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Microbial communities are ubiquitous and carry an exceptionally broad metabolic
capability. Upon environmental perturbation, microbes are also amongst the first natural
responsive elements with perturbation-specific cues and markers. These communities
are thereby uniquely positioned to inform on the status of environmental conditions.
The advent of microbial omics has led to an unprecedented volume of complex
microbiological data sets. Importantly, these data sets are rich in biological information
with potential for predictive environmental classification and forecasting. However, the
patterns in this information are often hidden amongst the inherent complexity of the data.
There has been a continued rise in the development and adoption of machine learning
(ML) and deep learning architectures for solving research challenges of this sort. Indeed,
the interface between molecular microbial ecology and artificial intelligence (AI) appears
to show considerable potential for significantly advancing environmental monitoring
and management practices through their application. Here, we provide a primer for
ML, highlight the notion of retaining biological sample information for supervised ML,
discuss workflow considerations, and review the state of the art of the exciting, yet
nascent, interdisciplinary field of ML-driven microbial ecology. Current limitations in
this sphere of research are also addressed to frame a forward-looking perspective
toward the realization of what we anticipate will become a pivotal toolkit for addressing
environmental monitoring and management challenges in the years ahead.

Keywords: machine learning, microbial ecology, metagenomics, environmental monitoring, microbiology,
artificial intelligence, microbial omics, predictive modeling

INTRODUCTION

Expansion of the human population is increasing resource consumption and discharge of waste
products, placing significant burdens on the biosphere (Burrell et al., 2020; Grantham et al., 2020;
Lv et al., 2020; Albert et al., 2021; Lu et al., 2021; Naumann et al., 2021; Ortiz-Bobea et al., 2021).
These activities are contributing to the multifaceted pollution of the global ecological systems
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(Julinová et al., 2018; Santos et al., 2019; Turan et al., 2019;
Vardhan et al., 2019; Briffa et al., 2020; Pulster et al., 2020;
Simul Bhuyan et al., 2021; Sohrabi et al., 2021; Li and Fantke,
2022). Consequently, we are witnessing an accelerating loss of
biodiversity, habitats, and climate change (Sintayehu, 2018; Brühl
and Zaller, 2019). Gauging and forecasting such anthropogenic
environmental impacts is often limited in scope due to scale-up
challenges. At large scale, this endeavor remains an inordinately
complex and resource-intensive task and therefore represents a
major scientific goal.

At 93 gigatons carbon (Gt C), microbial communities
comprise approximately 20% of the total estimated global
biomass and exclusively form the deep subsurface biome
(estimated at 70 Gt C) (Bar-On et al., 2018). These communities
are ubiquitously distributed across the biosphere where their
activities are central in shaping the environments of our
planet (Gibbons and Gilbert, 2015); microbial communities
possess exceptionally broad metabolic capabilities, enabling their
utilization of many xenobiotics (Katsuyama et al., 2009; Junghare
et al., 2019). Microbes can have short generation times and are
amongst the first responders with perturbation-specific cues and
markers (De Anda et al., 2018; Astudillo-García et al., 2019) these
can therefore serve as a valuable source of biological information
for establishing the status of their respective environmental
niches and can serve as dynamic biosensors for monitoring and
tracing environmental changes (Cesare et al., 2020; Morimura
et al., 2020).

Omics methodologies enable rapid community-wide profiling
of microbial populations across environmental perturbations.
Omics data are information-rich, leading to an unprecedented
volume of large multidimensional data sets with potential for
predictive environmental classification and forecasting. However,
the inherent complexity in these data conceals the patterns
underlying the biological information, challenging manual
curation and interpretation. Machine learning (ML) is well
suited to address such challenges and there has been a sharp
rise in their application in health-oriented microbiomics (Zeller
et al., 2014; Szafrański et al., 2015; Knight et al., 2018). ML-
driven omics is now being applied to address environmental
challenges (Figure 1). Here, we will discuss the state of the art in
this interdisciplinary field and highlight considerations, ongoing
limitations, and challenges for future work. The interface between
ML and molecular microbial ecology (MME) holds great promise
for significantly advancing environmental monitoring and
management practices. Indeed, ML will likely become a routine
toolkit for the molecular microbiologist and will be essential to
manage large multidimensional environmental omics data.

MAIN BODY

A Primer on Machine Learning
Machine learning approaches can be supervised (SML) or
unsupervised (USML). In SML methods, data sets are
reduced/converted into the sets of features which serve as
the input and form a variable for the SML model. Features are
measurable and informative properties of the data, e.g., taxa

abundances, annotated with metadata of interest (labels) which
define the desired output (the target). Feature sets are subset
into groups for model training and model testing/validation for
SML learning. The SML architecture then attempts to derive a
model that can predict the label for new input data. SML can be
carried out to address regression or classification challenges. For
regression, the SML tool predicts values for a continuous series
(such as levels of environmental pollutants). For classification,
the SML will predict the conditional label pertaining to the
sample (such as contamination status). Deep learning (DL) is a
subset of SML, which employs neural networks with multiple
(>3) processing layers and has the highest capacity for learning.
For USML, no label or target output is defined; instead the USML
architecture establishes patterns in the data naively, usually
by clustering or ordination projections. USML is particularly
useful for exploratory analysis of microbial omics data and
includes ordination methods that are commonly applied in
microbiology. Here we focus primarily on SML applications
for environmentally centered microbial omics research. For
more details on the underlying principles of ML for microbial
ecology, readers are encouraged to see reviews (Ghannam and
Techtmann, 2021; Goodswen et al., 2021).

Omics Data Sets Are Rich in Learnable
Biological Information
Anthropogenic perturbations give rise to spatiotemporal
patterns in microbial communities by influencing the
following: abundances, interactions between, and dispersal
of community members (Blaser et al., 2016; Liao et al., 2018).
Community dynamics are perturbation-specific, reproducible,
and predictable, affecting taxonomic diversity, differential
abundances in taxa, functional gene clusters, and shifts in
metabolic circuits which influence microbial interactions
(Figure 1). Microbial omics approaches are rapidly advancing
our views of these complex shifts and have opened myriad
avenues for the utilization of microbial data to address
environmental challenges. Often these omics approaches
scrutinize a single systems level (e.g., DNA or RNA), but can
synergistically provide more information when integrated with
supporting omics data from other systems layers (Franzosa
et al., 2015). Such integrative omics represents a powerful
means to understand communities through cross-systems-level
descriptions but is in its infancy and yet to be much applied in
this area. A central challenge for any ML-led omics analyses is
the preservation of the biological information hidden within
the microbial community, throughout the workflow (Figure 1),
to allow for effective learning. There are numerous ways via
which the biological information in omics samples can be
compromised. These pitfalls occur at virtually all decision points
in the omics workflow and begin with the experimental design
phase. The significance of a given pitfall is highly dependent
on the phenomena under investigation and aims of the study
but common pitfalls include inadequate sampling, improper
preservation, sample transport conditions or subcommunity
sampling (e.g., planktonic/sessile), biases arising from sample
handling (e.g., during extraction and amplification), the choice of
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FIGURE 1 | The interface of microbial omics and machine learning (ML). A generalized and simplified overview of the workflows is presented highlighting the major
steps in the microbial omics and ML workflows as they relate to one another along with key outcomes obtainable from the application of ML to omics data. Microbial
community responses (biological information on which learning is aimed) are summarized below the cartoon snapshot of a contaminated environment of interest.
Here, HC cont., hydrocarbon contamination; PAH, polyaromatic hydrocarbons (as examples of targets in petroleum hydrocarbon scenarios); QC, quality control;
ASV, amplicon sequence variant (ASVs are given here as an example of an omics classification, other examples include the often used OTU, genes, mRNA
transcripts, protein categories or metabolite IDs); DL, deep learning; ANN, artificial neural networks (shallow); RF, random forest; SVM, support vector machine; GB,
gradient boost; LR, logistic regression; SMOTE, synthetic minority oversampling technique; SML, supervised machine learning; and MP, model performance.
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sequencing/liquid chromatography-mass spectrometry (LC–MS)
platform and analytical methodology, classification and filtering
of omics data (which can remove rare but important taxa,
transcripts, or proteins), artifacts from data transformation and
normalization approaches (correcting for library size is especially
essential for meta-analyses), and the choice and engineering of
features. A number of considerations can help in preserving
the biological information for omics-led SML, and many are
discussed in the following.

Workflow Considerations
Microbial Omics Input
Microbial omics pitfalls, from sampling to the bioinformatics
pipeline, can reduce or bias the information yielded (Gutleben
et al., 2018; Kaster and Sobol, 2020). Typically, some trade-off
must be made in the experimental design, for which options
have been suggested (Franzosa et al., 2015). In metataxonomics,
resolution is usually limited to the genus level, though it is
the most commonly used omics input for SML (Table 1),
wherein relative operational taxonomic unit (OTU) abundances
form the feature set (Miao et al., 2020; Janßen et al., 2021;
Kim and Oh, 2021). However, the use of OTUs is inherently
limiting for retaining community information and can miss
important taxonomic groups. Indeed, since the development of
the more biologically meaningful amplicon sequence variants
(ASVs; Callahan et al., 2017), the absence of ASVs in most
metataxonomic studies is striking. As ASVs represent a more
accurate basis for taxa assignment, it will be interesting to see how
their application influences ML performances in future.

Metagenomics is highly sensitive for low-abundance taxa,
but is rarely applied for SML and carries additional costs
which may limit sampling and options for ML (Chen and
Tyler, 2020). Importantly, metagenomic approaches do not
always convey a clear advantage over the more cost-effective
metataxonomic approach (Xu et al., 2014). The choice between
metataxonomics and metagenomics is evidently not clear-
cut and should be considered in light of the expected
community under study, choice of sequencing platform, and
research goals. Microbial omics inputs are most often derived
from closed-reference databases, leading to inevitable loss of
learnable biological information in environmental samples due to
unclassified/misclassified data (Chen and Tyler, 2020). However,
the development of ML and DL tools (Liang et al., 2020) for
enhancing taxonomic classification in metagenomic data sets
could prove helpful. Alternatively, the direct use of biological
sequences (from microbial omics surveys) circumvents this
issue (by forgoing categorical assignment), thereby permitting
the inclusion of more comprehensive feature spaces, at the
cost of reducing the immediate interpretability for the user.
Informative abstractions of omics data, such as the use of
K-mer distributions as a feature set, have shown success
in both taxonomic (Fiannaca et al., 2018) subtyping (Solis-
Reyes et al., 2018) and phenotypic (Aun et al., 2018)
classification, and are applicable to environmental applications.
Indeed, K-mer abstractions have shown predictive potential
for classifying sample environment and host-phenotype (an

environmental status) that excels over OTU features (Asgari et al.,
2018). Environmental metatranscriptomics-led SML is currently
limited. However, the approach has been shown to uncover
the mixotrophic processes of protists in response to nutrient
gradients in the Pacific Ocean (Lambert et al., 2021), thereby
demonstrating that trophic modes can be readily predicted from
metatranscriptomic data.

Choice of Machine Learning Architecture
There is a broad selection of the SML tools to select from
and each carries its own advantages and limitations (Goodswen
et al., 2021). Not a single architecture performs best in all
environmental application cases and users must make a trade-off
in terms of interpretability, learning performance, computational
costs, data requirements, and ease of implementation (Ghannam
and Techtmann, 2021). At the outset, selecting a set of
architectures can help to ensure the delivery of research
goals. Random forest (RF) is a popular choice for microbial
omics-driven SML for its learning capacity, straightforward
implementation, and high degree of interpretability (Ghannam
and Techtmann, 2021). For especially complex tasks, or
where knowledge is limited, DL approaches (multi-layered
architectures) have the highest performance, as they can self-
learn (i.e., do not require user extraction of) the feature
set (Christin et al., 2019). However, DL comes with elevated
computational costs and low interpretability of the underlying
model (“black box” effect) and requires large volumes of data
(thousands of samples). Consequently, though very promising,
DL approaches for environmental omics are currently limited.

Feature Engineering
Feature selection and engineering are crucial for generating
meaningful SML-based ecological models. Reducing the feature
space can help to limit overfitting, reduce computational costs,
improve cross-study comparison, and improve generalized
prediction performance across data sets (Ghannam and
Techtmann, 2021). However, care is needed when reducing
features for training as biologically meaningful features can
be missed if feature selection is based on abundance. This is
especially so when assessing anthropogenic perturbations of
pollutants in the environment, wherein the rare microbiome
(taxa representing <0.1% of the total community) comprise a
significant reservoir of gene clusters that enable the utilization
and degradation of xenobiotic organic compounds (Wang
et al., 2017). Taking embedded approaches for feature selection
(that can evaluate across the full feature space) (Wang et al.,
2017) or a biologically driven feature selection method (such as
taxonomically aware hierarchical feature engineering) (Oudah
and Henschel, 2018) may help in optimizing feature selection
in metataxonomics-driven ML applications. Feature selection
methods designed for functional feature sets are still notably
lacking in this space.

Conventional statistics require assumptions on the underlying
data and care is needed, given the compositional nature of
microbial omics data sets (Gloor et al., 2017). For example,
conventional ecological models often assume monotonicity
in relationships, which can hinder ecological explanations
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TABLE 1 | Example applications of the SML of microbial Omics data for addressing environmental challenges.

Environment Niche Application Omics Input data Feature Target(s) SML
architectures

Software References

Aquatic Marine (Coral
Reef)

Prediction of environmental
status

metataxonomics 16S rRNA
OTUs

OTU
abundance

Eutrophication
indicators and
temperature

RF Caret and RF R packages Glasl et al.,
2019

Industrial WWTP Prediction of environmental
variable to identify key
subpopulations

metataxonomics 16S rRNA
OTUs

OTU
abundance,
PCA
coordinates

WWTP water
temperature

LR, RF, SVML,
DT, KNN,
SVMRBF

Scikit-Learn Kim and Oh,
2021

Terrestrial Soil1 Prediction of carbon cycling metataxonomics 16S rRNA
OTUs

OTU
abundance

[DOC] RF, ANN THEANO, Scikit-Learn Thompson
et al., 2019

Terrestrial Compost Classification of microbial
biomarkers

metataxonomics 16S rRNA
OTUs

OTU
abundance

Compost cycle RF RF R package Zhang et al.,
2020

Terrestrial Ground
water + Soil1

Prediction of environmental
contaminants

metataxonomics 16S rRNA
OTUs

OTU
abundance

[dioxane] and
[CVOCs]

RF Miao et al.,
2020

Terrestrial Soil Prediction of environmental
quality

metataxonomics 16S rRNA
OTUs

OTU
abundance

Soil
physicochemical
features

RF RF R package Hermans et al.,
2020

Aquatic Marine (coastal
waters)1

Prediction of environmental
contaminants

metataxonomics 16S rRNA
OTUs

OTU
abundance,
16S rRNA gene
sequences

Glyphosate RF, ANN RF R package and DL4J Janßen et al.,
2019

Aquatic Freshwater
(river)

Classification of
anthropogenic pathogen
loads

metataxonomics2 16S rRNA
OTUs

OTU
abundance

Fecal source RF, MCMC RF R package and
SourceTracker

Dubinsky et al.,
2016

Aquatic Marine and
Freshwater

Classification of microbial
biomarkers

metataxonomics 16S rRNA and
ITS OTUs

OTU
abundance

Plastisphere
communities

RF RF R package Li et al., 2021

Aquatic Marine
sediment
(munitions
dumpsite)

Prediction of environmental
contaminants

metataxonomics 16S rRNA
OTUs

OTU
abundance

TNT RF, ANN Ranger R package ANN R
keras
framework + TensorFlow
back end

Janßen et al.,
2021

Aquatic Freshwater
(river)

Classification of sample
origin

metataxonomics 16S rRNA
OTUs

OTU
abundance (top
taxa)

Sample origin RF RF R package Wang et al.,
2021

Aquatic Marine (oceanic
waters)

Classification of trophic
modes

Metatranscriptomics Gene
expression
levels

expression
levels of
selected Pfam
entries

Trophic mode
(photo/hetero/mixo)

RF, DT, ANN NR and XGBoost Lambert et al.,
2021

Terrestrial Soil Prediction of crop
productivity

metagenomics Shotgun
sequencing

OTU
abundance

Crop productivity RF Ranger R package Chang et al.,
2017

Terrestrial Soil Prediction of soil
phylogroups from
environmental metadata

metagenomics NR NR Listeria species RF RF R package Liao et al.,
2021

1 Indirectly studied in microcosms.
2Using PhyloChip array.
Here, ANN, Artificial Neural Network; CVOCs, Chlorinated Volatile Organic Compounds; DOC, Dissolved Organic Carbon; DT, Decision Tree; KNN, K-Nearest Neighbors; LR, Logistic Regression; MCMC, Markov Chain
Monte Carlo; NR, Not reported; RF, Random Forest; SVML, Support Vector Machine (SVM) with a linear kernel; SVMRBF, SVM with a radial basis function kernel; TNT, trinitrotoluene; WWTP, Wastewater Treatment Plant.
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of community variance across study sites. By applying SML
(allowing for non-monotonic feature capture), the ability to
capture this variance can increase nine-fold (Fontaine et al.,
2021). It is important to note that the goal of SML should
not be to replace classical statistical modeling, but rather to
complement it. Integrating these two approaches presents an
promising opportunity to leverage their advantages for predictive
environmental microbiology (Lopatkin and Collins, 2020) and
monitoring. For multi-omics studies, feature selection and
engineering becomes increasingly complex with the successive
systems levels, and there is much to be done in this area. In
such studies, functional data across systems levels will likely need
to be empirically assessed prior to SML to identify the most
informative biomarkers for learning (Xu et al., 2014).

Evaluating Data Leakage
Data leakage is a subtle but important aspect of ML, referring
to the unintended use or influence of data (that should not be
available at the time of prediction) during the training process.
This often occurs when the features used for training hide
within themselves the result of the prediction, resulting in an
overestimation of performance of the model during validation
(Chiavegatto Filho et al., 2021). Due to the subtleties with which
this can occur, avoiding data leakage is challenging and should
be evaluated on a case by case basis. Important aspects for
consideration here have been discussed previously (Wirbel et al.,
2021) and include (1) data filtering that is influenced by the target
label and (2) the splitting of dependent data (e.g., replicates and
time-series data points) across training and validation sets. The
use of an externally generated test data set (handled separately
from the training set) for additional validation checks can help
(Oyetunde et al., 2019; Wirbel et al., 2021), though data leakage
is seldom discussed in microbial omics papers that use SML. We
urge future authors in this space to consider including at least a
statement on leakage assessment in studies based on SML.

Applications of Molecular Microbial
Ecology–Machine Learning for
Environmental Challenges
Microbes as Environmental Biosensors
Anthropogenic impacts are motivating the development
of cost-effective and scalable environmental bioassessment
methodologies (Fruehe et al., 2021). Microbes have long
been recognized as potential in situ biosensors for following
human impacts (Su et al., 2011), allowing for highly accurate
quantitative SML predictions of the perturbation. Indeed,
metataxonomic data can be valuable for the prediction of a
variety of environmental contaminants (Table 1), spanning from
relatively inert plastics (Li et al., 2021) to petroleum hydrocarbons
[which illicit strong responses with detectable influences even
after the pollutant is degraded and undetectable by conventional
measures (Smith et al., 2015)]. Hydrocarbonoclastic indicator
species have also been identified as key biosensors in ML-
based bioprospecting of hydrocarbon seepage from subsurface
reservoirs and can improve the likelihood of success in drilling
for new assets (de Dios Miranda et al., 2019; Chitu et al., 2022).
The same approach is also being explored as the potential

early-warning indicators of leakage from hydrocarbon transport
lines (Shaheen et al., 2011). Indeed, the SML of microbial
fingerprints has even demonstrated reasonable predictions
(accuracies of 72–85%) of the future production of hydrocarbon
reservoirs (using metataxonomic input) (Zijp et al., 2021) which
can facilitate decision-making for enhanced asset management.
These approaches thereby have real potential for reducing the
carbon footprint and ecological impact of upstream oil and gas
activities.

Microbes as Predictors of Environmental Status
Microbes have proved valuable as ecological assessment
indicators in multiple diverse environments (Astudillo-García
et al., 2019; Glasl et al., 2019; Hermans et al., 2020; Chen et al.,
2021). Moreover, improvements in sequencing technologies
are facilitating the upscaling and deployment of omics-based
ML for more ambitious environmental monitoring and
mitigation applications (Wang et al., 2021). These indicators
can reveal important relationships for land management, when
conventional field measurements are unhelpful (Chang et al.,
2017). Indeed, the SML of microbial 16S rRNA abundances
can directly predict soil productivity in arable land and risks
posed for agriculture (Yuan et al., 2020). USML is routinely
applied via ordination techniques to establish the organization of
microbiome data in relation to their environmental parameters.
However, in instances where conventional ordinations fail to
determine clear relationships, SML may still yield community
subpopulations that can serve as predictors for environmental
parameters and processes of interest. For example, the influence
between temperature and key phosphate and glycogen-
accumulating organisms involved in the enhanced biological
phosphorous removal processes of a set of wastewater treatment
plants (WWTPs) in South Korea was identified using an SML
approach, resulting in findings with clear implications for
WWTP design and operation (Oh and Kim, 2021). Additionally,
the SML of metabarcoded environmental DNA (eDNA) can
provide superior performance for environmental quality
monitoring over conventional bioindicator values for marine
aquaculture monitoring (Fruehe et al., 2021). Furthermore, RF
learning of eDNA has been shown to outperform conventional
taxonomy-based biotic indices assessments (Cordier et al., 2018).
Biodiversity in microbial communities can also be a useful
proxy to assess the environmental impact of anthropogenic
perturbations through changes in biotic indices (Aylagas
et al., 2017). In these ways, SML is a useful means to improve
environmental monitoring programs.

Predicting Sample Origin With Microbiological Data
The predictive power of ML for monitoring environmental status
also enables sample origin to be established (Raza et al., 2021).
Microbial metrics have proved to be exceptionally sensitive
indicators of human impacts on freshwater environments (Liao
et al., 2018). Indeed, via ML modeling, the partitioning of
microbes along complex anthropogenic xenobiotic gradients
from urban and agricultural runoffs is sufficient to identify
the origin of water samples from the 30 most abundant taxa
(Wang et al., 2021) and is able to resolve sample origin depth
and local salinity in the Baltic Sea (Alneberg et al., 2020).
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Such origin tracing carries the potential to inform for public
health by accurately predicting the origins of fecal contaminants
in public waters (Chen et al., 2021; Raza et al., 2021) and
the source of food-borne pathogen outbreaks (Wheeler, 2019).
The ability to identify sample origin sources is likely to be of
critical importance moving forward for tracing runoffs from
agricultural and industrial entities to ensure compliance with
environmentally mindful legislation. It will be interesting to
see whether this sort of tracing application will lend itself to
following waterbodies in other settings, or indeed, other mobile
elements within the environment (forensic analysis of migratory
animals under conservation management, for example). Given
the perceived stability in the gut microbiome, it is possible that
this approach could also be extended as a biological tagging
approach for following animal populations at the center of
conservation efforts.

Supporting Environmental Meta-Analyses and Data
Mining
The high volumes of omics data are enabling large-scale meta-
analyses (Zeller et al., 2014) that can provide a global view
of microbial roles within major environments (Ramirez et al.,
2018; Wu et al., 2019; Yuan et al., 2020). However, several
challenges arise in such studies owing to non-standardized
sample collection, extraction methods, and primer choice
(Ramirez et al., 2018). Additionally, technicalities of sequencing
platforms, variable library sizes, and environmental confounders
can reduce concordance across omics studies (though SML
is alleviating this issue) (York, 2021). ML tools are well
suited for uncovering patterns within these challenging data
collections. For example, a meta-analysis of soil microbiomes
with SML was able to reveal microbiological indicators for
predicting propensity for Fusarium wilt (Yuan et al., 2020),
an agriculturally important pest. Additionally, a meta-analysis
of global soil (Ramirez et al., 2018) and WWTP (Wu et al.,
2019) communities provided macroecological insights into
the microbial biogeography communities and confirmed the
importance of the rare microbiome members as bioindicators.
There remains significant scope for standardizing the workflows
in both omics and SML. Such standardizations are crucial to
mitigating common pitfalls; these enhance reproducibility and
promote meta-analyses and data mining. An important limiting
factor here is that many data sets are unavailable, uploaded to
repositories without raw data or lacking metadata descriptions.
This issue has been raised before (Ramirez et al., 2018) and
impedes otherwise valuable work. For instance, bioprospecting
of biosynthetic gene clusters with SML-based omics data mining
can yield proteins with biotechnological potential (Correia
and Weimann, 2021) for bioremediation, biodegradable plastic
production, and sustainable biofuels (Haque et al., 2020; Keasling
et al., 2021). We therefore urge that omics data sets be uploaded
in their raw form with metadata made available.

Supervised Machine Learning of Microbial Omics
Data to Address Climate Change
The collective effects of anthropogenic perturbations are
driving the consequences of climate change (notably, losses

of ecosystem function, services, biodiversity, and habitat) at
unprecedented rates (Giuliani et al., 2017). The actions of
microbial communities are implicitly tied to geochemical cycling,
global water chemistries, nutrient availabilities, and soil/plant
health (Gorbushina and Krumbein, 2000; Falkowski et al.,
2008; Lian et al., 2008; Dong, 2010; Panke-Buisse et al.,
2014). Microbes are thereby drivers of numerous ecosystem
services on which the global population relies (Marco and
Abram, 2019). Understanding microbe–ecosystem interactions
and functions is therefore central to their utilization in ecological
models and biotechnologies for intervening on climate change.
The generation of high-resolution spatiotemporal dynamics
data and incorporation of different omics data sets can
provide important insights into the molecular mechanisms
behind climate changes responses and improve the accuracy
of forecasting models (Herold et al., 2020; Layton and
Bradbury, 2021). Together with their ubiquitous nature, the
core roles of microbial communities afford us with a broad
framework for potential microbiological tools with which
the fundamental impacts of global climate change can be
understood, monitored, predicted, and conceivably, mitigated.
The short generation times of microbial community members
and their predictable changes following changing environmental
parameters (Larsen et al., 2012) open the possibility for their
use as early-warning indicators of climate change-led impacts
on macroecological networks (Shah et al., 2022) before further
biodiversity loss is observable on the macroscale. Conversely,
microbial contributions to climate change via carbon cycle-
climate feedback and N2O production (Bardgett et al., 2008)
are an ideal candidate for predictive SML modeling and
intervention. Indeed, predictive models from microbial omics
data have also shown utility across a range of climate change-
linked phenomena, including browning (Fontaine et al., 2021),
eutrophication (Glasl et al., 2019), harmful algal blooms (Hennon
and Dyhrman, 2020), and arability of soils (Chang et al., 2017;
Hennon and Dyhrman, 2020; Yuan et al., 2020). omics in soil-
plant, subsurface, and aquatic microbiomes is also central to
making inroads in the development of carbon capture and
sequestration (CCS) biotechnologies (Schweitzer et al., 2021). It
will be interesting to see whether such developments benefit from
SML-based modeling, which could prove useful for establishing
taxa and metabolisms that predict stability and sequestration
rates in CCS systems. Therefore, SML modeling can facilitate
the establishment and optimization of carbon fluxes in microbial
communities (particularly for the poorly characterized deep
subsurface microbiome) and may also help to bridge bioenergy
production to CCS, which is considered essential for many
climate change mitigation plans (Hanssen et al., 2020). At
present, the ability of microbes to inform on, and forecast, climate
change impacts via ecological monitoring programs is perhaps
the most immediately applicable area for the SML of microbial
omics in climate change research. In this way, microbes can
assist decision-makers for sustainable policies and intervention
measures to ensure food security and maintain ecosystem
services before further ecological detriment occurs (Cordier et al.,
2021; Shah et al., 2022). The potential future applications in this
space, however, are vast and may be key for realizing goals in
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global-scale climate management and engineering against climate
change.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Machine learning is a powerful toolbox for drawing meaningful
biological insights from large multidimensional microbial data.
Here, we discussed how SML can contribute to environmental
challenges by valorizing microbial community data sets. The
predictive potential of interfacing omics and SML has opened
exciting new avenues for managing environmental pollution and
status. The ability to identify key species and functional elements
can be expected to accelerate biotechnological developments
with implications for environmental intervention (such as
bioremediation). Through the interface of these important
disciplines, we are rapidly advancing our view of global
microbiome and the ecological impacts from human activities.

This nascent, but fast-evolving, application area for ML has
several notable opportunities which are yet to be exploited.
Metataxonomics-centric ML efforts have dominated this space,
but has yet to apply long-read and metagenome-assembled
genomic data for feature set development in this research
area. Additionally, several advanced systems-level techniques
(metaproteomics, metabolomics, and in particular, integrative
omics) remain at much earlier stages of development compared
with DNA sequencing-based approaches and are consequently
lagging in this arena. ML tools will likely become integral to
pipelines for these advanced omics methodologies. We foresee
SML becoming a routine complement to conventional statistics
and expect that this will key for revealing the often-overlooked

rare microbiome. As omics approaches continue to advance, and
sample costs reduce, we can expect to see a rise in the application
of promising DL architectures at this interdisciplinary interface.
DL tools will no doubt prove indispensable in data mining
the ever-increasing public omics repositories and represent an
exciting means to address feature engineering challenges via
unsupervised feature extractions.
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