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A B S T R A C T

Anaerobic digestion (AD) is one of the most extensively accepted processes for organic waste
cleanup, and production of both bioenergy and organic fertilizer. Numerous mathematical models
have been conceived for modeling the anaerobic process.
In this study, a new modified dynamic mathematical model for the simulation of the

biochemical and physicochemical processes involved in the AD process for biogas production was
proposed. The model was validated, and a sensitivity analysis based on the OAT approach (one-at-
a-time) was carried out as a screening technique to identify the most sensitive parameters. The
model was developed by updating the bio-chemical framework and including more details con-
cerning the physico-chemical process. The fraction XP was incorporated into the model as a
particulate inert product arising from biomass decay (inoculum). New components were included
to distinguish between the substrate and inoculum, and a surface-based kinetics was used to
model the substrate disintegration. Additionally, the sulfate reduction process and hydrogen
sulfide production have been included. The model was validated using data extracted from the
literature. The model’s ability to generate accurate predictions was testified using statistical
metrics. The model exhibited excellent performance in forecasting the parameters related to the
biogas process, with measurements falling within a reasonable error margin. The relative absolute
error (rAE) and root mean square error (RMSE) were both less than 5 %, indicating a high ability
of the current model in comparison with the literature. Additionally, the scatter index (SI) was
below 10 %, and the Nash-Sutcliffe efficiency (NES) approached one, which affirms the model’s
accuracy and reliability. Finally, the model was applied to investigate the performances of the AD
of food waste (FW). The findings of this study support the robustness of the developed model and
its applicability as a virtual platform to evaluate the efficiency of the AD treatment and to forecast
biogas production and its quality, CO2 emission, and energy potential across various organic solid
waste types.

1. Introduction

Recently, the world experienced rapid urbanization, accompanied by a significant expansion of the economy, industrialization, and
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human civilization. As a result, the global energy demand has increased, leading to a series of critical problems: the environmental
impact (pollution, global warming, emissions of greenhouse gases) and the exhaustion of fossil fuel reserves owing to high con-
sumption [1]. Consequently, the world faces the danger of climate change and the threat of an energy crisis, which could have
damaging ramifications for the environment, human health, and the energy security of different countries [2]. These negative impacts
have raised the awareness of the necessity to restrict the utilization of fossil fuels and shift towards energy sources that are safe,
affordable, and sustainable [3]. The solution is to adopt an energy strategy focused on the realization of a transition to an environ-
mentally friendly economy based on renewable energies by partially abandoning fossil fuels and evolving towards an energy mix that
prioritizes green energies. Based on this, a considerable investment of efforts is essential in exploiting renewable sources and devel-
oping and optimizing the various conversion technologies to amplify their field of application in different sectors, particularly industry
[4]. In this context, the valorization of biomass into energy represents a valuable source of bioenergy [5], playing a fundamental role in
limiting the emission of greenhouse gases and contributing to sustainable development. In this optic, AD is one of the most efficient
methods of exploiting a wide variety of biodegradable organic wastes [6] to produce a clean energy source known as biogas. It is
composed of approximately 50–75%methane (CH4), carbon dioxide (CO2), and other trace gases (nitrogen N2, carbonmonoxide (CO),
and hydrogen sulfide (H2S)), and is usually saturated in humidity [7]. Biogas is a polyvalent biofuel representing an ecological and
economical option utilizable in numerous applications as fuel in cogeneration systems to produce electricity and heat [8] or purified by
removing carbon dioxide and used as natural gas [2] or stored and used later to compensate the intermittency of systems based on solar
and wind energy. Indeed, biomass’s proportion of the global renewable energy sector is around 77 %, contributing nearly 10 % of the
world’s energy supply [7]. The International Energy Agency estimates that bioenergy will experience significant progress by 2030, and
by 2050, this energy source could produce 30 % of the energy consumed in the world [9]. Consequently, AD technology represents a
strategic and promising choice for advancing renewable energies [10], accompanied by biogas, which is a future sector worldwide.

Recently, AD has gained considerable attention as an advantageous option for treating organic waste [11]. The AD process is
employed for treating a variety of waste types, including vegetable biomass [5], fish farm waste [12], fruit and vegetable waste [13],
food waste [14], and agricultural waste [15].

Generally, the substrate used in the AD process can contain sulfur in various forms, such as sulfate, which during AD is reduced to
hydrogen sulfide (H2S) by the action of microorganisms called SRB (sulfate reducing bacteria) [16]. Concentrations of free H2S close to
100 mg/L in the liquid phase inhibit almost 50 % of the methanogenic activity [17]. A high H2S content in biogas leads to a corrosive
effect that can severely damage the various equipment used in AD plants and energy conversion systems. In addition, during the
combustion of biogas, the gaseous H2S is transformed into sulfur oxide (SOx), which is detrimental to the natural environment and
health [18]. In the case of CHP systems, the permitted H2S concentrations must be between 200 ppm and 500 ppm to ensure stable,
efficient system operation [18].

Anaerobic digestion is a naturally biological degradation process based on a series of biochemical and physical-chemical reactions
performed by a complex ecosystem of microorganisms (microbiota) [8,19]. This ecosystem produces, consumes, and exchanges
different components in an anaerobic environment [20] to gradually convert the organic matter into a biogas enriched in methane and
a biofertilizer with a high mineral content [21]. The microorganisms involved in the various phases of the anaerobic digestion process
vary according to their physiology, nutritional requirements, kinetics of growth, and sensitivity to the environment [2]. Clearly, the AD
is a complex process microbiologically, operationally, and chemically [22], posing problems of stability and monitoring due to its
sensitivity to changes in environmental conditions [19].

To understand the AD process, evaluate the quality of the biogas produced (in terms of CH4 and H2S levels) and its upgrading, and
to develop optimized AD technologies, we necessitate the employment of a mathematical model, which will offer the possibility of
simulating the biological system and acquiring information concerning its operation [20,23] and energy performance.

Various AD models came into development, and the most famous and extensively used is the mathematical model ADM1 [24].

1.1. An overview of literature

The Anaerobic DigestionModel n◦ 1 (ADM1) is a mathematical dynamic model developed by the InternationalWater Agency (IWA)
in 2002 [25]. Is a structured model that incorporates most of the biochemical and physicochemical processes involved in the anaerobic
degradation of the organic substrates [26].

Initially, the ADM1 was intended for modeling the anaerobic digestion of sewage sludge at mesophilic or thermophilic tempera-
tures, but subsequently, it has been extensively applied to a variety of substrates, as documented in several research studies. For
instance,

Fezzani Boubaker and al. [27] have developed a version of the ADM1 model to simulate the anaerobic mesophilic co-digestion of
olive mill wastewater (OMW) with olive mill solid waste (OMSW). The researchers introduced a non-competitive inhibition function
that considers the inhibition of methanogens caused by high concentrations of VFAs. This inhibition function was included in the
acetate uptake process. The results of validation step showed, that the ADM1 model was able to generate modest predictions con-
cerning biogas production for the case of a concentration of 80 g COD/l and a 12-day HRT. Further, Fezzani Boubaker (2009) [28]
focused on improving the co-digestion of OMW with OMSW by modifying the original basic structure of ADM1 by adding extensions
representing the inclusion of phenolic compounds and the process of their degradation to benzoate and then acetate, with the use of
non-competitive inhibition functions to consider the inhibitory effects of these compounds. The comparison of simulations with
experimental data has shown that the enhancement of the ADM1 model allowed the generation of accurate predictions for the
steady-state results of gas flow rate, and soluble phenol concentrations for various influent concentrations under mesophilic condi-
tions. The inconsistencies gap observed between the model output and the experimental results related to the weak modeling of the
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anaerobic digestion process.
Another application of ADM1 is the treatment of different types of industrial wastewater, such as effluent from the pharmaceutical

industry, investigated by Recep Kaan Dereli and al. [29]. These Turkish researchers used the ADM1 model to simulate and analyze the
experimental data from a laboratory-scale reactor (UASB) treating opium alkaloid wastewater under mesophilic conditions (35 ◦C). In
the study, the disintegration process was applied just for the lysis of biomass and the fractionation of particulate COD, because of the
high degradability and rapid hydrolysis of opium alkaloids in wastewater. The results of the validation phase indicated that the
calibrated ADM1 model was able to predict experimental results for methane, and biogas flows with low accuracy for high OLR. The
researchers observed that the precision of the model’s prediction decreased with increasing OLR. In these conditions, the model
simulated an overloaded situation while the reactor was operating correctly, leading to an overestimation of the biogas and methane
flow values.

Moreover, the ADM1model is also be used for modeling the DA of lignocellulosic biomass. For example, T. Thamsiriroj and al. [30]
have utilized the ADM1 model to investigate the mono-digestion of grass silage in a two-stage wet process with recirculation of the
liquor between 2 digesters in series. In the last 15 days of calibration, the average methane yield was estimated by the model with
acceptable error compared to the experimental value.

In other studies, many researchers have chosen to use ADM1 to study the AD of organic waste. Haidong Zhou and al. [31]
introduced a short modification into ADM1 model to explore the AD of different organic wastes (biowaste, cow manure, and corn
silage) in mono-digestion and co-digestion. The study aimed to perform simulations to analyze the impact of variations in operating
conditions of HRT, SRT, feeding time intervals, and input ratios of two substrates on biogas production from organic waste.
Furthermore, the researchers implemented the ADM1 platform to develop and test a control system, which showed acceptable per-
formance in maintaining methane flow and reactor stability.

Another feature is the ability of ADM1 to model the DA of a mixture of different substrates. For example, Katarzyna Bułkowska and
al. [32] have used the ADM1xp model to simulate the co-digestion behavior of maize silage and cattle manure. The fit between model
predictions and experimental data concerning biogas/methane production, pH, and VFA concentrations was evaluated using an
objective function Jc. The value of Jc was high for biogas production due to its fluctuations during the experiment, which implied to
the low ability of the modification of the model developed by the author’s [32].

Besides, the ADM1 model was also applied in investigating the AD of agro-waste from agricultural activities. For instance, Jing
Wang and al. [5] evaluated the AD and biogas production of vegetable biomass under high salinity and mesophilic conditions based on
dynamic simulations of the ADM1 model and laboratory-scale experiments. The kinetic model was updated by incorporating oxalic
acid and sulfate reduction reactions. The model was programmed and solved numerically by GPS X (process simulator) software and
then calibrated using experimental data from two reactors operating with two different salts present in the soil.

Sunil Prasad Lohani and al [33], have used the ADM1 to model and simulate the AD process of domestic wastewater treated in an
up-flow anaerobic sludge bed (UASB) reactor. The calibration of the ADM1 model and the evaluation of its applicability were made
using experimental data from a pilot-scale UASB reactor operated in different HRTs and at variable loading conditions. Generally, the
model generated estimations with an error of 10 % and showed a poor agreement with the experiment process. The validated model
was applied to the analysis and the simulation of a real scenario concerning biogas production performance estimations for the
University of Nepal’s domestic wastewater treatment plant, pre-treated in a septic tank. The results of this study have demonstrated
that the ADM1model needs additional modifications to represent a powerful tool to predict the behavior of a realistically operating AD
system and, consequently, its employability in the analysis of feasibility, design, and operation of WWTPs.

In a similar context of testing the applicability of the model to real plant systems, we cite the work of Piotr Biernacki and al. [33],
who have evaluated the ability of the ADM1xp model based on the CHC approach to describe the productivity of an existing
industrial-scale biogas plant, fed with a mixture of cattle manure and food waste. In their study, the researchers followed a pragmatic
approach aiming to adjust only the disintegration kinetic constant for each substrate without evaluating the effects of the hydrolysis
parameters (CHC approach). To test this approach, the researchers also adopted another ICH approach, which aimed to modify the
hydrolysis parameters individually for each substrate. The comparison revealed that the ICH approach accurately predicted the total
biogas produced with an error of 1.84 %, contrary to the CHC approach, which showed a very low predictive accuracy. The findings
highlighted that a reduction in the adjusted parameters led to a lowering of the accuracy of the model simulation. This confirms that a
correct characterization of the substrate and optimization of the most sensitive parameters of the model can improve the performance
of the ADM1 and, consequently, its usefulness as a tool for simulating biogas plants.

Another benefit of the ADM1 model is the possibility to be applicable in modeling the start-up process, an important aspect to
consider in the design of an AD system. In this context, A. Normak and his co-workers [34] have used an improved version of ADM1 to
simulate the start-up of a pilot reactor fed with fresh cattle slurry. The improvements to the ADM1 model concerned the reformulation
of the equation describing hydrolysis by integrating the Contois model and the function of inhibition of hydrolysis by VFAs and the
addition of a new variable representing the concentration of inert gases in the headspace to represent the start-up phase accurately. The
calibrated model showed good simulation results when it was tested in the case of a digester start-up fed with preconditioned cattle
slurry. However, performing a detailed analysis of the substrate and inoculum, together with the calibration of sensitive parameters,
will optimize the predictions of the ADM1 model, which will be able to provide valuable information on the self-start-up period and
assist in predicting the total start-up time, as well as providing a better understanding of fluctuations in process parameters. The
application of ADM1 in the study of the initial state of the digester can be a wise strategy in defining feed effluent characteristics to
minimize the time needed to attain maximum biogas production.

The forecasting capacity of the original ADM1 model remains limited, as it does not consider many processes and components
(exclusion of: precipitation/dissolution process of metal ions, sulfate reduction, trace elements …) due to the necessity to consider a
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large number of parameters and components that will increase the complexity of the model.
These limitations have motivated various researchers to focus on modifying the basic structure of the ADM1 model to a more

complicated form, to provide a more detailed description of the various mechanisms involved in the AD process, helping to optimize
the model’s prediction results.

Indeed, based on the standard version of the ADM1 model, numerous researchers developed modified versions for adapting the
ADM1 to a specified application or modeling a defined substrate. One of the shortcomings of the original ADM1 model is that the dead
biomass of all groups of degrading organisms is recycled to the composite particulate substrate XC, to be treated again by the same
disintegration process; this means combining two processes into a single process describing both the conversion of the substrate XC and
the generation of decomposition products, which is not the reality. In addition, the component XI includes the inert products resulting
from the disintegration (initial stage of DA) of XC and the inert decomposition products (process carried out during DA); these two
products have different nitrogen contents. This structure affects the evolution of the nitrogen content during the AD process, creating
discrepancies in nitrogen conversion. To solve this kind of problem and improve the predictability of nitrogen release by the ADM1
model, the researchers B. Wett and al. [35] have introduced a new compound XP representing inert decay products, produced with a
factor of decomposed biomass. This modification distinguishes between biomass disintegration and decomposition processes, which
weren’t made in the original ADM1. The model was applied to the modeling of primary and secondary sludge at the laboratory scale,
and it was able to describe adequately the experimental results. The model was implemented by ifak system (IFAK 2009, Germany)
[32].

Additionally, we found studies that focused on the modification of the kinetic rates adopted in the model. For instance, Francis
Mairet and al. [36] who have employed the original ADM1 model and a modified version based on the Contois kinetics for modeling
hydrolysis steps to describe the AD of microalgae. The comparison between the two models showed that the modified version was able
to describe accurately the experimental data except for the methane content, which was underestimated. This may be due to pH
underestimation, as explained by the authors, who suggested that a detailed substrate characterization could improve pH and methane
prediction. The findings of the study suggested that the ADM1 could be a valuable tool to represent the coupling of microalgae with
anaerobic digestion processes and its optimization.

Other studies have focused on the addition of new components or processes. For example, Yang Zhang and al. [37], who have
extended the ADM1 model by introducing several modifications: adjustment of the inorganic carbon and nitrogen balance to achieve
equilibrium between carbon and nitrogen contents during AD, incorporation of inorganic phosphorus, and inclusion of the metal ion
precipitation process. The simulations carried out by the modified model showed that the initial concentrations of calcium and
magnesium ions and the change in the ratio of inorganic nitrogen and phosphorus affect methane production in the gas phase.

Luigi Franzo et al. [26] proposed a modified version of the ADM1model able to simulate the complex dynamics of TEs precipitation
and uptake in anaerobic conditions. The modified model takes into consideration the processes of precipitation and dissolution of trace
elements (Ni, Co, and Fe) in AD; these processes were added in the form of new reactions of association/dissociation and precip-
itation/dissolution that takes account the interactions of trace elements with inorganic carbonate, phosphate, and sulfide. The sim-
ulations carried out using the modified ADM1model showed the effects of trace elements and the initial sulfur-phosphorus ratio on pH
evolution and therefor on the methane production rate.

For some substrate types, the original ADM1 formulation needs to be updated to take into account the complex nature of the
substrate and its composition, which will contribute to improving the model’s prediction results. For example, but not limited to, the
study conducted by Poggio et al. [38], who have described the composition of the substrate as a function of new fractions to be
included as new state variables in ADM1 to improve the prediction of methane production. Indeed, they proposed a novel methodology
for fractionating solid organic substrates into particulate and soluble fractions based on a combination of a biochemical approach
based on elemental analysis of the substrate and a kinetic approach based on data from bioreactor experiments. Based on batch data,
the researchers found that the best fractionation model for green waste was that which included a particulate and a soluble fraction
(model XS, with rAE = 4.3 % and R2 = 99.1 %), whereas, for food waste, two particulate fractions were necessarily recommended
(model XX, with rAE = 3 % and R2 = 99.4 %). The results of the validation step revealed the ability of the modified model to generate
good predictions for methane-specific yield, total and volatile solids, ammonia, and alkalinity, but was less precise for predicting
methane instantaneous flow rate, pH, and VFA. This issue may arise due to several factors, including the inherent limitations of the
ADM1 model, which does not account for various processes that can influence pH and methane production, such as sulfate reduction
and solids precipitation. Additionally, reliance on default values for most ADM1 parameters is often inaccurate, as these parameters
can vary depending on the substrate’s nature and operational conditions, such as inhibition parameters. Furthermore, the experi-
mental conditions and methods used, particularly for measuring pH and alkalinity, can result in low-quality data.

The application and modification of the ADM1 model have been carried out through its implementation and coding in various
computer programs such as: i) AQUASIM 2.1 [39], ii) SIMBA [40], iii) MATLAB [26], iv) Phyton [41], v) Julia Programming Lan-
guage’s [42], and Aspen Plus [43].

1.2. Research context and objectives

From the literature, it is clear that the ADM1model has proved to be a valuable tool for simulating the anaerobic digestion of a wide
range of organic wastes, supporting the design and management of industrial plants, and predict system behavior under different
operating conditions. In addition, the ADM1 model can constituting a common platform offering the opportunity to refine the basic
structure of the model to adapt it to a given substrate or specific application.

Consequently, the high performance of ADM1 in modeling AD encouraged us to develop a modified mathematical model to cover
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part of the gaps found from research in the literature; in order to improve understanding and optimization of the AD process.
From the literature, it has been noted that:

− In the studies (mentioned above), most of the substrates used in AD are composed of a particulate fraction that has not been
considered in modeling the process.

− During modeling, substrate and inoculumwere represented by a single variable (Xc) in the ADM1model input. The two compounds
have different characteristics, which need to be considered separately, especially when modeling AD with data from experimental
experiments.

− In the modified version of ADM1 (ADM_xp) developed by Wett and al. [35], the fraction of biodegradable products resulting from
biomass decomposition is recycled to the Xc component, which takes into account substrate and inoculum without distinction
between them.

− Predicting and validating the transfer of H2S to the gas phase has been the subject of limited research, despite its importance in the
anaerobic conversion of organic waste.

In this context, the model has been modified and extended to consider:

- The difference between the influent (substrate) and the inoculum, as being two compounds with different characteristics, will be
represented by two separate variables in the model.

- The effect of particle size by using surface-based kinetics to accurately model the disintegration process of organic waste, as
suggested by Esposito and al. [44].

- That inoculum decomposition during AD leads to the formation of a fraction of biodegradable products, which are recycled another
time to the inoculum, and an inactive inert particulate fraction represented separately by XP, as proposed by Wett et al. [35].

- The extension proposed by Batstone [16] for modeling the sulfate reduction process as a simple method for predicting the levels of
H2S expected to be produced in the case of AD of organic waste containing low sulfate concentrations. It will enable an initial
evaluation of biogas quality and its suitability for use as fuel for CHP systems.

Furthermore, we provide a comprehensive validation and calibration framework for our model, drawing on experimental data from
a variety of AD investigations. We demonstrate the accuracy and dependability of our model across multiple operating circumstances
and feedstock compositions using rigorous validation against experimental data, increasing confidence in its prediction capabilities.
The modified model can allow for a more accurate assessment of system behavior and the adjustment of operating parameters to
improve process efficiency.

Accordingly, this study seeks to achieve several goals, notably:

• Process understanding: modelling provides a better knowledge of the mechanism and reactions taking place in AD. It includes
identifying the different stages of the process, the microbial species involved, and the key parameters and factors that influence
biogas yield.

• Performance forecasting: using equations and mathematical functions, the model can predict the performance of the AD system.
Including the volume of the biogas produced, the methane production rate, reaction time profiles, and more. These predictions are
fundamental in estimating the economic viability and sustainability of the process.

Fig. 1. The phases of the anaerobic digestion process [47].
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• Process optimization: the modified model can serve as a tool to optimize the various parameters especially in determining the most
favorable conditions of temperature, pH, carbon/nitrogen (C/N) ratio and organic load to maximize biogas production.

• Cost reduction and environmental impact: through optimization of the biogas production process, we can improve overall effi-
ciency and also cut operating costs. Additionally, the model has the ability to predict the greenhouse gas emissions associated with
biogas production and to identify the means of minimizing the environmental impact.

• Planning and conception of new installations: the model also allows the designing new AD plants based on site-specific parameters
and the availability of primary feedstock. That facilitates preliminary planning and adapting the process to the local environmental
conditions.

In summary, our paper represents a significant advancement in the modeling of AD systems independently to the type of digester
and mode function, offering a more comprehensive, dynamic, and user-friendly tool for understanding and optimizing the biological
process of AD. By addressing key limitations of existing models and incorporating novel features, our study suggests that the modified
model can contributes to the advancement of both academic research and industrial practice in the field of anaerobic digestion.

2. The anaerobic digestion process

Anaerobic digestion is performed according to a succession of five phases (Fig. 1):

- Hydrolysis phase, also called solubilization [45], where proteins, lipids, and carbohydrates are decomposed into simple monomers
(amino acids, LCFAs and simple sugars) by extracellular enzymes [13].

- Acidogenesis or fermentation process, where the products of hydrolysis are degraded into volatile fatty acids (VFAs) (such as
acetate, butyrate, and propionate) with the production of hydrogen (H2), alcohol and carbon dioxide (CO2) [2].

- Acetogenesis or anaerobic oxidation, during which VFAs (propionate and butyrate) and alcohols are oxidized to acetate, dihy-
drogen, and carbon dioxide [2].

- Methanogenesis process, which is divided into two sub-processes. The first process is acetoclastic methanogenesis, based on the
cleavage of acetate to methane and carbon dioxide [46]. This pathway is considered the predominant acetate degradation pathway
in the mesophilic condition and is responsible for producing approximately 70 % of the total methane in the AD process [47,48].
The secondary pathway is hydrogenotrophic methanogenesis, using hydrogen and carbon dioxide to form methane [22]. This
process produces nearly 30 % of the total methane in AD [49].

The AD process can be performed under three temperature conditions: psychrophilic (< to 25 ◦C), mesophilic (between 25 ◦C and
40 ◦C with an optimum temperature between 35 ◦C and 37 ◦C) and thermophilic (between 45 ◦C and 64 ◦C with an optimum of 55 ◦C)
[13,48].

Various physical and operational parameters affect the development of AD and its performance [50], such as:

- The temperature inside the anaerobic digestion system which plays a crucial role in the growth of the bacteria and their activity.
- The pH levels that vary according to the quantity of the chemicals produced and consumed in the reaction environment [12]. A
neutral pH is preferable for AD, ranging from 6.8 to 7.2 [51].

- The organic loading rate, considered an essential parameter for the design of the digester [52], given its influence on the various
biochemical mechanisms in the process and influences biogas production [51,53].

- Agitation, an important parameter in the operating conditions for the digester [10,54], that can impact the efficiency of AD by
influencing biogas production and energy consumption [55].

On the other hand, the physicochemical conditions of the reaction environment during AD are critically affected by the inhibition
parameters, that can disrupt the microorganisms [49] and limiting or even halting their activities [50], leading to the process failing
[49] in critical situations. Inhibition and toxicity factors include:

- Hydrogen sulfide (H2S): at levels above 800 mg/L, it is a toxic component for methanogens, and can lead to the cessation of
methane production.

- Light metals (Na, Ca, K and others): excessive quantities cause cell dehydration.
- Pp,H2 : in abundance can inhibit acetogenesis reactions. The partial pressure of dihydrogen must be under (10− 4 atm) [56].
- NH3: a toxic agent capable of penetrating cell membrane. It is an inhibitor that affect microbial activity, particularly acetoclastic
methanogens.

- Heavy metals (Co, Zn, Cu and others): high concentrations damage the enzymatic function and structure of bacteria.
- Volatile Fatty Acids (VFA): concentrations exceeding 10 mg/L inhibit the growth of methanogens.

M. Mihi et al. Heliyon 10 (2024) e38472 

6 



3. Materials and methods

3.1. Basic physical model structure of AD process

3.1.1. Biochemical framework
The ADM1 models the bio-chemical process by the inclusion of two phases:

• The extracellular steps incorporate disintegration as the first non-biological phase of AD, followed by the enzymatic hydrolysis
phase [23]. These phases are modeled by the first-order kinetics described by equation (1) [39]:

ρ = kdis,hyd × Xdis,hyd (1)

ρ: is the rate of disintegration or hydrolysis of the substrate (Kg COD/m3).
kdis,hyd: the kinetic parameter of hydrolysis or disintegration (d− 1).
Xdis,hyd: the concentration of the particulate substrate (Kg COD/m3).

• The intracellular steps include acidogenesis, acetogenesis, and methanogenesis [37]. These phases are described by Monod ki-
netics based on substrate uptake, related to biomass growth [57], and expressed by equation (2) [39]:

ρ = km,i ×
Si

KS,i + Si
× Xi × I (2)

i: su, aa, fa, va, bu, pro, ac, h2.
km,i: is the Monod’s maximum specific absorption rate for the substrate i (Kg COD substrate/Kg COD biomass).
Si: concentration of substrate i (Kg COD substrate/m3).
Xi: biomass concentration i (Kg COD biomass/m3).
KS,i: the half-saturation value (Kg COD/m3).
I: the inhibition functions.

The biomass death rate was modeled using a first-order equation (3):

ρ = kdec × Xi (3)

kdec: first order decay rate (d− 1).

Fig. 2 shows the structure of the biochemical phases in the ADM1 model.

Fig. 2. The steps of the AD process in the ADM1 model [30].
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3.1.2. Physicochemical framework
It represents all the non-biological reactions characterizing the various mechanisms and physicochemical exchanges inside the AD

system. The modeling of physicochemical transfers is fundamental in determining and estimating different parameters, such as pH,
alkalinity, biogas flow rate, and methane production [39].

• Liquid phase equations:

The dynamic evolution of the state variables of each component present in the liquid phase, is described by the following equations
(4) and (5) [27]:

For soluble matter S:

dSliq,i
dt

=
q
Vl

(
Sin,i − Sliq,i

)
+

∑

j=1− 19
ρj vi,j ; i = 1 − 12 (4)

For particulate matter X:

dXliq,i

dt
=

q
Vl

(
Xin,i − Xliq,i

)
+

∑

j=1− 19
ρj vi,j ; i = 13 − 24 (5)

q: the inlet and outlet flow rates of the digester (m3/d).
Sin,i: the entry concentration of soluble component i (Kg.COD/m3), except for inorganic carbon IC and inorganic nitrogen IN (kmol/
m3).
Xin,i: the input concentration of the particulate component and biomass i (Kg.COD/m3).
Sliq,i: the concentration of the soluble state variable.
Xliq,i: the concentration of the particulate state variable and biomass.
∑

j=1− 19ρj vi,j : this term refers to the sum of the kinetic rates ρj for each process j multiplied by vi,j the stoichiometric coefficient
determined from the Gujer matrix.

Acid-base equations:
The ADM1 model incorporates the following acid/base pairs: acetic acid/acetate, propionic acid/propionate, butyric acid/buty-

rate, valeric acid/valerate, carbon dioxide/bicarbonate (HCO−
3 ), ammonium/ammonia [26]; which are deployed to describe the

acid-base equilibrium. The kinetic acid/base reaction rates are calculated according to formula (6):

ρA/B, i
= kA/B, i

(
Sliq,i− ×

(
Ka,i + SH+

)
− Ka,i × Sliq,i

)

(6)

ρA/B, i
: the production rate of base B from acid A for component i.

kA/B, i
: the kinetic parameter A/B for the acid of component i.

SH+ : the hydrogen ion concentration.
Sliq,i: the total concentration of the free form of the component I in the liquid phase.

The pH evolution during the AD process is determined from the concentration of dihydrogen ions, calculated based on the charge
balance equation expressed by formula (7):

∑
Scat+ +

∑
San− = 0 (7)

The pH is calculated using the following expression (8):

pH = − log10 (SH+ ) (8)

• Gas phase equations:

The modeling of the liquid-gas transfer process is extremely useful for predicting the energetic performance of the AD system, in
terms of biogas quality and the rate of methane production.

The conversion of methane (CH4), carbon dioxide (CO2), and dihydrogen (H2) into gaseous form is modeled by the dynamic
equation representing the concentration of the gaseous dynamic state variable based on equation (9):

dSg,i
dt

= −
qg
Vg

Sg,i + ρT,i
Vl

Vg
; i = CO2,CH4 et H2 (9)
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Sg,i: the concentration of the gaseous component in the liquid phase.
qg: biogas flow rate (m3/d).
Vg: the gas volume in the digester (m3).

The mass transfer of these components from the liquid phase to the gas phase is modeled using the dynamic equation for the gas
transfer rate [23], based on equilibrium between liquid and gas phase. The rate equation is expressed using formula (10):

ρT,i = kLa
(
Sliq,i − KH,i×pg,i

)
(10)

i: H2, CH4 et CO2.
ρT,i: the specific mass transfer rate of the gas i.
kLa: the liquid-gas transfer coefficient (d− 1).
Sliq,i: the concentration of gaseous component i in the liquid phase corrected by factors 16 and 64 for H2 and CH4 (respectively) to
account for their COD.
pg,i: the partial pressure of the gaseous component i in bar calculated from the ideal gas law.

The biogas production rate (flow rate) is determined according to equation (11), as follows:

qgas = kp
(
Pgas − Patm

)
× Pgas

/
Patm (11)

kp: the pipe resistance coefficient (m3.j− 1.bar− 1).

3.2. Development of the modified model

In the present study, the basic structure of the ADM1model described previously has been updated by adding new components and
processes to enhance the quality of the model’s numerical simulation results. The modifications applied to the model relate to:

3.2.1. The distinction between substrate and inoculum
In the original ADM1, the organic matter inside the digester is described by the state variable XC, which refers to the particulate

composite material undergoing the various stages of AD for biogas production. The ADM1 model does not distinguish between the
substrate (organic matter) and the inoculum, which represent two components present in the digester possessing different charac-
teristics, requiring them to be considered separately and not characterized by the same variable [58]. Consequently, the model was
modified to incorporate two new state variables to individually characterize the substrate (XC_sub) and inoculum (XC_inoc), each pro-
cessing experiencing a different disintegration process.

The disintegration of the inoculum was modeled by first-order kinetics (ρ1-inoc), following the original ADM1. The disintegration of
the substrate was modeled by surface-based kinetics (ρ1-sub), which takes into account the effect of substrate particle size by the
introduction of the parameter a* for a more accurate description of microbial substrate decomposition, especially in the case of solid
organic waste (for example food waste) [59]. The expression for the substrate disintegration rate is the following (12):

ρ1− sub = kdis,sub × a* × XCsub (12)

The parameter a* represents the overall surface area of the organic particles to be disintegrated per unit mass (m2/kg) [44],
calculated using the following equation (13) [44]:

a* =
3

δ × R
(13)

with: δ is the density of the substrate (kg/m3) and R is the radius of the substrate particles (m).
The term kdis,sub is the specific rate of surface disintegration, which depends on the nature of the substrate [44].

3.2.2. The separation between biomass decomposition and disintegration
In the original ADM1, the state variable XC is used to simultaneously describe the conversion process of the feed substrate and the

recycling process of the decomposed (dead) biomass products generated during AD. To differentiate between the two processes of
disintegration and decay, we have introduced the change proposed byWett and al. [35], which consists of integrating a new compound
XP representing the inert particulate products arising from biomass decomposition.

Wett and al. [35], have stoichiometrically described the distribution of the resulting dead biomass into a biodegradable fraction
recycled in XC and a non-biodegradable fraction represented by XP.

The new change reported in our study is the consideration that:

• The biodegradable products of the biomass decomposition feed the inoculum (XC_inoc), to be distributed between Xch, Xli and Xpr.
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• The compound XP proposed by Wett and al. [35], stands for the accumulation of the inactive particulate fraction resulting from
biomass decomposition (inoculum), depending on a decomposed biomass factor fp.

3.2.3. The inclusion of the sulfate reduction process
Themodeling and simulation of the sulfate reduction process in AD is an absolute necessity, enabling the prediction of the evolution

of the H2S concentration and its influence on the stability and productivity of the anaerobic process. This will allow a more
comprehensive analysis of the system and a clearer understanding of its operation, notably in the case of preliminary studies for large-
scale installations.

a. Description of the biological sulfate reduction process:

Sulfate reduction can be described according two different methods, depending on the concentration of sulfate in the substrate
feeding the digester.

In our study, we have chosen to adopt the approach proposed by Batstone for modeling sulfate reduction, as an appropriate method
for initially predicting H2S concentration in the liquid and gaseous phases, in the case of wastes with a SO2−

4
/
COD ratio of less than 0.1

(substrate with low sulfate concentration) [16].
In the extension proposed by Batstone [16], the soluble sulfate is reduced to H2S, HS− , and S2 in the liquid phase by the intervention

of SRB bacteria which use hydrogen as an electron donor (XhSRB) (oxydation of available hydrogen) under anaerobic conditions,
according to the reactions below (14)–(15):

4H2 + H2SO4→H2S+ 4H2O (14)

4H2 + SO2−
4 + H+→HS− + 4H2O (15)

S2− was excluded from the model (neglected), as the simulated pH values before adding the extension were within the neutral
range, where S2− is present in low amounts.

b. Kinetics of the sulfate reduction process:

The inclusion of this new process, implied the integration of three new state variables: SIS (total reduced sulfides), SO2−
4 (sulfate),

and XhSRB (sulfate-reducing bacteria).
The process of sulfate reduction is described by the uptake rate of hydrogen by hSRB bacteria. The rate equation for this process is

modeled by Monod-type kinetics, including sulfate concentration (electron acceptor) and dihydrogen concentration (electron donor),
according to the following formula (16):

ρuptake,hSRB = km,hSRB ×
Sh2(

KS,h2 + Sh2
)×

SSO4(
KS,SO4 ,hSRB + SSO4

)×XhSRB × IH2S,inhibition × IpH,hSRB (16)

During AD, sulfate-reducing bacteria (SRB) in the anaerobic environment can inhibit the methanogenesis process by two mech-
anisms. The first is the production of H2S, which represents a toxic component when it is present in the free form in the liquid phase,
due to its ability to diffuse across the cell membrane, adversely affecting the growth of methanogens and thus perturbing the process of
methane production [60,61]. The inhibitory effect of H2S in undissociated form on hydrogen-consuming microorganisms, was
modeled by a non-competitive function based on the following equation (17):

IH2S,H2 =
1

(

1+

(
SH2S

KI,H2S,H2

))
(17)

The second mechanism of inhibition is the competition between XhSRB and the hydrogenotrophic methanogens for hydrogen, which
represent the common substrate, used as electron donors simultaneously utilized by the two groups of anaerobic microorganisms in
their growth and the elaboration of various products, such as methane [17,60].

In addition, pH inhibition on hSRB bacteria (IpH,hSRB) was considered, and modeled analogously to the empirical function for pH
inhibition for acetate, hydrogenated amino acids, in the original ADM1.

Concerning the acid-base equilibrium process, the new acid/base pair H2S/HS− was added to the model. The production rate of H2S
from HS− has been calculated by the following equation (18):

ρA/B,H2S
= kA/B,H2S

(
Sliq,HS− ×

(
Ka,H2S + SH+

)
− Ka,H2S × Sliq,IS

)

(18)

The charge balance was also update, by inserting sulfate ions SO2−
4 and hydrogen sulfide ions HS− to consider their impact on the

pH.
Concerning the gas transfer process for H2S, it was modeled according to the gas transfer rate equation based on Henry’s law used in

the original ADM1, expressed as follows (equation (19)):
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ρT,H2S = kLa
(
Sliq,H2S − KH,H2S×pg,H2S

)
(19)

Finally, the decomposition of hSRB bacteria was modeled by a first-order equation (20) conforming to the ADM1 model.

ρdecay,hSRB = kdec,hSRB × XhSRB (20)

The insertion of this process will allow the prediction of H2S concentrations in the biogas and consequently evaluate preliminarily
the quality of the biogas and determine its suitability to be directly valorized or will require an H2S removal process (by specific
methods) for reaching the target values.

The diagram of the biochemical transformations involved in the modified model is depicted in Fig. 1 (See APPENDIX A), and
expressed by a modified Gujer matrix represented in Table 1 (See Appendix A).

3.3. Sensitivity analysis

An important aspect to consider when verifying the model’s applicability in full-scale studies is to assess how the different pa-
rameters of the model impact the quality of its results. This will ensure a correct estimation of the parameters and consequently reduce
model complexity and optimize the predictivity of the model.

In this context, the sensitivity analysis represents a useful technique for determining the contribution of each parameter of the
model to the results; in other words, it enables a quantitative assessment of how a change in the value of an input parameter
(perturbation) will affect the model’s output [62]. Sensitivity analysis can be performed in two different modes: locally or globally
[62].

In our study, a local sensitivity analysis (LSA) based on the one-at-time approach (OAT) was performed as a screening technique to
classify the model’s input parameters in order of importance by quantitatively evaluating the individual influence of each parameter
on the model’s result (output).

In our case, the mean methane production has been chosen to be the model output to examine as an important variable in the
optimization of the anaerobic process.

Within the framework of this method, the input parameters were changed individually by increasing the value by 50 % while
keeping the rest constant. The aim was to study the influence of parameter modification on the behavior of average methane pro-
duction and thus determine the factors to prioritize in optimizing the model and those that can be fixed due to their low effect on the
results.

The dependence of the model’s parameters has been studied based on the normalized sensitivity index defined by the following
formula (21):

SI =
p
m

∂m
∂p (21)

where m is the methane production (m3/d), and p is the parameter analyzed. SI represents the variation in m resulting from a 50 %
increase in the parameter p. A positive value of SI means that the parameter p is positively correlated with the examined variable m,
while the contrary is a negative correlation.

3.4. Validation process

This section aims to ascertain the accuracy and aptitude of the model in predicting results from defined inputs and to examine its
applicability in the simulation of the AD process. For this reason, the outputs of the modified model were compared with the
experimental results obtained from the two following studies extract from the literature:

• The first study, conducted by T. Thamsiriroj, concerns the modeling of mono-digestion of grass silage in a two-stage CSTR reactor
using the ADM1 model [30].

• The second study, performed by Maurizio Carlini, involves the simulation of AD using a new tool called ADMS 1.0, validated by the
AQUASIM software [50].

These two studies were chosen for the validation process, as they provide the bulk of the information about inputs and parameters
needed to reproduce practically the same simulation conditions, which will allow testing the correctness of the results generated by the
modified model.

Building on this, the effectiveness of the modified model and its ability to accurately predict the AD simulation results was assessed
using the statistical measures extensively applied in the model evaluation step. The four performance factors adopted in this study are
as follows: rAE (Relative Absolute Error), RMSE (Root Mean Squared Error), SI (Scatter Index), and the NES (Nash-Sutcliffe efficiency
coefficient). All these statistical parameters were estimated according to the following equations (22)–(25):

rAE =

∑n

i=1

(
|Ri − Pi|

Ri

)

n
(22)
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Ri − Pi)2

n

√
√
√
√
√ (23)

SI =
RMSE
R

(24)

NES = 1 −

∑n

i=1
|Ri − Pi|

∑n

i=1
|Ri − R|

(25)

where n is the total number of simulated points in the reference study; Ri is the reference study value; Pi is the predicted value of the
ADM1 code; and R is the mean of the reference study values.

An NES value close to 1, combined with lower rAE and RMSE values (values within an acceptable margin of error of less than 5 %)
and an SI of under 10 %, all indicate a high-performing model [63].

Firstly, the conditions of operation and simulation adopted in the calibration step in the first study [30] were applied to compare
the results of the biogas and methane yields illustrated in Fig. 3 (a and b) and Fig. 4 (a and b) for the modified model and the study [30]
(respectively). By comparing the graphical representation of the results, it is noticeable that at the beginning of the simulation, the
fluctuations in biogas yield generated by the model code tended to be slightly different from those observed in the study [30].

Secondly, using the data available in the second study [50], we compared the concentration of methane in the liquid phase and the
hydrolysis components depicted in Fig. 5 (a and b) and Fig. 6 (a and b) for the ADM1 code and the study [50] (respectively). Con-
fronting the results, it is apparent that in the last days of the simulation, the ADM1 code predicted a methane concentration value
slightly higher than that registered in the study [50].

Overall, the simulation graphs (Figs. 3–6) reflect that the predicted variations of the modified model for the simulated parameters
appeared very similar to the profile of the observed results reported in the references studies [30,50]. This good graphical agreement
between the results is confirmed quantitatively by the lower acceptable values of the rAE and RMSE (under 5%), an SI (less than 10%),
and NE (approaching 1) given in Table 1; all suggesting that the model exhibit a higher goodness of fit between predicted and ref-
erences values.

The minimal discrepancy between the results can be explained by the default value for several parameters not specified in the
reference studies. The availability of supplementary data will allow for more accurate predictions.

Generally, the validation results reveal that the model exhibits good predictive performance for the simulation of AD, especially
when the modelling purpose is to forecast the main parameters relating to the energy productivity of the AD system.

It can be concluded that the modified model developed in this study can be employed in various applications, such as performing
preliminary simulations to study the AD of a specified substrate or examining the effect of different parameters (for example, pH, OLR,
temperature …) on the volumetric production of biogas and methane.

Fig. 3. Simulation results for biogas yield for the ADM1 model (a) and for the reference study (b) [30].

M. Mihi et al. Heliyon 10 (2024) e38472 

12 



Fig. 4. Simulation results for methane yield for the ADM1 model (a) and for the reference study (b) [30].

Fig. 5. Simulation results for methane concentration for the ADM1 model (a) and for the reference study (b) [50].

Fig. 6. Simulation results of hydrolysis for the ADM1 model (a) and for the reference study (b) [50].
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4. Results and discussion

After validation of the modified model, numerical simulations were run to investigate the performances of the AD of food waste
(FW) for the city of Kenitra (Morocco).

4.1. Data collection and preparation

Despite the variation in food types from one geographical region to another [64] resulting from differences in cultures and life-
styles, the basic requirements for human nutrition are similar. In this context, the Moroccan and Italian regimes are typically Medi-
terranean, based on consuming various products such as cereals, fruit, vegetables, and cheeses. Consequently, we can assume that the
values of the main components of food waste produced by Italian and Moroccan cuisine can present a high level of similarity.
Accordingly, in our study, we used data from typical food waste produced in the Italian city of Treviso collected from the study [64]
(from the literature) to describe the food waste generated in the Moroccan urban area of Kenitra (lack of opportunity to conduct an
experimental study). We assumed that both types of food waste have approximately identical properties in terms of physicochemical
and biochemical characteristics, with insignificant differences in the values of the various parameters.

Table 2 describes the characteristics and elemental composition of the selected food waste.

− (a) No hydrogen and sulfur content values were given in the reference study [64]. Therefore, the values of H and S percentages were
estimated using data from the study [65].

− (b) calculated using the following equation (26):

O(%) = 100 − [C+ N+ H+ ash] (26)

The substrate’s molecular formula was determined using food elemental analysis data. The empirical formula of the food waste was
as follows: C22H35O11N.

Additionally, from the characteristics and elemental composition of the selected food waste, it can be noted that the substrate:

• Contains a high proportion of VS (>70 %), which indicates the dominance of the organic matter.
• Presents a moisture content of nearly 72,5 %, which will support the activity and growth of microorganisms and facilitate the
dissolution and transport of the nutrients, consequently contributing to the improvement of the decomposition of organic matter.

• Has a C/N ratio below 25 (C/N = 14,8) and a theoretical biochemical methane potential value of approximately 561 ml CH4/g VS.

We can conclude from the information available that the type of food waste used in our study can represent a potentially suitable
substrate for biogas production by anaerobic digestion.

Secondly, the ADM1model is based on the chemical oxygen demand (COD) to characterize the different components of the organic
matter and describe substrate degradation during anaerobic digestion. For this reason, the COD of the food waste was estimated by the
theoretical ThCOD, which was calculated from the elemental analysis of the substrate following equation (27) [40]:

Table 1
The performance metrics indicators associated to the parameters simulated by the modified model.

Parameters rAE RMSE SI (%) NE

Biogas yield (L.d− 1) 1.727 0.2965 0.2133 0.9618
Methane yield (L.d− 1) 2.11 4.002 5.3525 0.9557
Methane concentration Sch4 (kg DCO/m

3) 1.4281 0.3061 8.7 0.9690
Hydrolysis (concentration of: Xc, Xch , Xpr, and Xli) (kg DCO/m3) 2.3 0.0388 1.996 0.99

Table 2
Characteristics of food waste used in this study taken from Ref. [64].

Parameter Value Unit

Total Solids (TS) 27,47 % Fresh matter
Volatile Solids (VS) 23,60 % Fresh matter
Volatile Solids (VS) 86,6 %TS
Moisture Content (MC) 72,53 % Fresh matter
Carbohydrates 206 g kg− 1 VS
Lipids 202 g kg− 1 VS
Crude Proteins 186 g kg− 1 VS
Total Phosphate TP (P) 3,47 g kg− 1 TS
Nitrogen (N) 2,58 %TS
Carbon (C) 47,2 %TS
Hydrogen (Ha) 6,4 %TS
Sulfur (Sa) 0,4 %TS
Oxygen (Ob) 30,42 %TS
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ThCOD =
16 (2a+ 0,5(b − 3d) − c)
12a+ b+ 16c+ 14d

≈ 1,6 kg
O2

kg C22H35O11N
(27)

4.2. Determination of the model inputs parameters

4.2.1. The input concentrations variables S and X
The values of the input concentrations for the soluble (S) and particulate (X) components of the substrate (FW) in the steady state

were established using the “transformer” tool developed by Zaher [66]. This tool requires eleven input parameters estimated according
to hypotheses and theoretical calculations based on the characteristics of the substrate.

Fig. 7 describes the steps required to determine the input variables for the ADM1 model.
Table 3 lists the values of the eleven parameters needed to run the “transformer".

4.2.2. Identification of the stoichiometric parameters

The value of fractions of carbohydrates (fch,xc
)
, proteins (fpr,xc

)
, lipids (fli,xc

)
, particulate inert (fxI,xc

)
and soluble inert (fsI,xc

)
are

given in Table 4. The fractions are identified on the basis of substrate composition, and have been determined by the method proposed
by Koch [40], based on the following equations (28)–(30):

fch,xc =
%ch
%VS

(28)

fpr,xc =
%pr
%VS

(29)

fli,xc =
%li
%VS

(30)

with the assumption that:

fsI,xc =0,1 (by default); fxI,xc =1 −
(
fch,xc + fpr,xc + fli,xc + fsI,xc

)

4.2.3. The biochemical parameters that need adjusting for the anaerobic digestion of food waste used in this study
Applying some kinetic parameters with their values reported in the standard version of ADM1 leads to an inexact simulation of the

anaerobic digestion of food waste, resulting in inaccurate methane production results. In this context, we have focused on identifying
the biochemical parameters that significantly affect methane production during the anaerobic digestion of food waste in our case. The
aim is to optimize the values of these parameters to ameliorate the prediction results of the model to be approximately related to the
value calculated theoretically.

a. Identification of the main parameters influencing methane production during AD of FW using a local sensitivity analysis:

To evaluate the effects of the model’s input parameters on the simulated mean methane production, the parametric sensitivity
analysis concerned the evaluation of the following parameters:

• The stoichiometric parameter Y that indicates biomass yield during substrate uptake.
• Four groups of biochemical parameters: the first-order disintegration and hydrolysis constants kdis,inoc; kdis,sub ;

khyd,ch; khyd,pr; khyd,li
)
, the Monod maximum specific substrate uptake rate (km,su; km,fa; km,ac; km,c4; km,pro; km,h2; km,hSRB; km,aa), the

half saturation constant for substrate degradation (KS,h2; KS,IN; KS,aa; KS,SO4 ,hSRB; KS,su; KS,fa; KS,ac; KS,c4; KS,pro) and the decay rate
for substrate-degrading organisms (kdec,Xac ; kdec,Xh2 ; kdec,Xsu ; kdec,Xaa ; kdec,Xc4 ; kdec,Xpro ; kdec,XhSRB ; kdec,Xfa ).

• For the remaining physicochemical parameters, for example, the gas transfer coefficient (KH,gas), was not re-estimated in our study,
as it depends on the digester configuration [67].

Fig. 7. The methodology followed for determining the S and X concentration input variables for the modified ADM1 model.
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Fig. 9 shows the sensitivity index (SI) values calculated for the biochemical and stoichiometric parameters examined in this study.
The sensitivity index (SI) values of the yield coefficients Y against the mean methane production (Fig. 8a) showed a significant

impact of acetic acid-consuming microorganisms (Yac) (SI = − 0.025) and a moderate sensitivity of sugar-consuming microorganisms
(Ysu), with an SI value of nearly - 0.018.

The sensitivity index values of the hydrolysis and disintegration parameters for the mean methane production were presented in
Fig. (8e). The results revealed that the most sensitive hydrolysis parameter was the carbohydrate hydrolysis rate (khyd,ch), also
confirmed in the study [68]. The value of the sensitivity index found in our study was almost 0.35, indicating that an increase in khyd,ch
implies a noticeable rise in mean methane production.

Indeed, the fact that methane production was not highly sensitive to disintegration parameters may suggest that the disintegration
step is not the rate-limiting step in the AD process in our case. This result was inconsistent with the sensitivity analysis carried out in a
number of studies such as [59,68], where the kinetic constant of the desintegration process was the most sensitive parameter of the
ADM1model in the case of biogas production from FW. This difference can be explained by the difference in the substrate composition
used.

For the group of Monod’s maximum specific absorption rate parameters, Figure (8b), showed that the highest SI was that of km,su

and km,aa with values around 8× 10− 4.
The km,ac parameter related to methanogenesis demonstrated a moderate effect on methane production, contrasting the local

sensitivity analysis reported in Refs. [59,68], where the km, ac parameter was the most sensitive among the remaining km rates.
The sensitivity index of the half-saturation constants against methane production was illustrated in Figure (8d). The results showed

SI values around 10− 4 for all parameters; with KS,su showing the highest sensitivity (SI = − 9× 10− 4), followed by KS,fa (SI = − 8,7×
10− 4). This may suggest that the uptake of simple sugars and long-chain fatty acids (LCFA) regulated by KS,su and KS,fa respectively
have a relatively remarkable influence on reducing methane production as their values increase. The parameter KS,ac, exhibited a
relatively moderate influence (SI = − 4× 10− 4) on methane production, while KS,h2 showed a negligible value of SI; this was in
contrast to the findings of some studies such as [59,68], which have highlighted the importance of hydrogen dynamics in the DA
process.

Finally, the SI values of all decay terms were reported in Figure (8c). Among them, the decay term related to acetate-consuming
bacteria

(
kdec,Xac

)
had the most significant impact on methane production (SI = 0.004), followed by the parameters kdec,Xh2 and kdec,Xsu .

Comparing the SI values of the most sensitive biochemical parameters in each group (Fig. 9), we found that the SI of the parameters
km, Y, and KS were incomparable to the sensitivity index of the hydrolysis rate constant khyd,ch which exhibited the highest value. This
may be attributable to the high content of carbohydrates that, possibly due to their readily hydrolyzed nature, caused a rapid
decomposition of the substrate, which strongly affected methane production. This suggests that these components may be closely
related to methane production during AD, representing an essential factor in improving the process. Also, this may indicate the crucial
role of hydrolysis in the early phases of AD, and its importance in maximizing biogas production.

Concerning the sulfate reduction process parameters (KS,SO4 ,hSRB; kdec,XhSRB ) showed very low sensitivity to methane production. This
can be explained by the low concentration of sulfate in the substrate associated with a low ratio (SO2−

4
/
COD) and their contribution to

Table 3
The characteristics of the FW used to calculate the transformer’s inputs.

Parameters Values Units

Particulate COD (CODP) 430730 g m− 3

CODs - VFA 4395 g m− 3

Volatile Fatty Acids (VFA) 4395 g m− 3

Total Organic Carbon (TOC) 127065 gC m− 3

Total Organic Nitrogen (Norg) 6304,5 g m− 3

Total Ammonia Nitrogen 700,5 g m− 3

Organic Phosphorus (TP – orthoP) 429 gP m− 3

Ortho – Phosphate (orthoP) 524 gP m− 3

Total Inorganic Carbon (TIC) 216 mole m− 3

Total Alkalinity (Scat) 25 equ m− 3

Fixed Solids (FS) 38700 g m− 3

Table 4
Stoichiometric parameters values used in the
model.

Parameters Values

fch,xc 0,24
fpr,xc 0,21
fli,xc 0,23
fsI,xc 0,1
fxI,xc 0,22
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Fig. 8. Sensitivity index calculated for different model parameters referred to the mean produced methane.

Fig. 9. Sensitivity index calculated for the most sensitive parameters of each group, for the mean methane production.
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the attenuation of the activity of hSRB bacteria during AD.
The difference found in some sensitivity analysis results presented in this study compared to the literature, may be due to the

different structure of the model adopted and the input data values used. Generally, the sensitivity of model parameters can change as a
function of the substrate composition and its type, operational conditions, initial conditions, and also input concentrations of soluble
and particulate variables in the steady state.

Consequently, the sensitivity analysis presented in this study is only a representation of a possible result that helps to offer a general
overview of the biochemical parameters that can affect the model when using FW as a substrate.

b. Estimation of the sensitive parameters:

To enhance the forecasting quality of the modified model simulation results, the most sensitive parameters, determined by the
sensitivity analysis (khyd,ch; kdec,Xac ; km,su; km,fa; km,ac;KS,fa; KS,su; KS,ac; Yac; Ysu) were selected for adjustment to achieve better plot
quality and to obtain results close to the theoretically calculated values.

Otherwise, the theoretical maximum methane production and methane content in biogas for the FW treated in our study (calcu-
lated from the theoretical BMP) were used to calibrate the model by fitting the theoretical data to the simulated data.

The estimation of parameter values was performed with the aim of minimizing the error between the theoretical value and the
model prediction (maximum value of methane production in the steady state), which was less than 5 %; reflecting the ability of the
modified model to generate reasonably accurate predictions.

This approach was adopted due to the absence of an experimental study, often employed to estimate and optimize sensitive pa-
rameters using real measured methane production data.

After the calibration and validation processes, the modified model was applied in an exploratory analysis of the AD of the FW used
in this study.

4.3. Performance simulation of the AD process of FW

The aim of this section is to simulate the various parameters identified as fundamental in the literature for evaluating the per-
formance of the AD process and determining its stability. The simulation time was set to 90 days (applying a hydraulic retention time of
30 days), with an OLR of 1,652 kgVS/m3/d, inmesophilic conditions (35 ◦C). Steady-state conditions were assumed to be reached after
approximately 80 days of operation, corresponding to the period when the simulated yields and parameters start fluctuating slightly
(practically stable evolution).

Fig. 10. (a) biogas production; (b) the quality of biogas; (c) methane production.
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4.3.1. The estimation of the energetic productiveness of AD
Simulation results for daily biogas and methane production are presented in Figures (10a) and (10.c) (respectively). During the first

HRT of operation, the methane production rate increases rapidly (log evolution) because the nourishment is not limited in this phase; i.
e., the substrate is available and highly degraded by the microbial community that grows fast. For the rest of the simulation, methane
production gradually continues increasing until it reaches the stabilization phase represented by the production curve, which tends to
form a plateau. Throughout this stationary phase, the microorganisms compete for the substrate, which is all but exhausted, and the
microbial reproduction rate tends to be stable. The methane production rate attained a maximum value of almost 73,21 m3/d on day
90 (Fig. (10c)); the predicted production is less than 2,15 % of the maximum theoretical production value calculated from the
theoretical BMP.

The biogas production rate is represented in Figure (11a). The production rate increases progressively during the simulation until it
is approximately stable (plateau). The maximum value achieved was around 136,47 m3/d (on day 90), which corresponds to a
methane content of roughly 53,64 % (Fig. (10b)), representing more than 2,3 % of the maximum methane percentage estimated
theoretically from Buswell’s equation.

Additionally, other indicators are employed to evaluate energy performance, notably the BPR, SBP, MPR, and SMP.
The BPR and MPR refer to the daily production of biogas and methane per reactor volume correspondingly. Both are used in

determining the efficiency of the AD process.
The SBP and SMP represent energy yields linked to the biodegradability of the feedstock and its potential in terms of energy content

[69]. Both parameters are adopted in determining the biological efficiency of substrate conversion into methane and biogas [20].
The energy yields of biogas and methane are plotted in Figs. 12 and 13, respectively. The highest values reached by the SBP and the

SMP during the simulation were 0,8m3
biogas/kgVS (Fig. 11b) and 0,43m

3
methane/kgVS (Fig. 11b) (on day 90). The highest value registered

by the SMP indicated that the AD process recovered almost 74,1 % of the maximum methane potential of the substrate (Table 5). The
maximal values recorded for the BPR and theMPR throughout the simulation were 1,3m3

biogas/m
3
VD
/d (Fig. 11a) and 0,7m3

methane/m
3
VD/ d

(Fig. 12a), respectively.
Based on all the simulations of the energetic parameters described previously, the results indicate a satisfactory productivity of the

biogas produced by the process of AD of the FW.

4.3.2. The verification of the stability of the AD process of FW
The daily levels of the operational pH are crucial to the stability of the AD process, as they significantly affect both microbial

activity and growth [51,70]. Typically, the desired pH range for the AD process is between 6,8 and 7,2 [71]. Figure (13a) shows the pH
profile. As can be seen, the pH did not substantially change during the simulation, and it fluctuates very slightly around the value of 7,
16. The predicted pH values are in the range that provides a suitable environment for maintaining the high activity of methanogens
[72], contributing to the efficiency of the AD process.

The changes in pH values during anaerobic digestion depend mainly on the buffer capacity of the system, which is a fundamental
parameter that indicates the ability of the process to resist the falls in pH [46] caused by the accumulation of VFAs and organic
overload. Alternatively, alkalinity protects the system against acidification by neutralizing the acids produced during the AD process.
Figure (13b) shows the buffering capacity for the simulated process. Over the time of the simulation, alkalinity progressively increased
until it began to stabilize at stable conditions. In this period, the system exhibited high alkalinity, reaching a value of almost 7
gCaCO3/L. Generally, alkalinity should be above 1 gCaCO3/L, and preferably between 1,5 gCaCO3/L and 5 gCaCO3/L [73] for the
process operating under a stable state; however, higher values can be achieved in the case of AD of FW.

Fig. 11. Biogas energy yields; (a) the biogas production rate (b); the specific biogas production.
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An additional factor requiring regular monitoring during the AD is the concentration of VFAs, considered a principal parameter
contributing to the evaluation of the stability of the process [38], providing information that could signal the existence of instabilities
inside the AD system. The VFAs are intermediates in the elaboration of methane, and they contribute to the improvement of the
conversion efficiency of the substrate. However, at concentrations exceeding 800 mg/L, VFAs become components that have an
inhibitory effect on the growth of methanogens [70,74].The variations in VFAs production are illustrated in Figure (13c). In the first
days of the simulation, the concentration of VFAs increased significantly, rising to a value of around 111 mg/L. In the meantime, pH
tended to decrease drastically. That could be related to the characteristics of the food waste, and it may suggest that these first days can
represent the adaptation phase of the microorganisms to the anaerobic environmental conditions. Subsequently, the concentration of
VFAs started gradually decreasing until it reached a value of 71,5 mg/L under the equilibrium conditions. This reduction results
probably from the conversion of VFAs into methane via the acetoclastic methanogenic microorganisms. The variations of VFAs during
the simulation are correlated positively with methane production (figure (13c)); they demonstrate the efficiency of the process in the
degradation of the available organic matter. That implies that the VFAs production reactions by the acidogenesis and the acetogenesis
are in balance with the VFA consumption reactions by acetoclastic methanogenesis.

An additional verification of the stability of the AD process is the determination of the concentration of total ammonia nitrogen
(TAN) and ammonia (FAN). The levels of these two components are critical during the process, as elevated quantities act as inhibitors,
particularly FAN, considered to be the toxic substance that strongly inhibits acetoclastic methanogenesis activity [75]. In the meso-
phile conditions, when the concentration of TAN is around 3000 mg/L, and the FAN exceeds 100 mg/L [76], the process could be
inhibited, which may lead to the limitation or interruption of methane production. The profiles of TAN and FAN concentrations were
simulated and plotted in figures (13d) and (13.e). Throughout the simulation, the concentration of TAN and FAN increased gradually
until reaching their highest values of approximately 2680 mg/L and 40 mg/L (respectively) under stable conditions. The levels of TAN
and FAN registered during the simulation are under the limits and do not present any inhibition risk. Instead, the values benefit the
process; they contribute to the nutrients required for microbial growth and pH stability and participate in the alkalinity production and
the neutralization of acids [75,77].

In addition, as stated in the literature, another way of verifying the stability of the process inside the digester is to evaluate the
evolution of the stability indicators, which include the TVFAs/alkalinity ratio and the ACN index.

The TVFAs/alkalinity parameter expresses the ratio between the volatile fatty acids and the system’s buffering capacity (alka-
linity). It is an indicator of early failure signs of the AD process [78].A TVFAs/alkalinity value lower than one indicates that the process
is stable and operating normally; in contrast, a value higher than one shows the existence of perturbations and consequently the
instability of the process [31]. The ratio of TVFAs/alkalinity over the entire simulation period is shown in Figure (14a). The plot shows
that during the first days of the simulation, the ratio attains its maximum value of approximately 1,0 (the value may be slightly higher
than 1 for bio-waste [31]); subsequently, the ratio starts to decrease gradually until reaching a value of 0,5 in the steady-state con-
ditions. The registered values show healthy biological activity inside the AD system, demonstrating its stability.

The second parameter employed to identify any upcoming disturbances to the internal equilibrium of the AD process is the acetate
capacity number (ACN), which is the ratio between the maximum acetate utilization rate and the acetate production rate [79]. It serves
to evaluate the stability of the AD system by the determination of the capacity of the acetoclastic methanogenic microorganisms to use
the excessive acetate; in other words, the quantity of the acetate exceeds the steady-state production rate [80]. ACN levels lower than
one under steady-state conditions indicate a system is approaching failure [80]. Figure (14b) displays the profile of the ACN index. The
values of ACN detected during the steady state simulation period were higher than 1, indicating a considerable excess capacity and the
stability of the AD system operation.

Fig. 12. Methane energy yields; (a) the methane production rate; (b) the specific methane production.
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• H2S production during AD of FW:

The AD of food waste leads to the production of hydrogen sulfide in the liquid phase, which can alter the stability of the system; in
addition, its presence in the gaseous form in the biogas provokes several problems, such as corrosion of the system’s equipment and the
production of sulfur oxide (SOx) during combustion. For appropriate problem-solving and to ensure process stability, it is essential to
evaluate H2S production during AD and predict its evolution.

The profile of sulfate concentration variations during the simulation of AD of FW is illustrated in Fig. 15. The continuous decrease in
sulfate concentration is due to its conversion by SRB bacteria into hydrogen sulfide (H2S). The sulfate reductionwas from 96mg/L down
to 4,7 mg/L (in the steady state), suggesting that perhaps the majority of sulfate was reduced during the first phase of the DA process.

The evolution of H2S production and concentration in the biogas during the process is plotted in Figs. 16 and 17, respectively.

Fig. 13. Characterization of the methanogenesis process during AD of FW.

Table 5
Methane potential from FW used in this study.

Values Unit

Energy content of FW (using Sheng’s formula [85]) 22 MJ/kgVS
The volumetric energy density of methane gas 37,78 MJ/m3

Methane potential from FW 0,58 m3/kgVS
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During the first few days of the process, the concentration and production of H2S increase, attaining peaks of 3368 ppm and 0.20 m3/
d (representing a content of 0.3 % of the biogas), respectively.

This high production of H2S may be explained by the sharp drop in pH (around 7), which may have encouraged the SRBs to be more
dynamic, leading to the rapid degradation of most of the available sulfur into H2S. After this phase, H2S values tended to decline until
reaching a concentration of almost 1300 ppm, corresponding to a production of 0.17 m3/d (equivalent to 0.13 % of biogas) (Figs. 16
and 17). This reduction can be attributed to the characteristics of the substrate, which contains a low sulfur content (4 mgS/gTS), in
addition to the low ratio SO2−

4
/
COD (the theoretically calculated value was less than 0.1), which contributed to the prevention of H2S

accumulation during AD. A possible further explanation for the decrease in H2S values could be the weakening of SRB microorganism
activity due to environmental conditions favoring the activity of methanogens, such as the increase in pH levels to neutral values
(around 7.16) (see Fig. 13 a).

Indeed, Fig. 18 demonstrates that despite the increase of H2S production in the initial phase of the simulation, methane production
continued to rise as hydrogen production progressed. During this period, the hydrogen produced is used as a substrate (electron donor)
by both hydrogenotrophic methanogens and SRBs, but without competition-causing instabilities. This is supported by the results
recorded in the steady state (Fig. 18), showing a practically stable generation of methane, accompanied by a gradual decrease in H2S,
probably due to the low conversion of the small quantities of sulfur and sulfate remaining in the DA system.

4.4. Energy and environmental advantages of AD

4.4.1. Estimating the biomethane potential generated and energy through AD
In Morocco, the technical energy potential of the waste sector was 3.1 MWh/year in 2015, including 1.8 MWh/year from organic

household waste [9]. In the case of the city of Kenitra, the household waste production ratio is estimated to be almost 0.57 kg/capita/d,
with a fraction of food waste (organic fraction) of nearly 83.15 % [65]. Consequently, the quantities of FW produced are about 0.47
kg/capita/d [65]. On this basis, the population of the city of Kenitra generated approximately 234 tons of FW per day, equivalent to 83,
432 tons of FW per year. These large volumes of biodegradable organic waste need to be exploited as a valuable energy resource,

Fig. 14. Stability indicators for AD of FW.

Fig. 15. The variation in sulfate concentration during AD of FW.
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offering the advantage of producing biogas by AD and representing an optimal solution for the waste management strategy. The
ecological management of a proportion of these quantities of FW by the AD process will provide the advantage of reducing the volume
of FW destined for landfills and will contribute towards sustainable development [65].

The capacity of FW to produce methane and to generate electrical and thermal energy by valorizing the biogas through cogene-
ration was evaluated by combining the simulation results of the ADM1 code with Matteson’s estimation method [81].

Based on statistical data corresponding to the city of Kenitra, the quantity of FW generated was supposed to be entirely converted
into biogas by the AD process. The theoretically estimated values for the methane volume produced and the electricity and heat energy
potentials obtained by a CHP system are presented in Table 6.

From Table 6, we estimate that the treatment of food waste by AD can generate nearly 8 million m3 of methane, having a calorific
value equivalent to approximately 9.85 million tons of standard coal, calculated according to the following formula:

equivalent standard coal (tones/year) = theoretical methane volume (m3) × 1.22 kg standard coal equivalent/m3 methane

Fig. 16. Hydrogen sulfide concentration variation in biogas during AD of FW.

Fig. 17. Trends observed for H2S production and its proportion in the biogas during AD of FW.

Fig. 18. Predictions of daily production of gaseous components (H2S, CH4 and H2) during AD of FW.
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According to statistics from the Ministry of Energy Transition and Sustainable Development for 2022 (provisional data), the
electricity demand per capita was 1154 KWh, corresponding to a daily demand of approximately 3,2 KWh per capita [82]. Conse-
quently, the theoretical production of electricity generated from the methane produced by the AD of FW (Table 6: ECHP) can contribute
to the satisfaction of almost 8 % of the annual electricity demand of the city of Kenitra (estimated to be 586 GWh), or it can account for
2,5 % of the electrical energy produced by the thermal power station of Kenitra in 2013 for the region of Rabat-Salé-Kenitra (the
production was estimated at 1770,4 GWh) [83].

4.4.2. Carbon dioxide emission reduction via AD
To investigate the environmental benefits of the AD of FW, the emission of methane from FW and the emission resulting from

utilizing biogas instead of conventional sources of fuel to produce electricity are estimated and compared.

a. Minimization of CO2 emission by methane production:

In the majority of cases, FW is sent to landfill sites. The biodegradation of this quantity of organic matter exacerbates the climate
change crisis by releasing methane. According to the standards established by the Intergovernmental Panel on Climate Change (IPCC),
methane is considered a harmful greenhouse gas 21 times more potent than carbon dioxide [84]. From the annual volumetric pro-
duction of methane (Table 6), it is estimated that almost 5737 tons of methane are emitted into the environment, equivalent to
approximately 120477 tons of carbon dioxide. This amount of CO2 can be reduced by AD of FW, which allows the capture of methane
and its exploitation as a polyvalent source useable in a wide application range.

b. Minimization of CO2 emission by using biogas to generate electricity:

Using an electrical conventional system (operating with standard coal) to obtain the electrical capacity in Table 6 (ECHP= 45 GWh)
can cause the emissions of nearly 42569.5 tons of CO2 (using an emissions factor equal to 0.95 kgCO2/KWh). While, the combustion of
biogas for generating the same quantity of electricity can release almost 26886 tons of CO2 (the value of the emission factor equals to
0,6 kg CO2/KWh, which was estimated theoretically following the calculation method used in the study [85]), leading to a percentage
saving of CO2 of about 37 % (15683.5 tons of CO2).

The simulation results obtained in this section, indicate that the FW can have considerable biomethane production potential under
conditions favoring the stability of the process, and can be a promising source for producing bioenergy. Recycling FW by AD can be a
sustainable solution for attenuating CO2 emissions and reducing the consumption of fossil fuels through their substitution with biogas,
characterized by a low carbon footprint. Integrating this approach into the national energy policy can play a significant role in the
growth of the renewable energy sector.

5. Conclusion

This study has successfully developed and validated a new dynamic mathematical model tailored to simulate and forecast biogas
production within the anaerobic digestion (AD) process. The AD process, recognized for its dual benefits of organic waste treatment
and bioenergy production, presents significant challenges due to its inherent complexity and sensitivity to various operational con-
ditions. By addressing these challenges, the proposed model offers a more detailed and accurate representation of the biochemical and
physico-chemical processes that govern AD. The model distinguishes itself by including a thorough biochemical framework with extra
information on the physicochemical processes.

The detailed local sensitivity analysis showed the necessity of selecting the correct parameters to improve the quality of the results
and optimize methane production.

The model’s accuracy was carefully tested using a variety of statistical indicators: the rAE and RMSE were both kept under 5 %, the
SI was less than 10 % and the NES was near unity. These results confirmed the model’s strong prediction accuracy when compared to
other models in the literature, indicating that the model is successful at capturing the unpredictability of the biogas generation process.

The study’s findings have important implications for both research and practice. For academics, the detailed model is a powerful
tool for investigating the underlying mechanics of AD processes, providing insights that can help drive future advances in biogas
production technology. For practitioners, the model is a helpful tool for designing, monitoring, and optimizing AD systems, resulting in
steady and efficient biogas generation. This concept offers a significant step forward in terms of sustainable resource energy recovery.
It serves the larger aims of waste-to-energy programs by allowing for more accurate forecasts and better control of AD processes, as

Table 6
Estimation of energy generation potential of FW valorized by AD.

Values Unit

Annual production of FW 87235 tones FW/year
Annual production of TS 23963 tones TS/year
Theoretical methane volume 8.08 106 m3/year
Annual total heating energy from AD (HAD) 293.3 106 MJ/year
Annual CHP power generation (ECHP) 45 GWh/year
Annual CHP heat energy (HCHP) 117000 GJ/year
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well as contributing to lowering waste management techniques’ environmental imprint. The ability to forecast and optimize biogas
production also aligns with the growing emphasis on renewable energy sources and the circular economy.

Future work could focus on further refining the model to incorporate additional variables and conditions, such as varying types of
organic waste and different AD operational scales. In summary, the developed model stands as a significant contribution to the field of
anaerobic digestion, offering a detailed and reliable framework for advancing biogas production technologies. Its successful validation
and application underscore its potential to drive improvements in AD system performance, contributing to the sustainable and efficient
recovery of energy from organic waste. This study not only addresses the current challenges in AD modeling but also paves the way for
future innovations in sustainable resource management.
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Appendix A

• Structure of the modified ADM1 model:

Fig. 1. The structure of the modified ADM1 model.
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• Petersen Matrix:

Table 1
Gujer matrix of modified mathematical model equations.
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Université Montpellier, 2015 [Online]. Available: https://theses.hal.science/tel-02060619v2/document.

M. Mihi et al. Heliyon 10 (2024) e38472 

26 

https://theses.hal.science/tel-00257347/PDF/These_JHess.pdf
https://doi.org/10.4236/abb.2015.63020
https://doi.org/10.4236/abb.2015.63020
https://doi.org/10.1016/j.btre.2020.e00503
https://doi.org/10.1016/j.csite.2021.101740
https://doi.org/10.3390/ijerph19116943
https://doi.org/10.1016/j.biortech.2019.122681
https://doi.org/10.1016/j.rser.2022.112288
https://doi.org/10.1016/j.heliyon.2024.e28221
https://www.masen.ma/fr/actualites-masen/une-feuille-de-route-pour-la-valorisation-energetique-de-la-biomasse
http://refhub.elsevier.com/S2405-8440(24)14503-3/sref10
http://refhub.elsevier.com/S2405-8440(24)14503-3/sref10
https://doi.org/10.5772/intechopen.80815
https://doi.org/10.3390/fuels3030027
https://doi.org/10.1016/j.biombioe.2020.105594
https://doi.org/10.1016/j.scitotenv.2021.146397
https://doi.org/10.1016/j.scitotenv.2021.146397
https://doi.org/10.1016/B978-0-323-90633-3.00007-9
https://doi.org/10.1007/s11157-005-7191-z
https://doi.org/10.1007/s13205-018-1154-x
https://doi.org/10.1016/j.jece.2017.11.048
https://doi.org/10.14483/udistrital.jour.reving.2017.2.a07
https://doi.org/10.1016/j.apenergy.2020.114646
https://theses.hal.science/tel-02060619v2/document


[22] T. Amani, M. Nosrati, T.R. Sreekrishnan, Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects - a review, Environ. Rev.
18 (1) (2010) 255–278, https://doi.org/10.1139/A10-011.
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