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Modeling of Large Pharmacokinetic Data Using Nonlinear
Mixed-Effects: A Paradigm Shift in Veterinary Pharmacology.
A Case Study With Robenacoxib in Cats

L Pelligand1*, A Soubret2, JN King3, J Elliott1 and JP Mochel2

The objective of this study was to model the pharmacokinetics (PKs) of robenacoxib in cats using a nonlinear mixed-effects
(NLME) approach, leveraging all available information collected from cats receiving robenacoxib s.c. and/or i.v.: 47 densely
sampled laboratory cats and 36 clinical cats sparsely sampled preoperatively. Data from both routes were modeled sequentially
using Monolix 4.3.2. Influence of parameter correlations and available covariates (age, gender, bodyweight, and anesthesia) on
population parameter estimates were evaluated by using multiple samples from the posterior distribution of the random effects.
A bicompartmental disposition model with simultaneous zero and first-order absorption best described robenacoxib PKs in
blood. Clearance was 0.502 L/kg/h and the bioavailability was high (78%). The absorption constant point estimate
(Ka 5 0.68 h21) was lower than beta (median, 1.08 h21), unveiling flip-flop kinetics. No dosing adjustment based on available
covariates information is advocated. This modeling work constitutes the first application of NLME in a large feline population.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 625–635; doi:10.1002/psp4.12141; published online 22 October 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Robenacoxib is a cyclooxygenase-2 selective NSAID

registered for use in cats. In veterinary medicine, char-

acterization of the PKs is usually performed using a

two-stage approach limiting most of the analyses to

rich datasets.
WHAT QUESTION DID THIS STUDY ADDRESS?
� The objective of this study was to model the PKs of

robenacoxib using NLME to leverage the variety of

information obtained from sparse and rich datasets for

the appropriate assessment of the drug kinetics and its

between-subject variability in cats.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� This work constitutes the first population PK analysis
at a large scale in cats. Simultaneous fitting of all dos-
ing routes unveiled the flip-flop kinetics of robenacoxib
for which no dosing adjustment seems necessary.
Using several samples of the posterior distribution
instead of the EBE allows for a better estimation of the
correlation between model parameters.
� HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
This research illustrates the value of NLME for the rec-
onciliation of diverse PK data in veterinary drug
research and development.

Despite a few available examples in the literature,1–3 the

use of nonlinear mixed effect (NLME) for the modeling of

pharmacokinetic (PK) data remains marginal in veterinary

medicine. Noncompartmental or compartmental analysis of

single studies, including, on average, 8–12 animals, are still

standard practices in the veterinary literature or dossier

submission from industry for market approval. Therefore,

NLME models are not currently used to their full potential in

veterinary pharmacology.
Sampling from a clinical population is essential to verify

the PK model validity established from preclinical experi-
ments, especially if this was obtained from healthy, and
usually young, laboratory animals, which are likely not to be
representative of the target population. Optimization for
best use of PK data obtained from veterinary patients
involved in clinical trials is of critical importance because
the density of data obtainable is essentially sparse for two
main reasons. First, the patients involved in clinical studies

are client-owned, thus, the number of venipunctures allow-
able is strictly scrutinized and capped for ethical and wel-
fare reasons. Second, in animals of small size, such as the
cat, the volume of blood that can be sampled is limited.
Considering these two limitations, sampling small veterinary
patients, such as cats, presents comparable challenges to
the ones encountered in clinical PK studies in neonates.

We propose a novel application of population PK to a
combination of sparse and rich data collected in the context
of veterinary practice in cats using the example of robena-
coxib (a cyclooxygenase-2 highly selective nonsteroidal
anti-inflammatory drug (NSAID) licensed for use in cats
and dogs). Our objective was to evaluate whether clinical
cats undergoing ovariohysterectomy surgery had the same
robenacoxib exposure in the perioperative period than
healthy laboratory cats. General anesthesia can, through
changes in cardiac output and fluid balance, alter the clear-
ance or distribution, therefore, changing the blood or
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plasma concentration time curve and the duration of effect.
There is currently very little relevant evidence in veterinary
species documenting the effect of perioperative care, gen-
eral anesthesia, and timing of drug administration with
regard to the PK of an analgesic drug.4,5 Our hypothesis
was that there would be no difference in exposure of robe-
nacoxib in the perioperative period.

In the present paper, we report the population PK model

and its covariate analysis for robenacoxib using a pooled

dataset from 83 cats (97 administrations, either s.c. or i.v.

routes) either densely (laboratory cats) or sparsely sampled

(veterinary patients undergoing ovariohysterectomy for neu-

tering). Our analysis further illustrates how screening for

parameter correlations can be made more robust by using

multiple samples instead of just the mode (i.e., the empiri-

cal Bayes estimate (EBE)) of the posterior distribution. In

essence, this paper outlines how sparse data obtained in

veterinary clinical studies can be leveraged to better under-

stand drug PKs in actual clinical practice.

METHODS

Blood robenacoxib concentrations were obtained from eight

different studies in which cats were administered robena-

coxib i.v. or s.c. during the drug development or the post-

marketing phases. Blood concentration time profiles were

available from 83 cats. The demographics of the cats,

dose/route of administration, and design of these studies

(rich or sparse sampling strategy) are summarized in

Table 1.6–11 Fourteen of these 83 cats received robena-
coxib by both routes. Robenacoxib was administered i.v. to
23 cats and s.c. to 74 cats. Forty-seven cats were densely
sampled (between 9 and 12 blood samples after adminis-
tration). Thirty-six cats included in a clinical study were
sparsely sampled (between 1 and 2 samples per cat).

Animal phases for rich sampling dataset
The studies whose names started with CRA were carried out
in healthy, conscious, domestic shorthair cats and published
elsewhere (Table 1). The cats weighed between 2.3 and
5.7 kg. The cats were either loose-housed in a research colo-
ny (between experiments) or kept in individual stainless steel
cages (during experimental phases). The cats were fed a
commercial dry food diet once or twice a day with the second
meal of the day given after the last sample of the day. Cats
were weighed on the day of administration to calculate the
exact dose of robenacoxib to be administered by the i.v. and
s.c. (between scapula) routes. Venous blood samples were
collected from preplaced jugular catheters or by repeated
venipuncture. The washout period between robenacoxib
administrations was at least 1 week.

Animal phase for sparse sampling dataset
Samples were obtained from a population of 36 clinical
female cats admitted for elective ovariohysterectomy. After
intramuscular premedication with buprenorphine and acepro-
mazine, anesthesia was induced with propofol and main-
tained with isoflurane following endotracheal intubation. The
cats were administered 2 mg/kg robenacoxib s.c., at various
times before the surgical procedure or at the end of the

Table 1 List of PK studies including cats that were dosed intravenously (IV) or subcutaneously (SC), with reference from the literature.

Study Population

Weight

range

(kg)

Age

range

(y.o.)

Number of

periods

(route)

Dose

(mg/kg)

Sampling

strategy

Sampling

schedule Reference

CRA 03/182 5m/5f

5 10 cats

3.1–4.1 1.2–2.2 1 (SC) 2 Dense 0, 5, 15, 30, 45

min, 1, 2, 4, 6, 8,

12, and 23h

(Giraudel et al. 8

2009)

CRA 04/034 2m/1f

5 3 cats

3.2–5.7 4.8–6.2 1 (IV) 1.94–1.97 Dense 0, 5, 30 min, 1,

2, 4, 6, 8, 24h

Unpublished

CRA 04/094 6m/6f

5 12 cats

2.3–5.1 0.96–1.01 2 (IV/SC) 1.64–2 Dense 0, 3, 15, 30 min,

1, 2, 3, 4, 5, 6,

8h

(King et al. 9

2013)

CRA 07/137 3m/3f

5 6 cats

3.1–4.5 2.5–3.3 1 (IV) 2 Dense 0, 5, 15, 30min,

1, 1.5, 2, 3, 4, 6,

9h

(Pelligand et al. 7

2012)

CRA 08/124 3m/3f

5 6 cats

3.7–4.8 1.26–1.45 1 (SC) 2 Dense 0, 15, 30 min, 1,

2, 3, 4, 6, 9, 12,

24h

(Pelligand et al. 7

2012)

CRA 08/189 1m/1f

5 2 cats

3.4–3.8 1.55 2 (IV/SC) 2.1 Dense 0, 5, 15, 30 min,

1, 2, 3, 4, 6, 9,

12h

(Pelligand et al. 7

2012)

CRA 09/209 5m/3f

5 8 cats

3.4–4.5 1.2–4.3 1 (SC) 2 to 2.2 Dense 0, 5, 15, 30 min,

1, 1.5, 2, 3, 4, 6,

9, 12h

(Pelligand et al. 6

2014)

Perioperative

study

36f

5 36 cats

1.8–4 0.34–4.3 1 (SC) 2 Sparse Postoperatively:

one sample at

extubation

(recovery) and

one sample 2h

thereafter

(Pelligand et al. 10

2015a;

Pelligand et al.

11 2015b)

m5male, f5female
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surgical procedure (extubation). For the 24 cats that received

robenacoxib preoperatively, two blood samples were taken

(on extubation and 2 hours after). In the 12 cats that received

robenacoxib at the end of the surgical procedure, only one

blood sample was taken (2 hours after extubation).

Ethical and regulatory approvals
All studies were approved by the local animal ethics and

welfare committees and complied with national regulations

of France, Switzerland, or the United Kingdom. All studies

complied with the Guidelines for the Conduct of Pharmaco-

kinetic Studies in Target Animal Species (EMEA/CVMP/

139/99-Final) and the guideline for the Conduct of Efficacy

Studies for Non-Steroidal Anti-Inflammatory Drugs (EMEA/

CVMP/237/01).

Analytical phase
Blood samples (�1.5 mL) were collected in EDTA tubes and

stored between 2208C to 2808C until assayed. Robenacoxib

concentrations in feline blood were measured using a sensi-

tive analytical method, as described by Jung et al.12 Briefly,

the method involved an initial analysis by high-performance

liquid chromatography-UV, covering the range of 500–20,000

ng/mL and, if required, a subsequent analysis by liquid chro-

matography mass spectrometry, covering the range of 3–100

ng/mL (lower and upper limits of quantification) for blood.

Depending on the results obtained by UV analysis, samples

were diluted if necessary in order not to exceed a concentra-

tion of 100 ng/mL in the mass spectrometry method. Han-

dling of the below limit of quantification values (55 of 652

measured concentrations) is described thereafter. All analy-

ses complied with the guideline on bioanalytical method

validation.13

Data analysis and model evaluation
Population PK modeling from isolated or combined routes

of administration was performed using the stochastic

approximation expectation maximization (SAEM) algorithm

for nonlinear mixed-effects models implemented in Monolix

version 4.3.2 (Lixoft, France).
Sequential fitting was used to test a series of rival mod-

els of absorption. The fixed-effects parameters of the dispo-

sition function (clearance (CL), volume of the central

compartment (V1), intercompartmental clearance (Q), and

volume of the central compartment (V2)) estimated from

the separate fitting of the i.v. dosing were fixed for the fol-

lowing fitting of the s.c. and i.v. data. The random effects

were estimated from the fitting of the full set of information.
The convergence of the SAEM algorithm was assessed

by inspection of the stability of the fixed- and random-effect

parameters and the log-likelihood estimate after the explor-

atory period of the algorithm (i.e., after 1,000 iterations of

SAEM). Then, the standard goodness-of-fit diagnostics,

including population and individual predictions vs. observa-

tions, and the distributions of weighted residuals and nor-

malized prediction distribution errors over time were used

to evaluate the performances of the candidate models.

Residual error estimates from the mathematical models

were used as supportive information for evaluation of lack

of fit. Normality and independence of residuals were

evaluated using histograms, quantile-quantile plots, and

autocorrelation of conditional weighted residuals.
For converging models with satisfactory goodness-of-fit

diagnostics, model selection was based on the Bayesian

information criteria (BIC) and the precision of the model

parameter estimates (i.e., in particular during the covariate

search, in which models where the parameter precision

estimates could not be assessed were discarded from the

analysis). The BIC was selected over the Akaike Informa-

tion Criterion as it tends to select simpler and more parsi-

monious models.

PK model development
Similar to Sheiner and Ludden,14 mathematical models

were written using the following format as the basic model:

yij 5F /i ; tij
� �

3 11b eb
ij

� �
1a ea

ij ; j51; . . . ; ni

/i 5

Fi

kai

CLi

V 1i

Qi

V 2i

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

5

invlogit logit lFð Þ1gF ;i

� �

lkai
� egkai

lCL � egCL;i

lV1 � egV 1;i

lQ � egQ;i

lV2 � egV 2;i

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

; i51; . . . ;N

where yij is the observed variable (i.e., robenacoxib blood

concentration) measured on the ith individual at time tij , /i is

the vector of individual parameters, F /i ; tij
� �

is the value of

that observed variable at time tij for an individual with param-

eters /i , and ea
ij and eb

ij are independent random variable nor-

mally distributed around zero with a variance of one.
In NLMEs, F /i ; tij

� �
is known as the structural model

(error-free), whereas the terms a ea
ij and b eb

ij F /i ; tij
� �

are

describing an additive and proportional residual error model

(combining unexplained variability and measurement noise)

parametrized by the SD a and b. The l represents the typi-

cal value (population median) of a model parameter. The

sources of variation between the individual parameters /i

can be further explained by population characteristics (i.e.,

covariates) that can be included additively or proportionally

to l. The independent random variables gi represent the

unexplained difference between the value of the individual

parameters /i and their median l. The random variables gi

are assumed to be normally distributed with mean value 0

and variance-covariance matrix X (implying that /i are log-

normally distributed). For the bioavailability model parame-

ter, a logit transform function was used to insure that the

estimated value was bounded between zero and one.

Inclusion of data below the limit of quantification
Monolix handles the values below limit of quantification by

adding to the likelihood a term describing the probability

that the true observation lies between zero and the limit of

quantification. For the calculation of the likelihood, this is
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equivalent to the M3 method implemented in NONMEM
and described by Beal15 (2001).

Parameter correlation estimates
Correlations between model parameters were first explored
through visual inspection of the eta vs. eta scatterplot.
Then, similar to Lavielle and Ribba,16 several samples of
the posterior distribution obtained at the last iteration of the
SAEM algorithm, rather than the EBE, were used to assess
the correlation between model parameters. Therefore,
because 10 different Markov chains were used during the
estimation step, 10 samples of the posterior distribution
were obtained for each individual.

Inclusion of covariate relationships
The effect of two continuous variables (weight (range,
1.77–5.7 kg), age (range, 0.34–6.1 years)) and two factors
(gender and perioperative status) on CL, V1, and bioavail-
ability (Ftot) were evaluated herein. Age and bodyweight
were normalized by their median value and log-transformed
during the covariate analysis (thereafter referred to as
t_AGE and t_WEIGHT0, respectively).

To confirm the significant impact of the covariates select-
ed by the graphical analysis, a backward elimination proce-
dure was performed to compare the different models using
the BIC5-2*LL1log(n)P criteria where LL is the log-
likelihood estimate, P is the total number of parameters to
be estimated, and n is the number of subjects. Using the
BIC criteria during the backward elimination is equivalent to
selecting a sample size-dependent threshold criteria (i.e.,
as it behaves like a significance test with the first type error

alpha (a) depending on the sample size; e.g., a 5 0.13 for

n 5 10, a 5 0.032 for n 5 100, and a 5 0.0086 for

n 5 1,000).17 The full set of covariates (ANEST, t_AGE,

t_WEIGHT0, and GENDER) was tested on the following

model parameters: CL, V1, and F. The selection of the rele-

vant covariates was based on the results from the back-

ward elimination step using Monolix for each model fit.

Model validation
To assess the validity of final model parameter estimates, the

95% confidence intervals of the 10th, 50th, and 90th percen-

tiles calculated from 500 Monte-Carlo simulations were over-

laid to the corresponding percentiles of the raw data using

the visual predictive check option in Monolix version 4.3.2.

RESULTS
Study demographics
Data from 83 cats were pooled together from eight robena-

coxib PK studies (Table 1). The dose ranged from 1.6–2.3 mg/

kg. Among the laboratory cats, 22 were females and 27 were

males. The median bodyweight was 3.9 kg (interquartile

range, 3.45–4.14). The weight extremes were 2.5 and 5.7 kg.

The median age was 1.32 years old (interquartile range, 1.0–

1.55), with age extremes of 0.97–6.1 years. The 36 female

cats from the clinical study were sparsely sampled: the time of

blood sample collection spanned between 0.8 and 8.2 hours

after robenacoxib administration. The median bodyweight of

these cats was 2.73 kg (interquartile range, 2.41–2.99). The

weight extremes were 1.77 and 4.0 kg. The median age was

Figure 1 Schematic of robenacoxib final pharmacokinetic model following i.v. and s.c. dosing in cats. The fixed-effects parameters of
the disposition function (CL, V1, Q, V2) estimated from the separate fitting of the intravenous dosing were fixed for the following fitting
of the subcutaneous and intravenous data. The random effects were estimated from the fitting of the full set of information. More
details on the abbreviated parameters can be found in Table 2. Ftot, bioavailability; ka, absorption rate; Q, intercompartmental clear-
ance; Tko, absorption duration (0-order).
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0.76 years (39 weeks; interquartile range, 0.46–1.195). The
age extremes were 0.34 (17.7 weeks) and 4.31 years old.

PKs
A two-compartment mammillary disposition model with first-
order elimination and simultaneous first-order and zero-order
(Tk0) absorption best described the PK of robenacoxib in
blood (Figure 1, Supplementary Figure S3). Adding a correla-
tion between ka and Tk0 (corr 5 20.24) yielded the best
objective function and BIC value and was, therefore, included
in the model structure.

Population PK parameter estimates and their related var-
iances are reported in Table 2. The precision of the final
model parameters was considered satisfactory (relative
standard error <20% for most of the model parameters).
The systemic total body CL was estimated to be moderate
(0.502 L/kg/h) according to the definition outlined by Toutain
and Bousquet-M�elou.18 The global extraction ratio (E) was
calculated as E 5 CL/Q, with cardiac output Q of a cat (mL/
kg/min) approximated by the formula: Q5180*〖BW〗20.195,
where BW is the bodyweight in kg.18 The robenacoxib
extraction ratio was low (0.058). The s.c. bioavailability was
high (78%) with an interindividual variability of 3%. The
population steady-state volume of distribution was estimat-
ed at 0.213 L/kg. The absorption constant (Ka 5 0.68 h21)
was lower than the median value for beta (1.10 h21), there-
by suggesting that s.c. absorption is the rate limiting step of
robenacoxib disposition kinetics in cats. Standard
goodness-of-fit diagnostic plots are represented in Figure 2
(top, middle, and bottom panels) and Supplementary Figure
S1. Individual predicted concentration-time profiles and
visual predictive check plots can be found in Figure 3 (top
and bottom panels) and Figure 4 (with Supplementary Fig-
ure S2), respectively.

Parameter correlations
The correlation matrix of the random effects (i.e., the gi) is
displayed in Figure 5. The most notable correlation was
found to lie between ka and Tk0 and was, therefore, includ-
ed in the model structure. No other correlation was found to
significantly improve the information criteria. The value of
using various samples from the posterior distribution of

each individual rather than the mode can readily be
observed by comparing the parameter correlation matrix
from Figure 5 and Supplementary Figure S5. Precisely,
spurious correlations between model parameters would
have been implied looking at the EBEs (e.g., corr(Ftot,
V1) 5 20.387 or corr(Ftot, CL) 5 20.465), whereas these
correlations were estimated to be almost flat when using
multiple samples from the posterior distribution.

Effects of demographics and anesthesia on
robenacoxib exposure
The log-transformed estimate of CL as a function of the
continuous and categorical covariates is shown in Supple-
mentary Figure S4 (top and bottom panels, respectively).
No significant trend could be detected among age, body-
weight, and CL to explain the between-subject variability. A
modest but not significant difference was observed between
the median CL of male and female cats.

After performing the backward elimination, the model
with the effect of ANEST on V1 was the model selected.
Point estimate for V1 in the clinical cats (ANEST 5 1) was
0.33 L/kg compared to 0.16 L/kg in densely sampled labo-
ratory cats.

DISCUSSION

This modeling work reconciles disposition kinetic informa-
tion from a large cohort of individuals thereby representing
the first population PK study in cats. Previous so-called
population PK studies reported results from a standard
two-stage approach19 or derived from a small population
(range, 6–8) of intensely sampled cats.20,21

In veterinary drug development, dosing regimen selection
is commonly based on dose ranging/titration studies that
bear a series of limitations: (i) the dose selected as the most
effective one is not necessary the optimal dose, as it heavily
depends on the power of the design,22 and (ii) trials in which
the sample size is small frequently lead to the selection of
high doses (a phenomenon known as dose dumping), which
is relevant to NSAIDs, some of which have low safety indices
in cats. As opposed to concentration-time data, doses per se

Table 2 Point estimates and relative standard error of the mean of PK model parameters with their inter-individual variability (sequential fitting)

Parameter Symbol Unit Point estimate Relative standard error (%) IIV (%)

IV model (initial fitting)

-Clearance CL L/h/kg 0.50 (§) § 16

-Central compartment volume of distribution (ANEST 5 0) V1 L/kg 0.16 (§) § 41

-Peripheral compartment volume of distribution V2 L/kg 0.047 (§) § 1

-Inter-compartmental clearance Q L/h/kg 0.065 (§) § 8

SC model (sequential fitting)

-Bioavailability Ftot – 0.78 (60.02) 3 57

-Fraction absorbed through 0-order F0 – 0.50 (60.05) 10 93

-Central compartment volume of distribution (ANEST 5 1) V1 L/kg 0.33 (60.04) 14 41

-Absorption rate ka 1/h 0.68 (60.03) 5 21

-Absorption duration (0-order) Tk0 h 1.78 (60.1) 5 35

IIV, Inter-Individual Variability.

§: Not applicable. The fixed-effects parameters of the disposition function (CL, V1, Q, V2) estimated from the separate fitting of the intravenous dosing were

fixed for the following fitting of the subcutaneous and intravenous data. All random effects were estimated from the fitting of the full set of information.

The precision of the final parameter estimates was considered satisfactory (relative standard error <20% for most model parameters).
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Figure 2.
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do not contain any pharmacological information. The value of

modeling and simulation approaches lies in their ability to

use in silico/mathematical models for better integration and

understanding of quantitative pharmacology. Specifically,

mechanism-based PK/pharmacodynamic modeling techni-

ques provide a quantitative characterization of the relation-

ship between drug exposure in blood and tissues, and the

related effect in a biological system. The advantages of using

NLME vs. two-stages approaches (i.e., fixed-effects model-

ing approach) include: (i) the analysis of sparse data, which

has many applications in veterinary medicine23; (ii) the esti-

mation of between- and within-variability in drug exposure

and its separation from the measurement error (noise); and

(iii) the ability to pool information from diverse sources, which

allows for the simultaneous fitting of both i.v. and s.c. routes

and the adequate interpretation of PK results. In our specific

case with robenacoxib, the simultaneous modeling of the i.v.

and s.c. routes unveiled the flip-flop PKs of the NSAID follow-

ing extravascular dosing. Two-stage compartmental model-

ing of robenacoxib in the cat was carried out for each route

separately in four veterinary publications.6–9 The absolute

CL determined by our sequential model (0.502 L/kg/h) is in

agreement with the previously published CL after i.v. admin-

istration CL 0.54 L/kg/h.7 However, at that time, the apparent

similarity of terminal half-lives between s.c. and i.v. dosing in

Pelligand et al.,7 albeit observed in a small number of cats,

tentatively ruled out a flip-flop phenomenon. For s.c. adminis-

tration, the absorption and elimination half-lives were esti-

mated to be 0.28 hours and 1.87 hours, respectively, in

Giraudel et al.10 Similarly, Pelligand et al.7 reported half-lives

of 0.28 hours and 1.04 hours for absorption and elimination,

respectively. Using the present combined model, the absorp-

tion constant (Ka 5 0.68 h21) was lower than the median val-

ue for beta (1.10 h21), thus confirming that a flip-flop of the

absorption and elimination phases occurred with s.c. dosing.

These yield absorption and eliminations half-lives of 0.64

hours and 1.04 hours, respectively. Inversion of the absorp-

tion and elimination parameters lead to erroneous estimation

of the volume of distributions.24 For example, the volume of

distribution (Vd) of robenacoxib (s.c.) was estimated to be

0.84 L (95% confidence interval 5 0.65–1.03) and 1.130 L

(95% confidence interval 5 0.949–1.344) in previous publica-

tions,6,7 which are overestimations of the real volume of dis-

tribution of robenacoxib.
This paper reinforces the absolute necessity of investigat-

ing the i.v. route of administration during drug development,

regardless of the expected route of administration of the

final commercial formulation. Not using the i.v. precludes

physiological understanding of the disposition kinetics of

the investigated drug and later opportunities to use metada-

ta to support a new route or a new dosage regimen.

An important feature of combining data from different
sources (preclinical and clinical) lies in the leveraging of
information from richly sampled individuals to predict the
most likely blood concentration-time profile in sparsely sam-
pled individuals.25,26 The individual EBE estimates (taken
as mode of the posterior distribution) of each PK parame-
ters can be used to simulate the most probable individual
blood concentration-time profile for the sparsely sampled
cat. These individual profiles then allow evaluation of the
time during which concentrations remain above a target
pharmacodynamics threshold (for example IC80 cyclooxy-
genase2 for efficacy or IC20 cyclooxygenase1 for safety).27

This exposure index can be used as a covariate to support
the perioperative clinical efficacy and safety data collected
alongside PK samples in the clinical study herein
reported.10,11 A traditional approach, comparing blood con-
centrations in clinical cats with t-test, would have been
meaningless in the absence of standardized times of sam-
pling. This also demonstrates the interest of meta-models
in drug development, aggregative data from population PK
from all stages of development (preclinical studies, field
studies, and postmarketing studies) to verify the validity of
the population PK model for all populations, especially for
the target clinical population.28

Through this analysis, we also demonstrated the value of
using multiple samples from the posterior distribution instead
of just the mode (i.e., the EBEs) to estimate correlations
between model parameters. Indeed, the effect of eta-
shrinkage on model parameters estimates was such that
spurious correlations could have been suspected for exam-
ple between Ftot and CL or Ftot and V1 when looking at the
scatterplot of correlations using EBEs (Supplementary Fig-
ure S5). This was confirmed by the fact that the SAEM algo-
rithm could not converge when these correlations were
included in the stochastic model, as a likely consequence of
structural unidentifiability. Although there is a risk for the
EBEs to shrink toward the same population value and the
resulting diagnostics to be misleading when data are sparse,
our methods that use multiple random samples from the
conditional distribution using Markov chains Monte Carlo for
assessing correlations and covariate relationship is actually
more robust and less sensitive to shrinkage. Indeed, as nice-
ly described by Lavielle and Ribba16 the resulting estimator
of wi is unbiased in the following sense:

p wið Þ5E p wi jyið Þð Þ

Therefore, if we were to randomly draw a vector yi of obser-
vations for an individual in a population and then generate
a vector wi using the conditional distribution p wi jyið Þ, the
distribution of wi would be the population distribution p wið Þ.
A direct consequence of this fundamental property is that

Figure 2 Model evaluation: Standard Goodness-Of-Fit diagnostics and Standardized Random Effects. Top pane: Population predictions
vs. observations (left) and individual predictions vs. observations (right). The purple line represents the identity line; the regression line
is portrayed in light blue color; points below quantification limits are represented with red dots. Middle pane first row: IWRES vs. time
(left) and NPDE vs. time (right); Middle plane second row: IWRES vs. IPRED (left) and NPDE vs. IPRED (right); Middle pane third
row: Theoretical and computed pdf vs IWRES (left) and pdf vs. NPDE (right). Points below the quantification limits are represented
with red dots. Bottom pane: Box plots of the standardised random effect distribution. Interquartile range (IQR) together with the medi-
an. Dotted lines represent 6 1.5 x IQR from the first and the third quartile. Outliers are represented with red crosses. IWRES, individu-
al weighted residuals; NPDE, normalized prediction distribution error; OBS, observed values; pdf, probability density function.



any diagnostic plot based on these simulated vectors of
individual parameters can be used with confidence. There-
fore, this case study illustrates the usefulness of using

posterior samples rather than the EBEs29 to avoid model
diagnostic issues related to eta-shrinkage (shrinkage effect,
see refs. 30 and 31).
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Figure 3 Time-course of the individual predictions vs. observations using 10 different Markov chains for richly-sampled (upper panel)
and sparsely-sampled (lower panel) cats. Scatterplot of observed (black crosses) and predicted (continuous lines) robenacoxib levels
(log) versus time after dose (hr). Red lines: population predictions. Blue lines: individual predictions derived from each Markov chain.
Below limit of quantification levels are represented with green stars. Nomenclature: the first number represents the cat ID; the second
number (following #) identifies the dosing route (1 for subcutaneous, 2 for intravenous). The robustness of the model predictions is sup-
ported by the good agreement between each of the individual predictions using different Markov chains. IWRES, individual weighted
residuals; pdf, probability density function.
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Differences between experimental and clinical individuals

have actually been investigated through the analysis of the
ANEST covariate effect on the model parameters (i.e., all
anesthetized cats are originated from the population of clini-

cal individuals). In addition, as such, only the effect of
ANEST on the volume of distribution of the central compart-
ment proved to be statistically significant as a result of the

backward elimination step. The higher central volume of
distribution in the cats undergoing general anesthesia could
be related to several factors, such as volume expansion
due to intraoperative fluid therapy, or the use of anesthesia
related-drugs with vasodilatory properties as acepromazine,
propofol, or isoflurane.4

The extraction ratio of robenacoxib has been estimated
to be rather small in cats (ca. 0.06), such that the hepatic
CL can be approximated by the product of the unbound

fraction and the intrinsic clearance as follows:

CLhepatic / fu3Clint

Because the renal contribution to the systemic CL of robe-
nacoxib is negligible in cats (ca. 15%) (King, J.N., unpub-

lished data) we can also write the following:

Cl / fu3Clint

Protein binding in the cat is quite high (> 98%). In these
circumstances, and as nicely described by Benet and
Hoener,32 the free steady-state concentration, which is

pharmacodynamically active, has no dependency on the
free fraction. In other words, any change in protein binding

due to anesthesia would have little impact on the effect of

robenacoxib as a pain relief medication in cats. In addition,
the results of our covariate analysis did not suggest any

significant change in total clearance in anesthetized cats.
We can, therefore, be confident that anesthesia did not
substantially affect the intrinsic CL of robenacoxib, unless

these changes would be compensated by opposing varia-
tions in the unbound fraction of robenacoxib (such that the

net effect on total clearance would be null).
No significant effect of gender or age was found on the

exposure of robenacoxib in cats. These results can be

interpreted with a reasonable degree of confidence
because the range of investigated age (0.34–6.2 years old)

and bodyweight (1.8–5.7 kg) was sufficiently wide. A corre-
late of this may be that there is no need for dosing adjust-
ment based on population demographics (age and

bodyweight). This conclusion is different from the situation
in dogs, in which bodyweight had a significant effect on

apparent robenacoxib CL and volume of distribution.1 Anes-
thesia itself does not seem to have a significant influence

on robenacoxib exposure in blood either, which also speaks
for no dose adjustment in the context of anesthesia.

The Population Fisher Information Matrix could help iden-
tify the “best” vector of sampling points from an estimation/

uncertainty viewpoint. However, this sampling scheme
might be impossible to implement in the practice of veteri-

nary anesthesia because the timing of the sampling for the
sparsely sampled cats was dictated by the time of the end

of the anesthesia and 2 hours thereafter and the time of
drug administration (which varied randomly between cats

0 2 4 6 8 10 12

10
1

10
2

10
3

time
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P.I 90%
P.I 50%
P.I 10%

Figure 4 Model validation: Visual Predictive Checks (VPCs). VPCs generated from 500 Monte Carlo simulations. Green lines: 10th,
median and 90th percentile of the observed data (OBS). Blue and pink area: 95% confidence interval of the 10th, median and 90th
percentile of the prediction interval. F0, fraction absorbed through 0-order; Ftot, bioavailability; ka, absorption rate; Q, intercompartmen-
tal clearance; Tko, absorption duration (0-order); V1, central compartment volume of distribution; V2, peripheral compartment volume
of distribution.
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and groups). The individual predictions of the plasma

concentration-time curves for the sparsely sampled cats will

support efficacy and safety data in a follow-up publication

highlighting the risk/benefits characterization of preopera-
tive vs. postoperative NSAIDs administration, including the

case of robenacoxib.10,11

The outcome of the covariate analysis should be inter-

preted with caution for several reasons. First, this experimen-

tal design is vulnerable to a possible confounding effect.

Indeed, all sparse data came from anesthesia/perioperative
conditions. For age, the range of values from the periopera-

tive study overlaps with that of other studies, but for gender,

only female cats have been included in the perioperative

study and have undergone sparse sampling around anesthe-

sia. As such, the effect of anesthesia on robenacoxib dispo-

sition kinetics in male cats cannot be discussed and,
therefore, the estimates of exposure from sparse animals

cannot be directly compared with intensively sampled cats.

Second, the retrospective nature of the experimental design

did not allow for balancing the dataset with regard to the
allocation ratio of sparsely sampled cats to more intensely
sampled cats. This may have resulted in a study underpow-
ered to detect differences between groups. Last, our inter-
pretation of the covariate analysis relates to the systemic PK
so no conclusions can be drawn on the influence of age,
gender, bodyweight, and anesthesia at the target site of
action (most likely the central nervous system in the context
of perioperative pain management).
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