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A B S T R A C T

The selection of a descriptor, X, is crucial for improving the interpretation and prediction accuracy of a regression
model. In this study, the prediction accuracy of models constructed using the selected X was determined and the
results of variable selection, according to the number of selected X and number of selected variables that are
unrelated to an objective variable, such as activities and properties (y), were investigated to evaluate the variable
or feature selection methods. Variable selection methods include least absolute shrinkage and selection operator,
genetic algorithm-based partial least squares, genetic algorithm-based support vector regression, and Boruta.
Several regression analysis methods were used to test the prediction accuracy of the model constructed using the
selected X. The characteristics of each variable selection method were analyzed using eight datasets. The results
showed that even when variables unrelated to y were selected by variable selection and the number of unrelated
variables was the same as the number of the original variables, a regression model with good accuracy, which
ignores the influence of such noise variables, can be constructed by applying various regression analysis methods.
Additionally, the variables related to y must not to be deleted. These findings provide a basis for improving the
variable selection methods.
1. Introduction

In the fields of chemistry and chemical engineering, data-driven
molecular design, material design, process design, and process manage-
ment have become common. In these processes, data are converted to
information using databases of molecules, materials, process simulations,
and chemical/industrial plants. Knowledge is subsequently extracted
from this information. New chemical structures, experimental condi-
tions, and process conditions are then proposed based on the knowledge
extracted.

Among the steps involved in creating a numerical model from data-
bases, our focus is on regression analysis. In molecular design, regression
models are constructed based on the chemical structures, physical
properties, and activities of molecules. Such models are called quanti-
tative structure-activity relationship (QSAR) [1, 2] and quantitative
structure–property relationship (QSPR) [3, 4]. In material design,
regression models are constructed based on the experimental conditions
and material properties [5]. In process design, regression models are
constructed based on the conditions of computer simulations and the
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simulation results. Such models are called surrogate models [6]. In pro-
cess control, regression models are constructed based on easily measur-
able process variables and difficult-to-measure process variables. Such
models are referred to as soft sensors [7]. It is desirable for each model to
have a high prediction accuracy for analysis when new samples are used.

Approaches for constructing regression models include linear and
nonlinear regression analysis methods. Linear regression analysis
methods include partial least squares (PLS) regression [8], ridge regres-
sion (RR), least absolute shrinkage and selection operator (LASSO), and
elastic net (EN) [9]. Nonlinear regression analysis methods include
support vector regression (SVR) [10], decision tree (DT) [11], random
forests (RF) [12], Gaussian process regression (GPR) [10], gradient
boosting decision tree (GBDT) [13], extreme gradient boosting
(XGBoost) [14], light gradient boosting machine (LightGBM) [15, 16,
17], CatBoost [18, 19], and deep neural networks (DNNs) [20]. As there
is no “best” method for regression analysis, when a database is given,
training and test data are required to properly train and evaluate a model.

Descriptors, variables, or feature selection techniques are used to
construct regression models with high prediction accuracy. It is believed
e 2021
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that high-accuracy prediction models are constructed by deleting noise
descriptors (X) that are unrelated to the objective variable such as ac-
tivities and properties (y) and then selecting only the X that are related to
y. Examples of variable selection methods include LASSO and genetic
algorithm (GA)-based PLS (GAPLS) [21], which are based on the linear
relationship between X and y, as well as GA-based SVR (GASVR) [22] and
Boruta [23] methods, which are based on the non-linear relationship
between X and y. The hybrid feature selection approach involves two
steps for selecting the most informative features. The first is a
pre-processing step applied to filter out noise, and the second step is a
wrapper technique that selects a set of optimum features. Bio-inspired
evolutionary methods such as GA [24], ant colony optimization [25],
Bat algorithm [26], artificial bee colony [27], and particle swarm opti-
mization [28] have been applied in feature selection [29]. Although
numerous variable selection methods have been developed, the evalua-
tion of a variable selection method is primarily based on the prediction
accuracy of the regression model constructed based on y and the selected
X. For example, X can be selected with the highest r2 value; however, the
predictive ability of the regression model is poor because the algorithm
predicts with a bias to optimize r2. Furthermore, although the perfor-
mance of a regression analysis method varies depending on the dataset,
the choice of the regression method used after variable selection is
limited. In addition, variable selection enables the creation of a model
based on a smaller number of X, and the relationship between y and the
selected X can be interpreted to clarify the relationships between
chemical structures and activities/properties, depending on the dataset
used. However, this does not necessarily mean that such an interpretation
is possible with any dataset.

Therefore, not only the prediction accuracy of regression models with
the selected X, but also the results of variable selection according to the
number of the selected X and the number of selected X that are unrelated
to y are discussed in this study. Several regression analysis methods are
used to test the prediction accuracy of the model constructed using the
selected X. The variable selection methods focused upon in this study
include LASSO, GAPLS, GASVR, and Boruta. LASSO is a linear variable
selection method that produces analytical solutions and can be applied to
QSAR datasets [30, 31, 32] to reduce prediction errors of QSAR models
and to increase the robustness of QSAR models. In LASSO, the regression
coefficient can become zero, and the corresponding X can be deleted,
indicating variable selection. GAPLS is also a linear variable selection
method; however, the selected variables depend on random numbers
because variable selection is based on a metaheuristic algorithm. GAPLS
was applied to QSAR datasets [33, 34] and could efficiently reduce the
number of variables. GASVR is a nonlinear variable selection method,
and the selected variables depend on random numbers as well as GAPLS.
Although GASVR is time-consuming, it can select X considering nonlinear
relationships between X and y and can be applied to QSAR datasets [35,
36]. Boruta is also a nonlinear variable selection method that can be
applied to QSAR datasets [37, 38, 39]. Although the percentile is a
parameter related to the selected variables and 100% is used in principle,
a method called r-Boruta was developed to determine this parameter
based on a pseudo-correlation in this study.

The purpose of this study is to discuss variable selection methods in
terms of the predictive performance of regression models, proportion of
selected variables, and proportion of selected random variables in QSAR/
QSPR.

Contribution:

1) The number of selected original X and the number of random vari-
ables are large in LASSO and small in Boruta. GAPLS, GASVR, and r-
Boruta fall between these two methods in terms of these parameters.
However, the prediction error of a regression model does not neces-
sarily increase with a larger number of selected random variables.

2) In r-Boruta, the number of selected random variables is larger than
that in Boruta, but the prediction error of the regression model tends
to be smaller.
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3) Even if X unrelated to y is selected by variable selection, a regression
model with good accuracy that ignores the influence of such noise
variables can be constructed by using various regression analysis
methods. It is important that X related to y is not deleted.

4) Although the results of variable selection and mean absolute error
(MAE) are stable in both Boruta and r-Boruta, the variability in the
MAE is particularly large in methods such as GAPLS and GASVR.

5) As the number of selected X and random variables is small in Boruta,
it can be effective for interpreting the results of variable selection. The
number of selected X is large in LASSO, and it is difficult to interpret
the results of variable selection.

2. Method

In this section, we discuss LASSO, GAPLS, GASVR, Boruta, and r-
Boruta. Thereafter, we describe the proposed indicators of the variable
selection methods.
2.1. LASSO

LASSO is a linear regression analysis method that reduces both the
sum of squares of errors and the sum of the absolute values of regression
coefficients. The regression coefficient is determined by minimizing the
following formula:

Xm

i¼1

�
yðiÞ � xðiÞb

�2 þ λ
Xn

j¼1

��bj
�� (1)

wherem is the number of samples, n is the number of x variables, y(i) and
x(i) ε R1�m are the y and x values in the ith sample, respectively, bj is the
jth regression coefficient, and λ is the hyperparameter. b is represented
by the following formula.

b¼ð b1 b2 ⋯ bn ÞT

In LASSO, the regression coefficient, bj, can become zero, and the
corresponding x is deleted.

In this study, λ was set to 2�15, 2�14, …, 2�2, 2�1 to consider λ over a
wide range of values, and the value that maximizes the coefficient of
determination, r2, after 5-fold cross-validation was used. Sckit-learn [40]
was used to calculate LASSO.
2.2. GAPLS and GASVR

GAPLS and GASVR are methods that select the optimal combination
of variables in the PLS and SVR models, respectively, based on the GA.
The GA is an optimization methodology that imitates the evolution of
organisms through the repetition of selection, crossing, and mutation. In
GAPLS, the number of chromosomes, x, is given as a sequence of values
from 0 to 1. In GASVR, in addition to the GAPLS chromosome, three
parameters are added using a Gaussian kernel. The parameters are the
regularization parameter (a hyperparameter), tolerance, and Gaussian
kernel parameter. We used the r2 value after 5-fold cross-validation to
determine the closeness of fit. This makes it possible to select a combi-
nation of variables that improves the estimation performance of the PLS
model with GAPLS and SVR with GASVR.

We used DEAP [41] to calculate the GA and scikit-learn [40] to
calculate the PLS and SVR.
2.3. Boruta and r-Boruta

Boruta is a variable selection method based on the importance of the
variables in the RF. The importance of each x is calculated by performing
RF after adding the objective variable and unrelated explanatory vari-
ables to the dataset. Important variables are selected from the original set
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of X by comparing the importance level of X. The Boruta algorithm is as
follows.

1. Copy the dataset (matrix) for X.
2. In the copied matrix, the sample values are shuffled for each variable.

The variables prepared here are referred to as shuffled X. As the
values are shuffled according to variables, the shuffled X and y
become unrelated.

3. The datasets of the original X and shuffled X are combined before
performing the RF with y and calculating the importance of the
variables.

4. Although the shuffled X is unrelated to y, as some values are assigned
to the shuffled X to denote the importance of the variable, their p-
percentile is used as the reference value. In general, p ¼ 100; in other
words, the maximum importance level of the shuffled X is used as the
reference value. Among the original X, those for which the impor-
tance exceeds that of the reference value are considered hit variables.

5. When steps 3 and 4 are repeated, a two-sided test based on the
binomial distribution, which is the binomial test for the statistical
significance of deviations from a theoretically expected distribution
of observations into two categories, is performed to examine whether
the original X is significant, compared with the shuffled X. Here, the
significance level is considered to be α¼ 0.05. During the repetitions,
the original X, deemed unimportant compared with the shuffled X,
are deleted.

We used Python's boruta_py [23] for calculations.
Boruta cannot determine the specific number of selected variables.

The p-percentile in the Boruta algorithm controls the number of
selected variables, and the smaller the p, the larger is the number of
selected variables. In general, p ¼ 100 in Boruta. That is, the maximum
variable importance of the shuffled X is used as the standard, but the
smaller the number of samples, the greater is the likelihood of the
shuffled X being correlated with y accidently. Hence, when the sample
size is small, there is a risk of deleting too much X. Therefore, in this
study, after a large number of X was generated based on random
numbers that follow the standard normal distribution, the correlation
coefficients between random X and y were calculated, and 100-fold of
their maximum absolute values were regarded as p. If p in this method
is set with a consideration of chance correlation, the over-deletion of X
when the sample size is particularly small can be prevented. This
approach is called r-Boruta.
2.4. Evaluation of indicators of variable selection methods

We evaluated variable selection and feature selection methods based
on the following metrics: prediction performance of the regression model
constructed based on the selected X, ratio of the number of selected X to
the number of the original X, and ratio of the number of selected random
variables to the number of the original X. Random X refers to the vari-
ables generated based on the random numbers that follow a standard
normal distribution. The number of random X is the same as that of the
original X.

As the estimation accuracy of regression models varies depending on
the method used to construct the model, discussing the prediction ac-
curacy of a regression model based on a single regression analysis
method is meaningless. Hence, we considered the following 13 methods
of regression analysis: PLS, RR, LASSO, EN, SVR, DT, RF, GPR, GBDT,
XGBoost, LightGBM, CatBoost, and DNN.

Note that because SVR uses linear and Gaussian kernels and GPR
uses 11 kernel functions including linear kernel, regression models are
constructed using a total of 24 methods. After the training data were
used to construct the regression model, the test data were used to make
predictions, and the MAE was calculated by using the following for-
mula.
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The 10th percentile MAE of the 24 MAEs, that is, the top 10% MAEs,
are regarded as the indicators of the prediction performance of the var-
iables selected by variable selection methods.

The ratio of selected X is determined by dividing the number of
selected X by the total number of X.

To determine the ratio of the number of selected X, a uniform random
number of variables between 0 and 1, equal to the number of original X,
was added to the dataset of the original X variables before executing
variable selection. The ratio of the number of selected random variables
is determined by dividing the number of selected uniform random vari-
ables by the number of original X.

In the next section, the results of variable selection by using vari-
able selection methods are evaluated and discussed based on the three
aforementioned metrics. The smaller the MAE in the test data, the
greater is the prediction performance of the selected variables. Simi-
larly, the smaller the ratio of the number of selected random variables,
the easier it is to interpret the results of the variable selection. Small
ratios of the number of selected variables and random variables signify
that the number of variables unrelated to y is small; this indicates that
the prediction accuracy of the regression model may improve. How-
ever, if too many variables are deleted, including the important vari-
ables related to y, the prediction accuracy of the regression model may
deteriorate.

3. Results and discussion

To discuss the variable selection models, namely, LASSO, GAPLS,
GASVR, Boruta, and r-Boruta, we used datasets of boiling points (BP)
[42], solubility in water (logS) [43], pharmacological activity (pIC50)
[44], and environmental toxicity (pIGC50) [45] as a dataset for com-
pounds. Similarly, we used tablet dataset 1 of Shootout2002 [46] (API1),
tablet dataset 2 of Shootout2012 [47] (API2), dataset for wheat [48, 49]
(Wheat), and dataset for gasoline [50] (Gasoline) as spectral datasets. In
the dataset for compounds, RDKit [51] and Mordred [52] were used for
the calculation of molecular descriptors. The QSAR dataset of pIC50,
obtained from an angiotensin-converting enzyme [44], in which activ-
ities were spread over a wide range, was analyzed. The activity of mol-
ecules against the target was expressed as the logarithm of 50%
inhibitory concentration in μmol/m3 (pIC50). The QSAR dataset of
pIGC50 was downloaded from the Environmental Toxicity Prediction
Challenge 2009 website [45]. This is an online challenge that invites
researchers to predict the toxicity of molecules against T. Pyriformis,
expressed as the logarithm of 50% growth inhibitory concentration in
mg/L (pIGC50). The datasets are listed in Table 1. The data were
randomly split into 70% and 30% for training and testing, respectively.
Those X for which the ratio of samples with the same values in the
training data accounted for 80% or more were deleted. One of the pairs of
X, for which the absolute value of the correlation coefficient was 1, was
subsequently deleted.

Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 show relationships of the
MAE, the ratio of selected original X, and ratio of selected random var-
iables for each dataset. For the test data in BPs using RDKit, Figure 1
illustrates that in LASSO, the numbers of selected original X and selected
random variables are large, whereas in Boruta, the number of selected
random variables tends to be small. Compared with LASSO, Boruta, and
r-Boruta, the variability of the MAE is larger in GAPLS and GASVR.
GAPLS and GASVR are considered to have a significant effect on the
estimation accuracy of the initial value in the GA. In Boruta and r-Boruta,
the variability in the results is smaller compared with that in LASSO,
GAPLS, and GASVR. We believe that stable variable selection can be
achieved through Boruta and r-Boruta. The numbers of selected original
X and random variables in r-Boruta tend to be larger than those in Boruta;



Table 1. Description of the datasets.

Dataset # of X variables # of training samples # of test samples

BP RDKit 75 206 88

Mordred 855 206 88

logS RDKit 94 903 387

Mordred 800 903 387

pIC50 RDKit 102 80 34

Mordred 1066 80 34

pIGC50 RDKit 90 849 364

Mordred 828 849 364

API1 650 459 196

API2 372 168 68

Wheat 100 366 157

Gasoline 401 42 18

Figure 1. Relationships between the MAE, the ratio of selected X, and ratio of selected random variables for the test data in BP data set using RDKit: (a) ratio of
selected X versus ratio of selected random variables, (b) ratio of selected X versus MAE, (c) ratio of selected random variables versus MAE.
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however, the MAE is smaller and the estimation accuracy is greater in r-
Boruta. Although there is a greater possibility of variables unrelated to
physical properties being selected in r-Boruta than in Boruta, it is less
likely for important variables related to physical properties to be deleted
in r-Boruta. Even if r-Boruta selects variables unrelated to physical
properties, the estimation accuracy does not decrease according to the
method used in the subsequent regression analysis.

For the test data in BPs using Mordred, as shown in Figure 2, the
number of selected random variables is larger in LASSO and smaller in
Boruta, but LASSO has a smaller MAE. Across all variable selection
methods, the MAE tends to increase when the number of selected random
variables is small. In variable selection, it is important not to omit
important variables that are related to physical properties, and even
when variables unrelated to physical properties are selected, a regression
model with high estimation accuracy can be constructed using various
regression analysis methods. The variability in the results of variable
selection by the Boruta and r-Boruta approaches is smaller than that by
the LASSO, GAPLS, and GASVR approaches. Although r-Boruta has a
4

larger number of selected original X and selected random variables than
Boruta, its MAE is smaller and the prediction accuracy is higher.

For the test data in logS using RDKit, Figure 3 shows that the number
of selected random variables is large in LASSO and small in Boruta. There
are large variations in the results of variable selection and MAE in GAPLS
and GASVR. However, in terms of variable selection, when the number of
the selected original X is large, the MAE tends to be small even when the
number of selected random variables is large. In terms of estimation
accuracy, it is important not to delete variables related to physical
properties in variable selection. Although the MAE tends to be small
when the number of selected random variables is large, in reality, the
MAE is believed to be related to the number of selected original X. This
makes the relationship between the number of selected random variables
and the MAE a pseudo-correlation.

Figure 4 illustrates similar details for the test data in log S using
Mordred. As shown in the figure, the number of selected random vari-
ables was large with LASSO and small with Boruta and r-Boruta.
Although both the number of selected original X and selected random



Figure 2. Relationships between the MAE, the ratio of selected X, and ratio of selected random variables for the test data in BP dataset using Mordred: (a) ratio of
selected X versus ratio of selected random variables, (b) ratio of selected X versus MAE, (c) ratio of selected random variables versus MAE.

Figure 3. Relationships between the MAE, the ratio of selected X, and ratio of selected random variables for the test data in logS dataset using RDKit: (a) ratio of
selected X versus ratio of selected random variables, (b) ratio of selected X versus MAE, (c) ratio of selected random variables versus MAE.

H. Kaneko Heliyon 7 (2021) e07356
variables were larger with r-Boruta than with Boruta, its MAE was
smaller and prediction accuracy was higher. The use of r-Boruta may
have prevented the exclusion of important variables related to physical
properties. The variation in MAE is large for GAPLS and GASVR. How-
ever, in approaches other than Boruta, the MAE tended to be larger when
the number of selected random variables was large. As the number of X
with Mordred is large, the selection of a large number of variables
5

unrelated to physical properties may have reduced the prediction accu-
racy of the regression model.

Figure 5 shows the results from the test data in pIC50 using RDKit. The
figure illustrates that the variability, in the results of variable selection,
was large across all variable selection methods, and the number of
selected random variables tended to be large for Boruta and r-Boruta. We
believe that there were variations in the results of the variable selection



Figure 4. Relationships between the MAE, the ratio of selected X, and ratio of selected random variables for the test data in logS dataset using Mordred: (a) ratio of
selected X versus ratio of selected random variables, (b) ratio of selected X versus MAE, (c) ratio of selected random variables versus MAE.

Figure 5. Relationships between the MAE, the ratio of selected X, and ratio of selected random variables for the test data in pIC50 dataset using RDKit: (a) ratio of
selected X versus ratio of selected random variables, (b) ratio of selected X versus MAE, (c) ratio of selected random variables versus MAE.
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due to the small number of samples. Furthermore, MAE tended to be
larger with r-Boruta than with Boruta. Here, it is apparent that the
number of selected random variables became larger after an improper
setting of r, while the number of samples was small, which reduced the
prediction accuracy of the regression model.

For the test data in pIC50 using Mordred, Figure 6 illustrates that the
number of selected random variables tends to be large for all variable
6

selection methods. This is probably because the number of samples is
small and the number of variables is large, making it more likely that
random variables that are accidently correlated with activity would be
selected. The number of selected random variables is larger in r-Boruta
than in Boruta. However, the MAE is smaller in r-Boruta, and the pre-
diction accuracy is higher. The MAE is smaller in LASSO. As the number
of samples is small and the number of variables is large, we believe that



Figure 6. Relationships between the MAE, the ratio of selected X, and ratio of selected random variables for the test data in pIC50 dataset using Mordred: (a) ratio of
selected X versus ratio of selected random variables, (b) ratio of selected X versus MAE, (c) ratio of selected random variables versus MAE.

Figure 7. Relationships between the MAE, the ratio of selected X, and ratio of selected random variables for the test data in pIGC50 dataset using RDKit: (a) ratio of
selected X versus ratio of selected random variables, (b) ratio of selected X versus MAE, (c) ratio of selected random variables versus MAE.
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the nonlinear method is prone to overfitting, whereas the linear method
of LASSO prevents overfitting.

The number of selected random variables is large in LASSO and small
in Boruta and r-Boruta for the test data in pIGC50 using RDKit, as shown
in Figure 7. Even though the number of selected random variables is
larger in r-Boruta than in Boruta, the MAE is smaller and prediction ac-
curacy is higher in r-Boruta. We believe this is because the exclusion of
7

important variables related to activity is prevented. Additionally, the
variability in the results of variable selection and results of the MAE is
larger in GAPLS and GASVR. However, in all methods of variable selec-
tion, the MAE generally tends to decrease when the numbers of selected
original X and selected random variables increases. It is important to note
that variables related to y are not excluded, and even if there are



Figure 8. Relationships between the MAE, the ratio of selected X, and ratio of selected random variables for the test data in pIGC50 dataset using Mordred: (a) ratio of
selected X versus ratio of selected random variables, (b) ratio of selected X versus MAE, (c) ratio of selected random variables versus MAE.

Figure 9. Relationships between the MAE, the ratio of selected X, and ratio of selected random variables for the test data in API1 dataset: (a) ratio of selected X versus
ratio of selected random variables, (b) ratio of selected X versus MAE, (c) ratio of selected random variables versus MAE.
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variables unrelated to y, various regression analysis methods can be used
to increase the estimation accuracy of the regression model.

For the test data in pIGC50 using Mordred, Figure 8 illustrates that the
number of selected random variables is large in LASSO and small in
Boruta and r-Boruta. Although r-Boruta has a larger number of selected
original X and random variables compared with Boruta, its MAE is
smaller and the prediction accuracy is higher. We believe that with r-
8

Boruta, the fact that variables related to y are not excluded helps improve
the prediction accuracy of the regression model by regression analysis
methods even when variables unrelated to y are present. The variability
in the MAE is larger in GAPLS and GASVR. As the number of X is large, it
is more susceptible to influence from the initial value in the GA.

The variable relationships of the test data for API1 are shown in
Figure 9. As shown in the figure, the number of selected original X is the



Figure 10. Relationships between the MAE, the ratio of selected X, and ratio of selected random variables for the test data in API2 dataset: (a) ratio of selected X
versus ratio of selected random variables, (b) ratio of selected X versus MAE, (c) ratio of selected random variables versus MAE.

Figure 11. Relationships between the MAE, the ratio of selected X, and ratio of selected random variables for the test data in Wheat dataset: (a) ratio of selected X
versus ratio of selected random variables, (b) ratio of selected X versus MAE, (c) ratio of selected random variables versus MAE.
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same between the LASSO and Boruta approaches, but the number of
selected random variables is larger in LASSO. This is believed to have
resulted in the selection of variables unrelated to y, which makes the
MAE larger and the prediction accuracy lower in LASSO than in Boruta.
The numbers of selected original X and selected random variables are
larger in r-Boruta than in Boruta. As Boruta has a smaller MAE and higher
prediction accuracy of the regression model than r-Boruta, we believe
9

that the non-exclusion of variables related to y is more important to the
prediction accuracy of the regression model than the inclusion of vari-
ables unrelated to y.

For the test data in API2, Figure 10 illustrates that the number of
selected random variables is large in LASSO and small in Boruta. The fact
that the variability in the MAE is large in GAPLS is apparently caused by
the differences in the initial values of the GA as a result of the small



Figure 12. Relationships between the MAE, the ratio of selected X, and ratio of selected random variables for the test data in Gasoline dataset: (a) ratio of selected X
versus ratio of selected random variables, (b) ratio of selected X versus MAE, (c) ratio of selected random variables versus MAE.
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number of samples. Despite the MAE in Boruta being similar to that of
other variable selection methods, both the number of selected original X
and number of selected random variables help construct a compact model
that is smaller than that achieved by other variable selection methods.

For the test data in Wheat, Figure 11 illustrates that the number of
selected original X and number of random variables are large in LASSO
and small in Boruta. However, the MAE tends to be smaller, and the
prediction accuracy of the regression model tends to be higher with a
larger number of selected variables. The MAE tends to be small, even
when the number of selected random variables is large. This is thought to
be because the number of selected original X is large when the number of
selected random variables is large. The number of selected random var-
iables was larger with Boruta than with r-Boruta, but the MAE tended to
be smaller, and the prediction accuracy of the regression model tended to
be better with Boruta. In variable selection, we can say that not deleting
variables related to y is more important to the accuracy of the regression
model than selecting variables unrelated to y.

The variability in the MAE is large in the LASSO, GAPLS, GASVR, and
Boruta approaches for the test data in Gasoline, as shown in Figure 12.
This may be attributable to the small sample size. Even in this situation,
the results of r-Boruta remain stable. We believe that it is important to set
an appropriate threshold for the percentiles in the Boruta approach.
When the number of selected variables is large, the MAE tends to be
small. Not deleting variables related to y can be considered an important
factor in variable selection.

4. Conclusions

In QSAR/QSPR, it is difficult to discuss the performance of variable
selection methods because the predictive performance of regression
models using the selected X depends on regression analysis methods.
Furthermore, because one of the purposes of variable selection methods
is to increase the interpretability of the regression model between
chemical structures and activities/properties, it is desirable to select
fewer variables and remove unnecessary variables. Therefore, in this
study, the performance of variable selection methods was discussed in
10
terms of multiple metrics: predictive performance of regression models,
proportion of selected variables, and proportion of selected random
variables in QSAR/QSPR. In this study, the variable selection perfor-
mance of the LASSO, GAPLS, GASVR, Boruta, and r-Boruta methods,
which were established based on the pseudo-correlation of the percentile
threshold in Boruta, was investigated. The investigation was performed
with respect to the prediction error of the regression model, number of
selected original X, and number of selected random variables. The pre-
diction errors in the regression model were evaluated using 24 regression
analysis methods. Thus, although variable selection methods are well-
established and being developed, it is possible to discuss variable selec-
tion methods in depth by validating the methods in terms of multiple
metrics, as proposed in this paper. It was confirmed that there is no best
variable selection method for all the three metrics and that each method
has its own characteristics.

The results showed that the number of selected original X and the
number of random variables were large in LASSO and small in Boruta.
GAPLS, GASVR, and r-Boruta fell between these two methods in terms of
these parameters. However, the prediction error of a regression model
does not necessarily increase with a larger number of selected random
variables. In r-Boruta, the number of selected random variables was
larger than that with Boruta, but the prediction error of the regression
model tended to be smaller. Even if X unrelated to y is selected by var-
iable selection, a regression model with good accuracy that ignores the
influence of such noise variables can be constructed by applying various
regression analysis methods. Thus, even if X unrelated to y is selected by
variable selection, it is important that X related to y is not deleted.

Although the results of variable selection and the MAE were stable in
both Boruta and r-Boruta, the variability in the MAE was particularly
large in methods such as GAPLS and GASVR. We believe that the results
were stable in Boruta because its calculation process incorporates a
testing and verification step, whereas the results of GAPLS and GASVR
were unstable because of their dependency on the initial value in the GA.
When the number of samples was small, random variables tended to be
more commonly selected by variable selection methods, thereby making
the MAE results unstable. We believe that the LASSO results in this
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situation were stable because it is a linear regression approach for
providing an analytical solution.

When the number of samples was large, such as with logS and
pIGC50, RDKit tended to have a small MAE when the number of selected
X was large; this is likely due to the small number of variables. The MAE
tended to be small when the number of selected random variables was
large; however, the number of selected variables is an important factor in
reality. Moreover, a pseudo-correlation exists between the number of
selected random variables and the MAE. In Mordred, the MAE tended to
be large when the number of selected random variables was large, pre-
sumably because of the large number of features, and it is thought to be
due to the influence of random variables.

As the numbers of selected X and random variables were small in
Boruta, it can be effective for interpreting the results of variable selec-
tion. However, due to the possibility that variables related to y are
deleted and the prediction accuracy of the regression model decreases,
care is required when using this approach. Such risks can be reduced by
setting a percentile threshold for Boruta based on pseudo-correlation.
The number of selected X was large in LASSO; this can reduce the like-
lihood of X related to y being deleted. However, as many X unrelated to y
are also selected, it is difficult to interpret the results of variable selection.

Therefore, our examination of variable selection was diverse and
detailed, through the evaluation of variable selection methods based on
the prediction error of the regression model, number of selected original
X, and number of selected random variables. The discussion in this paper
is expected to promote the development of variable selection methods in
the future.
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