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Chondrocytes are mesenchymally derived cells that reportedly acquire some epithelial characteristics; however, whether this is
a progression through a mesenchymal to epithelial transition (MET) during chondrosarcoma development is still a matter of
investigation. We observed that chondrosarcoma cells acquired the expression of four epithelial markers, E-cadherin, desmocollin
3, maspin, and 14-3-3σ , all of which are governed epigenetically through cytosine methylation. Indeed, loss of cytosine methylation
was tightly associated with acquired expression of both maspin and 14-3-3σ in chondrosarcomas. In contrast, chondrocyte cells
were negative for maspin and 14-3-3σ and displayed nearly complete DNA methylation. Robust activation of these genes was
also observed in chondrocyte cells following 5-aza-dC treatment. We also examined the transcription factor snail which has
been reported to be an important mediator of epithelial to mesenchymal transitions (EMTs). In chondrosarcoma cells snail is
downregulated suggesting a role for loss of snail expression in lineage maintenance. Taken together, these results document an
epigenetic switch associated with an MET-like phenomenon that accompanies chondrosarcoma progression.

1. Introduction

Chondrosarcoma is a rare but deadly form of bone cancer
and is the second most common type of bone cancer
accounting for nearly 26% of all bone cancers [1]. These
tumors are stubbornly resistant to both chemotherapy and
radiation therapy, therefore surgical ablation is still the most
effective treatment [2, 3]. However since surgical resection is
often difficult and not practical for metastatic disease, more
effective treatments are needed.

Chondrosarcomas have been presumed to arise from the
chondrocyte lineage of mesenchymal cells; of mesodermal
origin because they are the most similar cells however, the
exact origin or subtype of cells is still an area of active
investigation. Numerous studies have shown the occurrence
of genetic alterations in chondrosarcomas including loss

of heterozygosity (LOH) on multiple chromosomes, wide
variation in ploidy status, and mutations in the tumor
suppressors p53, p16ink4a, pRB, among others [4–6]. In
contrast, relatively little is known about the epigenetic
alterations that occur during chondrosarcoma progression
[7, 8].

The malignant progression to chondrosarcoma has been
suggested to involve some degree of a mesenchymal to
epithelial transition (MET), and it has been shown in an
in vitro model that chondrosarcoma cells can transition to
a more epithelial-like phenotype under certain conditions
[9]. MET is a fundamental developmental process which is
important to vertebrate embryogenesis in vascular, urinary,
and genital tissues [10, 11]. Although much has been
learned about the more commonly known and well-studied
reciprocal process, the epithelial to mesenchymal transition
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(EMT) during carcinoma progression, the mesenchymal
to epithelial transition (MET) in sarcoma progression is
considerably less well understood. These lineage transitions
have important consequences to cell morphology, cell to
cell adhesion, cell motility, and in the extracellular matrix
of cells. However, the phenotypic plasticity conferred to
cells as a result of these transitions which are so critical to
development may also become coopted by cells during the
process of carcinogenesis.

MET during carcinogenesis has been shown to be
induced by the c-met proto-oncogene [9, 12, 13]. P140 c-
met is a receptor tyrosine kinase for HGF/SF and increased
expression leads to epithelial differentiation [14, 15]. In
addition to epithelial specification by c-met, 5-azacytidine,
a DNA methyltransferase inhibitor with broad spectrum
epigenetic effects, has been used to induce the conversion
of mesenchymal cells into epithelial cells in vitro [16].
More recently research on the transcription factor snail has
been linked to aberrant DNA methylation of the epithelial
specific E-cadherin promoter in association with EMT, and
stable RNA interference of snail expression in carcinoma cell
lines induced a complete MET [17, 18]. Finally, as corneal
stromal keratinocytes differentiate into corneal fibroblasts
they undergo an epigenetic switch with respect to maspin
expression [19]. Such results highlight the possible role
played by epigenetic changes through DNA methylation in
a cell’s ability to transdifferentiate from a mesenchymal to a
more epithelial phenotype.

To investigate whether chondrosarcoma cells are display-
ing some characteristics of MET we examined four epithelial
markers to confirm the acquisition of more epithelial-like
expression. These epithelial markers included E-cadherin,
desmocollin 3, maspin, and 14-3-3σ . Next to investigate
whether epigenetic changes are occurring in chondrosarco-
mas we examined protein and RNA expression along with
the DNA methylation at two distinct and separate loci,
maspin and 14-3-3σ . Both have been identified as specific
epithelial markers and have separately been shown in lung,
pancreas, prostate, and other cancers to be epigenetically
controlled through DNA methylation [20–24]. Finally we
measured expression of the snail transcription factor which
has been reported to be an important mediator of EMT in
part through epigenetic mechanisms [25].

Maspin is a member of the serpin family of protease
inhibitors (SERPINB5) and has been described as an epithe-
lial marker and a type II tumor suppressor gene based upon
its ability to inhibit invasion and motility of mammary
tumors [26–29]. Zhang and colleagues also found maspin to
function as an inhibitor of angiogenesis [28, 30, 31]. Maspin
gene expression is regulated in part through methylation
of its promoter in human normal cells [29]. In addition,
silencing of the maspin gene in association with aberrant
DNA methylation has been reported in cancer cells from
breast, melanoma, and thyroid [20, 32, 33]. Nevertheless,
loss of maspin expression in cancer is not a universal
phenomenon. In other malignancies such as pancreatic,
lung, ovarian, and gastric cancers, maspin expression is
paradoxically increased in malignant cells compared to their
normal cells of origin [21, 34–36].

14-3-3σ , also known as stratifin or HME1, was originally
identified as an epithelial-specific marker downregulated in
breast cancer cell lines [37]. 14-3-3σ has been shown to be
involved in a wide variety of cellular processes, including
its response to DNA damaging agents and gamma radiation
through activation by p53, which then contributes to G2
cell cycle arrest [38, 39]. Studies have shown that, similar
to maspin, downregulation of 14-3-3σ was associated with
aberrant hypermethylation of the 14-3-3σ CpG island [23,
40, 41]. Since the original report, hypermethylation of 14-
3-3σ leading to silencing has been reported in prostate,
hepatocellular carcinomas, and others [23, 41]. However, just
as with maspin, 14-3-3σ is not always downregulated and in
fact is upregulated in pancreas and squamous cell carcinomas
[42, 43].

Two members of the cadherin family of cell adhesion
molecules E-cadherin and desmocollin 3, have been shown
to be downregulated in several types of cancers through
DNA methylation [44, 45]. This decrease in expression
has been correlated with the epithelial to mesenchymal
transition. The snail transcription factor has been shown
to repress E-cadherin expression and has been reported to
be an important mediator of epithelial to mesenchymal
transitions. Recently, it has been shown that snail binds to
the E-boxes of the E-cadherin promoter and can recruit
the histone deacetylase HDAC1 and DNA methyltransferase
DNMT1 to help in the epigenetic silencing of E-cadherin
[46].

In this study we show an upregulation of four distinct
epithelial markers and the downregulation of snail, all con-
sistent with cells that have undergone to some extent an MET
transition. Next we show that epigenetic alterations in two of
these genes, maspin and 14-3-3σ , are consistent with their
gain of expression in chondrosarcomas. We demonstrate
that loss of DNA methylation at both the maspin and 14-
3-3σ loci led to increased expression of these two epithelial
specific genes during chondrosarcoma carcinogenesis. These
results link the mesenchymal to epithelial transition in
chondrosarcoma to an epigenetic switch in lineage-specific
gene expression.

2. Materials and Methods

2.1. Cell Culture. Chondrosarcoma cells and normal chon-
drocytes were isolated by overnight digestion of chopped
tissues with 0.5 mg/mL type IA collagenase and pronase
E (Sigma) in Dulbecco Modified Eagle’s medium with
10% fetal calf serum (Life Technologies). All cells were
cultured as monolayers in growth medium containing
40% Dulbecco Modified Eagle’s medium, 40% Minimum
Essential medium, 20% Ham’s F12, 10% fetal calf serum
supplemented with 1.0 units/ml insulin, 20 μg/mL hydrocor-
tizone (Sigma), and 40 μg/mL gentamycin or 100 units/ml
penicillin/streptomycin and grown at 37◦C with 5% CO2

in a humidified cell culture incubator. The SNM83 are
the normal chondrocyte cell strain used in this study.
The cell line JJ was a generous gift from Dr. Joel Block.
The in vitro morphologies of several of these cell lines
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have been previously reported [47]. Briefly, we found that
the in situ morphology of chondrocytes and low-grade
chondrosarcoma cells changed in monolayer culture, where
both transitioned from a spindle cell shape to a more
polygonal cell shape after a few passages. High-grade (2-3)
chondrosarcoma cells in monolayer culture retained their
spindle shaped in culture.

2.2. Real-Time RT-PCR Assays for Gene Expression. Total
cellular RNA was isolated using RNeasy Mini Kit (Qiagen,
Valencia, CA, USA) and quantified using a biophotome-
ter (Eppendorf, Westbury, NY, USA). For real-time RT-
PCR analysis of maspin and 14-3-3σ mRNA expression,
a reverse transcription step was performed using a High
Capacity cDNA Archive Kit (Applied Biosystems Inc.,
Foster City, CA, USA). The reverse transcription reaction
of 2 μg of RNA was primed with random primers and
incubated at 25◦C for 10 min followed by 37◦C for 120 min.
The primer/probe PCR reactions consisted of 100 ng of
cDNA added to 12.5 μL of TaqMan Universal PCR Master
Mix (Applied Biosystems Inc.), 1.25 μL of gene-specific
maspin and 14-3-3σ primer/probe mix (Assays-on-Demand,
Applied Biosystems Inc.), and 6.25 μL PCR grade water, for
a 25 μL total reaction. For E-cadherin, desmocollin 3, and
snail the primers were designed using ABI primer express
software. Primer sequences are available upon request.
The PCR reactions consisted of 100 ng cDNA with 0.6 μM
primers in Power SYBR green PCR MasterMix (Applied
Biosystems Inc.) with a total reaction volume of 25 μL.
The genes were not multiplexed but rather amplified in
separate tubes. The PCR conditions for all reactions were
95◦C for 10 min, followed by 40 cycles of 95◦C for 15 s,
with annealing at 60◦C for 1 min. Real-Time PCR was
performed on an ABI 7000 real-time sequence detection
system. Both the maspin and 14-3-3σ gene-specific TaqMan
probes were labeled with a 5′ reporter dye, 6-FAM, and
a 3′ end containing a nonfluorescent quencher and a
minor groove binder. Fold differences in mRNA expression
were calculated using their respective mRNA expression
calibrated to 18-s ribosomal RNA expression and computed
using ABI relative quantitation software (Applied Biosystems
Inc.).

2.3. Western Blot Analysis. Proteins were isolated from
SNM83 and NH69 cells using RIPA buffer and quantified
using a Bradford assay. Twenty μg of protein were size frac-
tionated by electrophoresis on a 12% SDS-PAGE gel and then
transferred to nitrocellulose membranes. The membranes
were then probed with a maspin antibody (Pharmingen) and
14-3-3σ antibody (Chemicon).

2.4. Sodium Bisulfite Genomic DNA (gDNA) Sequencing.
Genomic DNA was isolated using the DNeasy Tissue
Kit (Qiagen, Valencia, CA, USA) and quantified using a
biophotometer (Eppendorf). Five micrograms of genomic
DNA was modified under conditions previously described
[32]. The maspin and 14-3-3σ CpG islands were amplified
from the bisulfite modified DNA by two rounds of PCR

utilizing nested PCR primers specific to the bisulfite mod-
ified sequence of the maspin promoter and the 14-3-3σ
CpG island as described previously [32, 48]. The final PCR
product was cloned into a TOPO TA vector according to the
manufacturer’s instructions (TOPO TA Cloning Kit, Invit-
rogen, Carlsbad, CA, USA). Five positive recombinants were
isolated using Qiaprep Spin Plasmid Miniprep Kit (Qiagen)
according to manufacturer’s instructions and sequenced on
an ABI automated DNA sequencer. The methylation status
of individual CpG sites was determined by comparison of
the sequence obtained with the known maspin and 14-3-
3σ sequences. The number of methylated CpGs at a specific
site was divided by the number of clones analyzed (n =
5) to yield the percent methylation for each site. For total
promoter methylation calculation, the total of all the 19 CpG
sites for maspin and the 27 CpG sites in 14-3-3σ that were
methylated from the 5 clones was counted and divided by
the total CpG sites.

2.5. Gene Reactivation Using 5-Aza-2′-Deoxycytidine. For 5-
aza-2′-deoxycytidine (5-aza-dC) reactivation studies in the
CS8E chondrosarcoma cell line, cells were plated at 5 ×
104 cells in 6-well plates and were treated with 10 μM 5-aza-
dC in complete media on days 0, 2, and 4 then harvested
for total RNA on day 5 using an RNeasy Mini Kit (Qiagen,
Valencia, CA, USA). RNA was then analyzed by real-time RT-
PCR.

3. Results

3.1. Gain of mRNA Expression of Epithelial-Specific Genes
in Chondrosarcomas. Compared to normal chondrocytes,
chondrosarcoma cell lines displayed gain of expression of
several epithelial-specific markers. E-cadherin mRNA expres-
sion was significantly upregulated in 4 of the 5 chondrosar-
coma cell lines ranging from a 6- to 189-fold induction over
the normal SNM83 normal chondrocyte cell strain as shown
in Figure 1(a). Similarly, desmocollin 3 mRNA expression was
acquired in 4 of the 5 cell lines examined, ranging from a 2-
to a 12-fold increase as compared to the normal counterpart
SNM83, as shown in Figure 1(b). Maspin mRNA levels
were also similarly affected. Maspin mRNA expression was
virtually undetectable in the normal SNM83 chondrocyte
cell strain and in stage I early CS8E chondrosarcoma cell
line. In contrast, the chondrosarcoma cells CSPG, JJ, NH69,
and CS13H displayed abundant maspin expression as shown
in Figure 2(a) and Table 1. The chondrosarcoma cell lines
displayed approximately 102- to 105-fold higher levels of
maspin mRNA expression when compared to the normal
SNM83 chondrocyte cell line. Finally, we determined that
14-3-3σ mRNA expression was also virtually undetectable
in the SNM83 normal chondrocyte cell strain and in CS8E
cancer cell line and low in the CSPG cell line. In the
other chondrosarcoma cells JJ, NH69, and CS13H there
was approximately 100-fold higher levels of 14-3-3σ mRNA
expression as shown in Figure 2(b) and Table 1. To our
knowledge this is the first report showing the upregula-
tion of either maspin or 14-3-3σ in chondrosarcoma cell
lines.
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Figure 1: Chondrosarcomas acquire aberrant expression of epithelial-specific genes E-cadherin and desmocollin-3. (a) E-cadherin mRNA
expression was measured by real-time PCR. Four of the five chondrosarcoma cell lines (CS8E, CSPG, JJ, and CS13H) showed a significant
increase in E-cadherin mRNA expression from approximately 6- to 189-fold increase when compared to the normal SNM83 chondrocyte
cell line. SNM83 had minimal expression but was set at 1 on graph as calculated using ΔΔCT relative quantification method. (b) Desmocollin
3 mRNA expression was measured by real-time PCR. Four of the five chondrosarcoma cell lines (CS8E, CSPG, JJ, and CS13H) showed
a significant increase from approximately 1.5- to 12-fold more Desmocollin 3 mRNA when compared to normal line. Again SNM83 had
minimal expression but was arbitrarily set at 1 for calculation purposes.
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Figure 2: Chondrosarcomas acquire aberrant expression of epithelial-specific genes maspin and 14-3-3σ . (a) Maspin mRNA expression was
measured by real-time PCR. Four of the five chondrosarcoma cell lines (CSPG, JJ, NH69, and CS13H) showed a significant increase in
maspin mRNA expression when compared to the normal SNM83 chondrocyte cell line. SNM83 had minimal expression but was set at 1 on
graph as calculated using ΔΔCT relative quantification method. (b) 14-3-3σ mRNA expression was measured by real-time PCR. Three of
the five chondrosarcoma cell lines (JJ, NH69 and CS13H) showed a significant increase from approximately 50- to 150-fold more 14-3-3σ
mRNA when compared to normal SNM83 and the CS8E and CSPG chondrosarcoma cell lines. Again SNM83 had minimal expression but
was arbitrarily set at 1 for calculation purposes.

Table 1: Summary of maspin and 14-3-3σ mRNA expression and cytosine methylation states in human chondrosarcoma cell lines.

Cell Line Expression Fold change mRNA Methylation % Methylation

Maspin

SNM83 − 1 + 93

CS8E − 10 + 86

CSPG + 1000 − 7

JJ + 32,000 − 3

NH69 + 63,000 − 1

CS13H + 63,000 +/− 65

14-3-3σ

SNM83 − 1 + 85

CS8E − .15 + 90

CSPG − 1 + 95

JJ + 45 − 27

NH69 + 150 − 6

CS13H + 145 − 4.4
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Figure 3: Chondrosarcoma cells expression of maspin and 14-3-3σ
proteins. Western blot analysis for maspin and 14-3-3σ . Lane 1 is the
SNM83 chondrocyte cell line which shows no protein expression for
either maspin or 14-3-3σ , and in lane 2 the NH69 chondrosarcoma
cell line shows a robust induction of both proteins. These are
consistent with real-time PCR results of mRNA expression. Beta-
actin was used as the loading control.

3.2. Gain of Epithelial-Specific Protein Expression. To deter-
mine whether the increases in mRNA observed were trans-
lated into functional proteins we performed western blotting
on the epithelial-specific markers maspin and 14-3-3σ in
two representative cell lines as shown in Figure 3. The
normal SNM83 cells showed no detectable expression of
maspin or 14-3-3σ while the chondrosarcoma cell line NH69
showed robust expression of both proteins consistent with
the previously observed upregulation in the maspin and 14-
3-3σ ’s mRNA levels (Figure 2).

3.3. Maspin and 14-3-3σ Gene Methylation in Chondrocytes.
Figures 4(a) and 4(b) represent the normal methylated
state of the maspin promoter in the normal chondrocyte
cell line SNM83. Figure 4(a) is a histogram representing
the percent methylation at each of the 19 CpG locations
and their distribution across the maspin promoter’ whereas
Figure 4(b) shows the five analyzed clones individually and
the methylation at each CpG site. The overall methylation for
the maspin promoter was 93% in the SNM83 cells (Table 1).
This high degree of promoter methylation taken along with
the undetectable SNM83 maspin mRNA and protein levels
represented in Figures 2(a) and 3 is consistent with reported
studies linking high maspin promoter methylation with
silenced gene expression.

Figures 4(c) and 4(d) represent the methylation status of
27 CpG’s in the 14-3-3σ gene in the SNM83 cells. Similar
to the maspin promoter, 14-3-3σ shows a highly methylated
state of the CpG’s in normal 14-3-3σ negative chondrocytes.
Figure 4(c) is a histogram representing the overall percent
methylation from the five picked clones at each CpG site
and its distribution across the gene; whereas Figure 4(d)
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Figure 4: Normal chondrocyte cells have a highly methylated
maspin promoter and 14-3-3σ CpG island. (a) and (c) Histograms
representing the percent methylation at each of the CpG’s spanning
the maspin promoter and 14-3-3σ CpG island in SNM83 chon-
drocyte cells. (b) and (d) Bubble charts of Maspin and 14-3-3σ
in SNM83. Each of the five rows represents a sequenced amplicon,
while each of the columns represents the position of the nucleotide
relative to the transcription start site. Darkened circles represent
methylated cytosines while open circles represent unmethylated
cytosines. Nucleotide positions relative to start site were based on
UCSC genome browser build 17.

shows the individual clones and methylation at each CpG
site. The overall methylation of SNM83 from the sequenced
clones is 85% methylated. This methylation pattern of 14-
3-3σ , similar to maspin, is associated with silenced 14-3-3σ
expression.

3.4. Loss of Maspin Promoter Methylation in Human Chon-
drosarcomas. Figure 5(a) illustrates the methylation fre-
quency and distribution at each of the 19 CpG’s we measured
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Figure 5: The maspin promoter and 14-3-3σ gene are hypomethylated in mRNA expressing chondrosarcoma cell lines. Bubble charts of
the maspin promoter (a) and 14-3-3σ gene (b) for the five chondrosarcoma cell lines analyzed. Each of the five rows represents a sequenced
amplicon while each column represents the nucleotide position of the CpG measured relative to the transcription start site. Darkened circles
represent methylated cytosines, and clear circles represent unmethylated cytosines. Nucleotide positions relative to start site were based on
UCSC genome browser build 17.

in the maspin promoter in the five human chondrosarcoma
cell lines analyzed. SNM83 (Figure 4) and CS8E displayed
overall maspin promoter methylation percentages of 93%
and 86%, respectively, while CS13H showed an intermediate
methylation percentage of 65%. In sharp contrast, the
remaining chondrosarcoma cell lines CSPG, JJ, and NH69
displayed significantly lower percentages of overall promoter

methylation of 7%, 3%, and 1% respectively (Table 1). The
intermediate promoter methylation of CS13H may be due to
the phenotypic heterogeneity displayed in the tumor tissue
from which the DNA was extracted (data not shown), or
could be due to a reversion of this late stage chondrosarcoma
back to a more “normal” methylation profile similar to
chondrocytes. Nonetheless, these data are consistent with our
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SNM83 normal chondrocyte cell line were exposed to 10 uM 5-Aza-
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previous report in human pancreatic carcinoma cell lines as
well as reports from human breast, lung, ovarian, and thyroid
cancers that tightly associate maspin expression to promoter
methylation.

3.5. 14-3-3σ Gene Methylation in Chondrosarcomas.
Figure 5(b) also illustrates the methylation frequency and
distribution at each of the 27 CpG sites of the 14-3-3σ CpG
island among the sequenced amplicons from the same five
chondrosarcoma cell lines. CS8E and CSPG displayed a
percentage of overall DNA methylation of 90% and 95%,
respectively. In contrast, the remaining chondrosarcomas cell
lines display relatively little DNA methylation (Table 1). This
supports previous work with 14-3-3σ that shows the tight
association of DNA methylation with low expression and
hypomethylation with higher levels of 14-3-3σ expression
[40, 42].

3.6. Gene Reactivation with 5-Aza-Deoxycytidine. The
mRNA expression and sodium bisulfite DNA sequencing
data alone shows a potential association but does not fully
establish a cause and effect relationship between cytosine
methylation and maspin and 14-3-3σ gene expression.
Therefore we investigated whether we could induce maspin
and 14-3-3σ expression by treating the maspin and 14-
3-3σ negative SNM83 chondrocyte cells and the CS8E
chondrosarcoma cells with the DNA methyltransferase
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Figure 7: Snail mRNA expression is downregulated in human
chondrosarcomas. All five chondrosarcoma cell lines showed a
significant decrease ranging from 1.5- to a 10-fold decrease in
snail mRNA expression when compared to the normal SNM83
chondrocyte cell line as determined by real-time PCR using ΔΔCT
relative quantification method. Expression is normalized to SNM83
chondrocyte expression.

inhibitor 5-aza-2′-deoxycytidine (5-aza-dC). After 120
hours of 5 μM 5-aza-dC both the SNM83 and CS8E cells
showed a significant increase from almost undetectable
levels of maspin and 14-3-3 μ to crisp mRNA expression
when compared to the untreated controls as shown in
Figure 6. These data are consistent with previous reports of
induced maspin and 14-3-3σ expression following 5-aza-dC
treatment of hypermethylated and nonexpressing cell lines
[21, 32, 41, 49].

3.7. Loss of Snail mRNA Expression in Chondrosarcomas. To
begin to assess the potential underlying molecular mecha-
nism(s) for the apparent epigenetic switch in lineage-specific
gene expression we observed and we measured snail mRNA
expression, since snail has been reported to participate in the
MET. Interestingly, snail mRNA expression was significantly
downregulated in all five chondrosarcoma cell lines when
compared to the SNM83 normal chondrocytes, ranging from
a 1.5- to 10-fold decrease in mRNA expression as shown
in Figure 7. This decrease is supportive of our observation
that E-cadherin and other epithelial-specific markers mRNAs
were induced in the majority of human chondrosarcoma cell
lines analyzed and is noteworthy because of recent reports
showing that stable RNA interference of snail can lead to a
MET transition [25].

4. Discussion

In this study we examined whether epigenetic changes are
associated with a mesenchymal to epithelial-like transition
in chondrosarcomas. To first investigate whether that our
chondrosarcoma cells were acquiring more epithelial-like
characteristics we queried the expression of four separate
epithelial markers: E-cadherin, desmocollin 3, maspin, and
14-3-3σ . All of these genes have been shown to be de-
regulated in association with cytosine methylation and are
involved with the malignant progression of many cancers
[20–24, 50–52]. Therefore, two of these genes, maspin
and 14-3-3σ , were further examined as representatives
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for epigenetic alterations. We identified the acquisition of
expression of all four epithelial-specific markers in four
of the five chondrosarcoma cell lines examined. Moreover,
the robust acquisition of maspin and 14-3-3σ expression in
chondrosarcomas is associated with a significant loss of DNA
methylation at those loci when compared to normal SNM83
chondrocyte cell strain.

The acquisition of the epithelial markers E-cadherin and
desmocollin 3 in four of the five chondrosarcoma cell lines
is consistent with reports showing that sarcomas can to
some degree transition through MET from their parental cell
lineage [48, 53]. The acquisition of E-cadherin is interesting
because of the numerous reports indicating that downreg-
ulation of E-cadherin, frequently by aberrant methylation,
is a hallmark of EMT. An important mediator of EMT
and E-cadherin downregulation in cancer is the zinc finger
transcription factor snail. An example of snail’s important
role in EMT and control of E-cadherin has been shown
in snail knock-out mice which show embryonic lethality,
and the embryos fail to complete EMT, forming an altered
mesodermal layer while still retaining E-cadherin expression.
Among the chondrosarcoma cell lines assessed here, all
five showed a significant decrease in the mRNA expression
of the snail transcription factor. Although the amount of
decrease in snail expression was not predictive of the fold
mRNA increase of E-cadherin, the downregulation of snail is
suggestive of a less repressed E-cadherin and therefore could
help to explain the observed increase of E-cadherin in our
chondrosarcoma cells. In recent reports snail has also been
investigated as an effector of the epigenetic changes observed
in the downregulation of E-cadherin. It has been shown in
these reports that snail binds to the E-boxes of the E-cadherin
promoter and helps to recruit both histone deacetylase 1
(HDAC1) and DNA methyltransferase 1 (DNMT1). Indeed
when snail was stably overexpressed in Hep3b cells the E-
cadherin promoter became hypermethylated and histone
H3 and H4 acetylation were decreased [46]. In support
of this, a similar study by Cano et al. showed that stable
interference of snail mRNA in snail overexpressing Madin
Darby canine kidney (MDCK) cells led to a full MET and
re-expression of E-cadherin. They extended and confirmed
these results when they stably knocked down snail in two
mouse epidermal carcinoma cell lines with similar results
[54].

The acquired expression in our chondrosarcoma cells of
four epithelial markers that have been shown in other cancers
to be deregulated by promoter methylation, taken together
with the downregulation of snail, led us to examine whether
epigenetic changes could be associated with this MET-like
transition in the chondrosarcoma cell lines assessed. To do
this we compared the methylation status of maspin and 14-
3-3σ in chondrosarcoma cells that acquired the expression
of these markers to their nonexpressing normal counterpart,
the SNM83 chondrocyte cell line. We report here that
acquisition of both maspin and 14-3-3σ in chondrosarcoma
cell lines is tightly associated with aberrant hypomethylation
of their CpG islands and that expression of both epithelial
markers could be induced in a nonexpressing chondrosar-
coma cell line by addition of the DNA methyltransferase

inhibitor 5-Aza-dC. These findings are consistent with the
epigenetic control of these loci documented in recent studies
of multiple normal and cancer cell types [21, 22, 34, 55]. The
acquisition of maspin and 14-3-3σ in chondrosarcomas and
other cancers, while still seemingly paradoxical to its role as
a tumor suppressor, may be considered as a loss of epigenetic
control. However, this may be better viewed as an epigenetic
switch whereby the cancer cell, during progression, coopts
the normal epigenetic mechanism(s) to propagate diverse
cell types of differing lineage specificities. An example of
this epigenetic switch may occur in solid tumors such as in
colorectal cancer which uses the EMT transition to acquire
a more metastatic phenotype but subsequently undergoes
the reciprocal MET at the site of metastasis to reacquire,
at least in part, the phenotype of the originating tumor
[10]. This phenotypic reversion may confer a selective
advantage to its new environment at the site of metastasis and
thus allow for more successful colonization. The dynamic
interconversions between EMT and MET in malignant
progression cannot simply be explained by irreversible
genetic alterations. These interconversions are suggestive of
epigenetic mechanisms playing a role in these transitions
because epigenetic changes, in contrast to irreversible genetic
changes, are not permanent and allow a tumor cell more
plasticity to alter its gene expression to adapt to differ-
ent environments that can ultimately lead to phenotypic
changes.

One of the ways a tumor cell can accomplish this
epigenetic switch is through variable DNA methylation of
the CpG sites in the transcriptional control regions of genes.
Specific examples of this switch in maspin and 14-3-3σ
expression have been documented to occur both in ovarian
and breast carcinomas. It is interesting to note that maspin
expression is silenced during breast cancer progression, but
activated during ovarian cancer progression [34, 35]. Ovar-
ian surface epithelial cells being derived from the mesoderm
activate maspin expression through DNA hypomethylation
as they transition through MET [56]. Conversely, breast
carcinomas typically silence maspin expression through
hypermethylation and undergo the EMT to become more
mesenchymal [32, 40, 57]. It is also noteworthy to mention
that snail expression has been shown to be decreased in
ovarian cancer cells during MET and to increase in breast
cancer cells during EMT [58, 59]. To speculate that snail is
affecting the epigenetic control of maspin expression in these
cancers as well as in our chondrosarcoma cells is intriguing
but has yet to be examined. However a bioinformatics
search of both maspin and 14-3-3σ promoters reveals
putative snail binding sites but further research is needed
to elucidate any direct interaction. These examples may
however help to explain the paradoxical gain of expression
of maspin and 14-3-3σ in chondrosarcomas as well as in
pancreatic and ovarian cancers. While epigenetic changes
in the expression of maspin, 14-3-3σ , desmocollin 3, and E-
cadherin in chondrosarcoma cells and in other cancers are
associated with the EMT or MET transitions, the extent
to which they are a contributing factor to these process
remains to be determined. Nevertheless, they may provide
new biomarkers for differential diagnosis of cartilaginous
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diseases and provide better insights into how cells loss lineage
maintenance in cancer.

In addition to showing an epigenetic mechanism for 14-
3-3σ upregulation in chondrosarcoma cells it is interesting to
speculate on what affects this acquired expression could have
on treatment. The abundant expression of 14-3-3σ might
help to confer the drug and radiation resistance commonly
found in the treatment of chondrosarcomas [4, 40, 60].
In a recent study 14-3-3σ was identified as an important
contributor to drug resistance in human breast and pancreas
cancer cells, and the exogenous overexpression of 14-3-3σ led
to a greater resistance to chemotherapeutics and radiation
[60, 61].

5. Conclusion

In summary we show that chondrosarcoma cells acquire four
epithelial-specific markers maspin, 14-3-3σ , desmocollin 3,
and E-cadherin, which when taken together, is suggestive of
chondrosarcoma cells undergoing to some degree an MET
transition. We also report that all of the chondrosarcomas
examined showed a significant downregulation of the snail
transcription factor which may help to explain the re-
acquisition of E-cadherin and MET-like transition in our cell
lines. The reports that snail has been shown to act as an
epigenetic repressor of E-cadherin by recruitment of histone
deacetylase 1 and DNA methyltransferase led us to examine
whether additional changes in the epigenetic maintenance
of two well-known epithelial markers maspin and 14-3-3σ
were occurring during this MET-like transition. We show
here for the first time that chondrosarcoma cells acquire both
maspin and 14-3-3σ mRNA expression which is associated
with vastly decreased DNA methylation of their genes. The
acquisition of expression of these genes could be playing
a role in malignant progression, or their expression could
simply be biomarkers of progression. Expression of these
genes, especially 14-3-3σ , could also be contributing to some
of the characteristics of chondosarcomas such as resistance
to chemotherapy and radiation [40]. We now report that
epigenetic changes through loss of DNA methylation occur
to activate epithelial specific genes maspin and 14-3-3σ
and that they are associated with the upregulation of E-
cadherin, desmocollin3 and the downregulation of snail
during the transition of chondrocytes to chondrosarcomas.
These epigenetic changes have not been extensively studied in
MET, and this new knowledge could lead to more insight into
the mechanisms underlying this important process, as well as
aid in identifying new markers for better staging, diagnosing,
and treating chondrosarcomas.
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