalized enrichment

score (NES) was shown on the x-axis and -log10 FDR was shown on the y-axis. The horizontal dashed line indicated FDR < 0.05. The labeled pathways were the

most significant pathways or pathways consistent with previous data reported in samples from Western countries. (E) Differential protein expression of cluster I and

cluster II in spliceosome. (F) Differential protein expression of cluster I and cluster II in focal adhesion.

(38). In the cascade of signaling pathway, kinase activity plays
an important part by regulating the change of phosphosite
level. Here, we found the potential change of activity in
several kinases by Kinase-Substrate Enrichment Analysis (KSEA)
(Figure 3D, Supplementary Table S12) (39, 40). Among these,

MAPKAPK2/3/5 and CDK1/2 showed higher kinase activity in
Cluster I, whereas EGFR, PRKCA/G, MAPK1/3/10/11/12/13,
and MAPK2K1/4/7 showed higher kinase activity in Cluster II.
Different kinases in MAPK pathway may be involved in different
biological processes, for example,MAPKAPK family corresponds
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to TNF stimulation and most of MAPK family corresponds to
GF stimulation (41, 42). Further analysis discovered that several
kinases were important components inMAPK signaling pathway
and displayed in the scheme (Figure 3E).

Analysis of Lymph Node Metastasis (LNM)
Clinicopathologic characteristics are important factors which
could be related to molecular features and patient prognosis.
Therefore, Clinical information of the proteomic set samples was
linked with clustering (Supplementary Table S13). Compared
with Cluster II, Cluster I showed a little poor prognosis with log-
rank p-value 0.2 within 3-year follow-up (Figure S4A). Although
most clinicopathological characteristics showed no significant
relationship with clustering statically, it was prominent that
lymph node metastasis (LNM) showed some correlation with
clustering (Fisher’s exact test p-value 0.069) (Figure 4A). In
detail, 6 of 7 patients without LNM (N0) were in cluster II and 11
of 17 patients with LNM (N1&2) were in cluster I. Patients with
LNM showed a little poor prognosis (log-rank p-value 0.0645)
within 3-years follow-up (Figure 4B, Figure S5A). Tumors often
engage the lymphatic system to invade and metastasize (43).
LNM is an indication of poor prognosis (44). Together, all
the evidence indicated that the study on LNM in LUSC was
valuable. To identify metastatic proteins, we took advantage of
the Human Cancer Metastasis Database (45). There are 355
proteins associated with lung cancer metastasis in HCMDB,
among which, 16 showed differential expression between N0 and
N1&2 (fold change> 1.5 and t-test p-value < 0.05) (Figure 4C).
In detail, 5 proteins [e.g., PRDX1 (peroxiredoxin 1) and ELAVL1
(ELAV like RNA binding protein 1)] were highly expressed
in N1&2, whereas other 11 proteins (e.g., PTEN) were highly
expressed in N0, indicating that these proteins may also play a
role on LNM in LUSC.

In order to explore the pathways associated with LNM,
the relative expression of 6,523 proteins (no missing value
in 24 samples) were used to conduct KEGG analysis by
GSEA. The result showed that immune-related pathways
and focal adhesion were enriched in N0, cell cycle-related
pathways and spliceosome were enriched in N1&2 (Figure 4D,
Supplementary Table S14). To further investigate the differences
in signaling pathways between N0 and N1&2, phosphoproteomic
data including 7,209 phosphosites (at least two values in each
cluster, Supplementary Table S15) was analyzed. The scatter plot
showed that 260 phosphosites on 221 proteins were significantly
upregulated in N0 and 186 phosphosites on 140 proteins were
significantly upregulated in N1&2 (fold change > 1.5 and t-
test p-value < 0.05) (Figure 4E). The proteins with differential
phosphosites were used to enrich KEGG pathways via DAVID.
Focal adhesion, as well as immune-related pathways, were
enriched in N0, spliceosome was enriched in N1&2 (Figure 4F,
Supplementary Table S16). We next explored upstream kinases
enriched by the phosphosites in KSEA using the PhosphoSitePlus
database (46) (Supplementary Table S17). This analysis revealed
that 4 kinases (PRKACA, PRKCA, CSNK1A1 and BCR) showed
higher kinase activity in LUSC without LNM, whereas the
other 12 kinases showed higher kinase activity in LUSC with

LNM, including cyclin-dependent kinase 1 (CDK1) and cyclin-
dependent kinase 2 (CDK2) which are key regulatory enzymes in
cell cycle, indicating that cell cycle may be potentially activated
on the condition of LNM (Figure 4G).

Cell Cycle and DNA Replication in LUSC
Based on LNM
Cancer is characterized by uncontrolled tumor cell proliferation
resulting from aberrant activity of various cell cycle proteins.
Therefore, cell cycle regulators are considered attractive targets
in cancer therapy (47). In our data, cell cycle pathway was
significantly enriched in the N1&2 group. The expressions of the
leading edge proteins which contributed most to the enrichment
score (ES) were upregulated with LNM (Figure 5A). Among
these proteins, most were associated with DNA replication, as
shown in the diagram (Figure 5B). DNA replication licensing
factors- Minichromosome Maintenance (MCM) are essential
for initiating and limiting DNA replication in cell cycle and
implicates prognostic significance in lung cancer (48, 49). All
members in the MCM protein family were highly expressed in
the N1&2 group as well as in Cluster I (Figure 5A, Figure S5C).
MCM2 is an independent predictor of survival in patients
with non-small-cell lung cancer (50). To explore the influence
of MCM2 on LUSC, we conducted IHC analysis based on
TMA including 75 cases of LUSC patients, we found that
MCM2 had higher expression in LUSC with LNM (Figure 5C,
Supplementary Table S18). These findings suggested that high
MCM2 expression in LUSC could be related to high biological
malignant aggressiveness. Further survival analysis indicated that
high expression of MCM2 was associated with poor prognosis
(log-rank p-value= 0.0489) (Figure 5D). These results suggested
that MCM2 might be a potential therapeutic target for LUSC,
especially for LUSC with LNM.

DISCUSSION

LUSC accounts for a significant percentage of NSCLC (about
40%), but has limited biomarkers for diagnosis and therapy,
except for a few immunotherapies targeting at PD1 and PD-
L1 (6–8). In addition, systematic study on the molecular
mechanism of Chinese LUSC patients is limited. Further
study on the molecular mechanism of LUSC is needed
for targeted therapy, especially in the Chinese cohort. To
explore the protein expression pattern and the activation of
signaling pathways in cancer, we investigated the proteomic
and phosphoproteomic characteristics of LUSC from Chinese
patients based on mass spectrometry analysis. In order
to distinguish molecular characteristics, the samples were
clustered into two parts on the basis of proteomic profiling.
Compared with previous data reported in samples from
Western countries (5, 11), our data showed that immune-
related pathways were enriched in Cluster II, which was
similar to the “inflammatory” subtype at protein level and
“secretory” subtype at mRNA level. Even though the “redox”
was not a major pattern in Cluster I, PSAT1 (phosphoserine
aminotransferase), a potential target in the “redox” subtype, was
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FIGURE 3 | Phosphoproteomic analysis of LUSC comparing cluster I with cluster II. (A) Scatter plot depicting the fold change in phosphosites comparing cluster II

with cluster I. Log2 fold changes were shown on the x-axis and -log10 p-values are shown on the y-axis. The vertical dashed lines indicated fold change > 1.5 and the

horizontal dashed line indicated p-value < 0.05 (t-test). (B) DAVID analysis of phosphoproteomic data between cluster I and cluster II (p-value < 0.05). The bar chart

showed the enriched KEGG pathways of the differential phosphoproteins between cluster I and II (fold change > 1.5, p-value < 0.05). The highlighted pathways were

consistent with those enriched in protein level (purple). (C) The quantification of phosphosites in Ras signaling pathway. Data were presented as dot plot with mean ±

SEM. (D) Kinase-substrate enrichment analysis (KSEA) based on PhosphoSitePlus and NetworKIN database. Color blue/red for visual annotation of kinases that

reached statistical significance (p-value < 0.05). (E) A scheme showing the enriched kinases in the MAPK pathway.

highly expressed in this cluster (Figure S4B) (11, 51). These
results suggested that there were some similar patterns across
the races. Beyond the previous study, our data indicated that
spliceosome pathway was enriched in cluster I, focal adhesion

pathway was enriched in cluster II in both proteomic and
phosphoproteomic data.

In the pathway analysis of proteomic data, we found one-
ubiquitin mediated proteolysis was enriched in Cluster I with
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FIGURE 4 | Analysis of lymph node metastasis (LNM). (A) Relationship of cluster with LNM. Fisher’s exact test was adopted for the analysis. (B) The prognosis of

patients with or without LNM within 3-year follow-up. (C) 16 differential metastasis-related proteins based on total 355 proteins which were associated with lung

cancer metastasis from HCMDB database (fold change> 1.5, p-value < 0.05). (D) GSEA analysis of proteomic data with and without LNM (tumor samples, n = 24):

N0 (without LNM, n = 7) and N1&2 (with LNM, n = 17). The heatmap showed the enriched KEGG pathways from MSigDB. The color in heatmap was according to

FDR, and the darkest blue represents N/A. (E) Scatter plot depicting the fold change in phosphosites comparing N1&2 with N0. Log2 fold changes were shown on

the x-axis and –log10 p-values are shown on the y-axis. The vertical dashed lines indicated fold change > 1.5 and the horizontal dashed line indicated p-value < 0.05

(t-test). (F) DAVID analysis of phosphoproteomic data between N1&2 and N0. The bar chart showed the enriched KEGG pathways of the regulated phosphoproteins

between N1&2 and N0 (fold change> 1.5, p-value < 0.05). The highlighted pathways were consistent with those enriched in the protein level. (G) Circular plot

represented potential kinases and phosphosites retrieved from the PhosphoSitePlus database. The phosphosites were differentially expressed between N1&2 and N0

with a cutoff of 1.5-fold change. Different colors correspond to various kinases that were predicted as upstream regulators of the phosphosites (p-value < 0.05). The

outer circle shows the sites. The radar map shows the fold changes of the sites.

FDR 0.18 (Figure S4C), and PPI network of the leading edge
proteins analyzed by STRING revealed that most proteins
were closely associated with the surrounding proteins in the
network. Among these proteins, SAE1 was reported to be
highly expressed in a variety of cancers and promotes tumor

progression as well as poor prognosis (52–55). To explore
the influence of SAE1 on LUSC, we conducted IHC analysis
based on TMA including 75 cases of LUSC patients, which
showed that high expression of SAE1 was associated with
poor prognosis (Figure S4D, Supplementary Table S16). In the
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FIGURE 5 | Cell cycle and DNA replication in LUSC based on LNM. (A) Cell cycle pathway and proteins that were enriched in the pathway. The protein quantifications

are presented as mean ± SEM. (B) The diagram of DNA replication in cell cycle. Different protein complexes are represented in different colors. (C) The relationship

MCM2 protein expression and LNM in tissue microarray (TMA) assay. (D) MCM2 expression and survival analysis in tissue microarray (TMA) assay. Chi-square test

was adopted for the correlation analysis, and Kaplan–Meier plot (Log-rank test) was adopted to describe overall survival (OS) analysis.

pathway analysis of phosphoproteomic data, Ras signaling
pathway was highly activated in Cluster II and the activity of
several kinases was shown to be elevated in Cluster II compared
with Cluster I, indicating Ras signaling pathway may be different
in these two clusters.

In order to comprehensively analyze molecular features and
clinicopathologic characteristics, we first linked clinicopathologic
characteristics with clustering, which showed some correlation
between LNM and clustering. Patients with LNM showed a
little poor prognosis. Considering the lymphatic system was

often engaged by tumor invasion and metastasis (43), we
supposed that LNM should have a significant influence on
prognosis with a larger sample size, which was confirmed by
analyzing public data from the previous study (Figure S5B)
(11). Both proteomic and phosphoproteomic data were
used for pathway analysis and showed enrichment of
several major pathways in N0 (or N1&2), similar to those
found in Cluster II (or Cluster I). Besides, key regulatory
enzymes in cell cycle were also enriched in LUSC with LNM
by KSEA.
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DNA replication is a key in cell cycle and MCM2 was
discovered with high expression in patients with LNM by
proteomics analysis and in patients with poor prognosis by
IHC analysis. MCM2 is one of the members of the MCM
protein family. It forms MCM complex with its family members
MCM3-7. The MCM complex is a replication helicase, which
is essential for the DNA replication initiation and extension of
cell cycle in eukaryotic cells (56). The expression level of MCM
proteins (MCMs) in normal cells changes with the progress of
the cell cycle. In the G1 phase of the cell cycle, CDK activates
the transcription factor E2F by phosphorylating RB, E2F can
combine with the promoter region of MCMs to promote its
transcription (57, 58). In senescent cells, p53 can synthesize
microRNAs to degrade MCMs mRNA (59). In summary, MCM
proteins could be dysregulated by different signaling pathways
in cancer. In our proteomic data, cyclin-dependent kinases
(CDK1/2) showed higher kinase activity in LUSC with LNM
which may regulate MCM2 expression. However, The Cancer
Genome Atlas (TCGA) dataset showed the RNA level of MCM2
was not correlated with prognosis in LUSC (Figure S5D) (6),
which suggested there may be different features in genomics
and proteomics. Further, MCM2 was shown to be not correlated
with prognosis in LUSC from Western patients (Figure S5E)
(11), which indicated there may exist different mechanisms
among races. In our IHC analysis, MCM2 displayed higher
expression in advanced patients (Figure S5F). Altogether, our
study provided a proteomic and phosphoproteomic data resource
about LUSC fromChinese patients, which could give several clues
on potentially targeted proteins for precision medicine.
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