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A B S T R A C T   

Background: CTLA4, an immune checkpoint, plays an important role in tumor immunotherapy. 
The purpose of this study was to develop a pathomics signature to evaluate CTLA4 expression and 
predict clinical outcomes in clear cell renal cell carcinoma (ccRCC) patients. 
Methods: A total of 354 patients from the TCGA-KIRC dataset were enrolled in this study. The 
patients were stratified into two groups based on the level of CTLA4 expression, and overall 
survival rates were analyzed between groups. Pathological features were identified using machine 
learning algorithms, and a gradient boosting machine (GBM) was employed to construct the 
pathomics signatures for predicting prognosis and CTLA4 expression. The predictive performance 
of the model was subsequently assessed. Enrichment analysis was performed on diferentially 
expressed genes related to the pathomics score (PS). Additionally, correlations between PS and 
TMB, as well as immune infiltration profiles associated with different PS values, were explored. In 
vitro experiments, CTLA4 knockdown was performed to investigate its impact on cell prolifera-
tion, migration, invasion, TGF-β signaling pathway, and macrophage polarization. 
Results: High expression of CTLA4 was associated with an unfavorable prognosis in ccRCC pa-
tients. The pathomics signature displayed good performance in the validation set (AUC = 0.737; 
P < 0.001 in the log-rank test). The PS was positively correlated with CTLA4 expression. We next 
explored the underlying mechanism and found the associations between the pathomics signature 
and TGF-β signaling pathways, TMB, and Tregs. Further in vitro experiments demonstrated that 
CTLA4 knockdown inhibited cell proliferation, migration, invasion, TGF-β expression, and 
macrophage M2 polarization. 
Conclusion: High expression of CTLA4 was found to correlate with poor prognosis in ccRCC pa-
tients. The pathomics signature established by our group using machine learning effectively 
predicted both patient prognosis and CTLA4 expression levels in ccRCC cases.   
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1. Introduction 

Clear cell renal cell carcinoma (ccRCC) is a malignant tumor originated from the proximal tubular epithelial cells and represents the 
predominant histological type of renal cell carcinoma, accounting for more than 75 % of cases [1]. Despite treatment advances, the 
prognosis remains poor, especially in patients with advanced ccRCC [2]. Several potential prognostic markers have been identified, 
including VHL [3,4], PBRM1 [5], and transcriptomic signatures [6,7]. However, they have yet to be integrated into routine clinical 
practice as definitive indicators. As a result, the prognosis of ccRCC currently relies mainly on imaging and tumor-node-metastasis 
(TNM) staging, lacking reliable prognostic tools for clinical application [8]. Therefore, there is an urgent need to investigate new 
prognostic markers to stratify patient prognosis and provide precise and personalized treatment regimens in the near future. 

It has been demonstrated that ccRCCs exhibit a high degree of immune infiltration. Immune checkpoint blockade (ICB) therapy and 
combination regimens have shown significant improvement in the survival rates of ccRCC patients [9,10]. Cytotoxic T 
Lymphocyte-associated Antigen-4 (CTLA4), also known as differentiation cluster 152 (CD152), is an immune checkpoint protein re-
ceptor involved in immune response regulation. It is increasingly utilized in immune modulation strategies for cancer treatment [11]. 
Multiple studies have suggested that CTLA4 may serve as a potential prognostic or predictive biomarker for ccRCC [12], showing 
promising application prospects in tumor therapy [13,14]. However, current methods for detecting CTLA4 expression levels still have 
limitations [15]. 

Pathomics refers to the transformation of pathological images into high-fidelity and high-throughput data that can be mined based 

Fig. 1. Flow chart of the whole work.  
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on artificial intelligence, covering quantitative features such as texture features, morphological features, edge gradient features, and 
biological characteristics. This approach enables the quantification of pathological diagnosis, molecular expression, and disease 
prognosis [16–18]. In this study, the histopathological images of ccRCC patients were collected, and a survival-related pathological 
feature was constructed by using machine learning to predict the expression and prognosis of CTLA4 in ccRCC patients. 

2. Methods and materials 

2.1. Patient cohorts 

The study enrolled 354 samples of ccRCC patients from TCGA-KIRC dataset. The criteria for selecting these samples were as follows: 
(a) screening samples with preliminary diagnosis and treatment; (b) the survival time of the patient is greater than 1 month; (c) 
Samples with simultaneous clinical data, primary solid tumors, and RNA sequences; (d) images of acceptable quality. 

2.2. Image acquisition and segmentation 

Histopathological images (20 × or 40 × magnification) stained with hematoxylin and eosin (H&E) were downloaded from the 
TCGA database (https://tcga-data.nci.nih.gov/tcga/) [19,20]. The OTSU algorithm (https://opencv.org/) was employed to segment 
the tissue area by applying a threshold value to separate the unnecessary background from the relevant organizational area for 
research [21]. The 40 × images were divided into multiple sub-images of size 1024 × 1024 pixels, while the 20 × images were divided 
into multiple sub-images of size 512 × 512 pixels. Pathologists reviewed all sub-images to remove poor-quality images, including those 
with contamination, blurriness, or more than 50 % blank space. From each pathological image, 10 sub-images were randomly selected 
for subsequent analysis [19,20]. 

2.3. Feature extraction 

PyRadiomics open-source packages (https://pyradiomics.readthedocs.io/en/latest/) was used for the standardization of each sub- 
image. PyRadiomics open-source packages extracted a total of 1488 features, including 93 original features (first-order and second- 
order features), higher-order features (Wavelet LL, Wavelet LH, Wavelet Hl and Wavelet HH) and LoG ((kernel size: 1, 2, 3, 4, 5), 
Square, SquareRoot, Logarithm, Exponential, Gradient and LBP2D). 

After extracting features from the 10 sub-images of each pathological image, the corresponding average value was calculated to 
obtain the pathomic features for each sample, which were used for subsequent data analysis [17,22,23]. 

2.4. Prediction models of CTLA4 expression and assessment 

The samples were randomly divided into the training set and the verification set according to the ratio of 7:3, and the process is 
shown in Fig. 1. The training set was used to construct pathological features, while the validation set was used to evaluate the model. 
Features were filtered by using the maximum correlation, Minimum redundancy (mRMR) algorithm, which considers not only the 
correlation between the features and the variables to be predicted, but also the correlation between the features. Before modeling, in 
order to find a subset of predictors that can be used to generate an accurate model, the predictors were ranked using Recursive Feature 
Elimination (RFE) feature filtering and less important predictors were removed in order. The Gradient Boosting Machine (GBM) was 
used to model selected pathological features to predict ccRCC patient survival. 

The evaluation of the prediction models was based on several performance measures, including accuracy, specificity, sensitivity, 
positive predictive value (PPV), and negative predictive value (NPV). The predictive performance of the models was assessed using 
Receiver Operating Characteristic Curve (ROC) analysis. The calibration of the pathomics prediction model was evaluated by 
generating a calibration curve. Additionally, Decision Curve Analysis (DCA) was conducted to illustrate the clinical benefits of the 
pathomics prediction model. The main packages employed in the analysis were "pROC", "measures", "ResourceSelection", "rms", and 
"rmda" in R software. 

2.5. Differentially expressed genes enrichment analysis 

To investigate the underlying molecular mechanism behind the differential expression observed between high and low expression 
groups in the pathomics score (PS), we performed Gene Set Enrichment Analysis (GSEA). Differentially expressed genes (DEGs) be-
tween the high and low PS groups were analyzed using the "clusterProfiler" package in R software. We focused on the top 30 channels 
in both the KEGG database and HALLMARK database. A statistical significance threshold of P < 0.05 was applied to determine sig-
nificant enrichment. 

2.6. Correlation analysis of tumor mutation burden (TMB) 

Maf format mutation data was downloaded from TCGA database (https://portal.gdc.cancer.gov/). Correlation analysis was per-
formed using the ’corrplot’ package in R software. 
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2.7. Immunocytes infiltration analysis 

The gene expression matrix of ccRCC samples were uploaded to the CIBERSORTx database (https://cibersortx.stanford.edu/). The 
infiltration of immune cells was calculated in each sample. The difference between high PS expression group and low PS expression 
group and the degree of immune cell infiltration were analyzed. 

2.8. Cell culture and transfection 

The human renal clear cell carcinoma cell line Caki1 was procured from the cell bank of the Chinese Academy of Sciences 
(Shanghai, China). Cells were cultured in McCoy’s 5A medium (Gibco) supplemented with 10 % FBS (Gibco) and 1 % P/S (Gibco) at 
37 ◦C in a 5 % CO2 incubator. Subconfluent cells were selected for subsequent functional studies. THP-1 monocytes were cultured in 
RPMI medium supplemented with 10 % FBS. To induce differentiation into macrophages, 12-O-tetradecanoylphorbol-13-acetate 
(PMA, 100 ng/ml, Solarbio, China) was added to THP-1 monocytes. Small interfering RNAs (siCTLA4) for CTLA4 knockdown and 
control (NC) siRNA were provided by Genomeditech (Shanghai, China) and transfected into cells using Lipofectamine 3000 (Invi-
trogen), following the manufacturer’s instructions. 

2.9. Cell Counting Kit-8 (CCK-8) and transwell assay 

For the CCK-8 assay, cells were seeded in triplicate into 96-well plates. CCK-8 solution (10 μL) was added to each well, and the cells 
were incubated in the dark at 37 ◦C. Optical density (OD) values at 450 nm were measured at 0, 24, 48, and 72 h using a 

Fig. 2. CTLA4 expression was associated with poor prognosis in ccRCC. (A) CTLA4 expression in tumor and normal tissues. (B) The impact of CTLA4 
expression on patient survival. (C) Univariate COX analysis of CTLA expression. 
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spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). 
Cell migration and invasion capabilities were assessed using the Transwell assay. Caki-1 cells were seeded into the upper chambers 

of 24-well plates and cultured for 24 h. Subsequently, migrated cells were fixed with 4 % paraformaldehyde and stained with 0.1 % 
crystal violet for 30 min, followed by counting the number of migrated cells. For the invasion assay, the upper chambers were coated 
with Matrigel and cells were seeded into these chambers. The subsequent steps followed the aforementioned protocol, with the number 
of invasive cells being counted. 

2.10. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 

Total RNA was extracted from cells using Trizol reagent (Invitrogen) following the manufacturer’s instructions. RNA reverse 
transcription was performed using the SweScript RT I First Strand cDNA Synthesis Kit (Servicebio). qRT-PCR was conducted with SYBR 
Green qPCR Master Mix (Servicebio), and mRNA expression was normalized to GAPDH. Primer sequences are provided in Supple-
mentary Table 1. 

2.11. Western blot 

Total protein lysates were extracted with RIPA buffer (Beyotime, China) and quantified using the BCA Protein Assay Kit (KeyGEN, 
China). Equal amounts of protein were separated by 6–12 % SDS-PAGE and transferred to PVDF membranes. After blocking, mem-
branes were incubated with primary antibodies overnight at 4 ◦C, followed by incubation with secondary antibodies at room tem-
perature for 2 h. Bands were visualized using the Bio-Rad ChemiDoc XRS system. Antibody information is listed in Supplementary 
Table 2. 

2.12. Statistical analysis 

The Wilcoxon test was employed to analyze the disparities in pathology scores between high and low CTLA4 genomes. Spearman 
correlation analysis was utilized to investigate the correlation between the PS and TMB. The significance test of survival rate between 
groups was performed using the log-rank test. All statistical analyses were conducted using R software (version 4.1.2), and a signif-
icance level of P < 0.05 was deemed statistically significant. 

Table 1 
Clinical pathological data of training set and validation set.  

Variables Total (n = 354) Train (n = 249) Validation (n = 105) P value 

CTLA4, n (%)   1 
Low 148 (42) 104 (42) 44 (42)  
High 206 (58) 145 (58) 61 (58)  

Gender, n (%)   0.251 
Female 111 (31) 73 (29) 38 (36)  
Male 243 (69) 176 (71) 67 (64)  

Age, n (%)    0.274 
~59 176 (50) 129 (52) 47 (45)  
60~ 178 (50) 120 (48) 58 (55)  

Pharmaceutical_therapy, n (%)  0.823 
NO 304 (86) 215 (86) 89 (85)  
YES 50 (14) 34 (14) 16 (15)  

Histologic_grade, n (%)  0.862 
G1/G2 161 (45) 112 (45) 49 (47)  
G3/G4 193 (55) 137 (55) 56 (53)  

Pathologic_stage, n (%)  0.711 
Stage I 179 (51) 124 (50) 55 (52)  
Stage II 38 (11) 29 (12) 9 (9)  
Stage III 87 (25) 63 (25) 24 (23)  
Stage IV 50 (14) 33 (13) 17 (16)  

Neoplasm_status, n (%)  1 
TUMOR FREE 250 (71) 176 (71) 74 (70)  
WITH TUMOR 104 (29) 73 (29) 31 (30)  

Laterality, n (%)   0.705 
Left 169 (48) 121 (49) 48 (46)  
Right 185 (52) 128 (51) 57 (54)  

OS, n (%)    0.553 
Alive 239 (68) 171 (69) 68 (65)  
Dead 115 (32) 78 (31) 37 (35)  
OS.time, Median (Q1,Q3) 44.1 (21.51, 63.76) 46.17 (24.23, 65.17) 36.4 (16, 62.07) 0.050  
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3. Results 

3.1. CTLA4 is highly expressed in ccRCC and is associated with poor prognosis 

In the TCGA-KIRC cohort, all samples were grouped into normal samples (n = 72) and tumor samples (n = 539). The expression of 
CTLA4 was significantly increased in the tumor group compared with the normal group (Fig. 2A). According to the optimal cutoff value 
of CTLA4, 354 samples of ccRCC patients included in the survival analysis were divided into CTLA4 high expression group (n = 206) 
and low expression group (n = 148). When the optimal cutoff value was 0.5046, high expression of CTLA4 led to poor outcomes in 
ccRCC patients (Fig. 2B), and the optimal cutoff value was obtained by using the "surfminer" package in R software. Univariate COX 
regression analysis of other features showed that age, pathological stage and tumor status were related to the prognosis of patients in 
addition to the expression level of CTLA4 (Fig. 2C). 

3.2. Constructed pathomics signature 

The 354 patients included in the criteria were randomly divided into a training set and a validation set. Clinical characteristics of 
patients with ccRCC were shown in Table 1. Our study had high efficiency in the random division, which showed no significant 
difference for basic clinical characteristics among training and validation sets. The training set was used to bulid the model, while the 
validation set was used to evaluate the model. After comparing various methods, mRMR REF was used to filter the features and 9 
features were obtained (Fig. 3A). The signature result of GBM construction showed that ‘log_sigma_4_0_mm_3D_glcm_InverseVariance’ 
and ‘wavelet_LL_glrlm_GrayLevelVariance’ were the most important features in the model (Fig. 3B). 

3.3. Verification of the pathomics signature for prediction of CTLA4 expression 

Evaluating models with validation sets, ROC curve showed that this model had good sensitivity and specificity (Fig. 4A-C). In 
addition, the DCA curve proved that it had the potential to be used in clinical practice (Fig. 4D). The results of the training sets were 
shown in Supplementary Fig. 1, and the specific data of the training sets and verification sets were shown in Table 2. Subsequently, we 
used patient data from our clinical cohort as an external validation set, including 148 samples with CTLA4 expression data. Patients 
were divided into high CTLA4 expression (n = 74) and low CTLA4 expression groups (n = 74) based on the median CTLA4 expression 
value of 14.911. Clinical information of the patients is provided in Supplementary Table 3. For model performance evaluation, 128 
samples with both pathological images and CTLA4 expression data were used. As shown by the ROC curve (Supplementary Fig. 2), the 
GBM model achieved an AUC value of 0.710 in the external validation set. The calibration curve indicated a good consistency between 
the predicted probabilities and the actual values for CTLA4 expression levels. DCA demonstrated the clinical utility of the model. All 
results indicated that this model had excellent predictive effects. 

Pathomics score (PS) referred to the probability of predicting the level of gene expression from the output of a pathological model. 
All patients were divided into high PS group and low PS group according to the optimal cut-off value of PS. The best cutoff value for PS 
was 0.582, which was obtained from the "surviminer" package in R software. In the KM plot, the median survival time of the high PS 
group was 79.53 months, while the low PS group did not reach the median survival time due to the low number of deaths. The Survival 
curve of high and low PS displayed that high PS was significantly correlated with the deterioration of overall survival (OS) (P < 0.001) 
(Fig. 4 E). 

In the validation sets, the PS score of the CTLA4 high expression group was significantly increased compared with the CTLA4 low 
expression group (Fig. 4F). Consistent results were observed in both the training set and the external validation set (Supplementary 
Figs. 1 and 2). Univariate COX analysis showed a high value of PS was a statistically significant risk factor for OS (HR = 2.08, 95 % CI 
1.39–3.11, P < 0.001) (Fig. 4G). 

Fig. 3. Construction of the pathomics signature. (A) Feature selection in machine learning. (B) The importance of features in GBM algorithms.  
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3.4. Mechanism analysis of pathomics signature 

The differentially expressed genes (DEG) found in high and low PS groups were analyzed by Gene Set Enrichment Analysis (GSEA) 
in KEGG database (Fig. 5A) and HALLMARK database (Fig. 5B). In the KEGG database, DEGs in the PS high expression group were 
significantly enriched in the TGF-β (TGF_BETA_SIGNALING_PATHWAY) signalling pathway, and in the HALLMARK database, DEG in 
the PS high expression group was also significantly enriched in the TGF-β (TGF_BETA_SIGNALING_PATHWAY) signalling pathway. 
This result suggested that PS expression levels may be related to the TGF-β signalling pathway. The spearman correlation analysis 

Fig. 4. Comprehensive evaluation of the pathomics signature in the validation set and its predictive ability for CTLA4 expression. (A) ROC curve. 
(B) Calibration curve. (C) PR curve. (D) DCA curve. (E) Survival curve of high and low PS. (F) PS in high and low CTLA4 expression groups. (G) 
Univariate COX analysis of PS. 

Table 2 
Evaluation parameters of pathomics signatures.   

Accuracy Sensitivity Specificity PPV NPV 

Training Set 0.775 0.821 0.712 0.799 0.74 
Validation Set 0.724 0.738 0.705 0.776 0.66 

NPV: Negative predictive value; PPV: Positive predictive value. 
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displayed that PS was significantly positively correlated with TMB (P < 0.001) (Fig. 5C). The infiltration analysis of immune cells in 
ccRCC showed that the infiltration of T cell regulatory (Tregs), Macrophage M1 and macrophage M2 were higher in the high PS group 
(P < 0.001) (Fig. 5D). In recent years, the combined inhibition of PD-L1 and CTLA4 has garnered widespread attention. Therefore, we 
further investigated the correlation between CTLA4 and PD-1 (encoded by PDCD1) and PD-L1 (encoded by CD274) in patients with 
clear cell renal cell carcinoma. Our findings revealed a pronounced positive correlation between CTLA4 and both PD-1 and PD-L1 
(Supplementary Fig. 3, p < 0.001). 

3.5. Impact and mechanistic verification of CTLA4 on the proliferation, migration, and invasion of ccRCC cells in vitro 

In order to further elucidate the role of CTLA4 in ccRCC, we assessed whether alterations in CTLA4 expression would influence the 
proliferation of ccRCC cells. Transfection of siCTLA4 was performed, and subsequent qRT-PCR and Western blot (WB) analyses 
confirmed CTLA4 knockdown (Fig. 6A and B). The CCK-8 assay results demonstrated that downregulation of CTLA4 expression 
inhibited cell proliferation (Fig. 6C). The role of CTLA4 in cell invasion and migration was examined using Transwell assays, and the 
results showed that CTLA4 knockdown suppressed the migration and invasion of Caki-1 cells (Fig. 6D). To further validate the rela-
tionship between CTLA4 and the TGF-β signaling pathway, as well as macrophage polarization, qRT-PCR and WB analyses were 
employed to assess the impact of CTLA4 knockdown on the expression of TGF-β, iNOS, and CD206. The results revealed a significant 
suppression of TGF-β expression by siCTLA4. Moreover, compared to the negative control (NC) group, macrophages co-cultured with 
siCTLA4 ccRCC cells exhibited elevated levels of M1-like marker iNOS and reduced levels of M2-like marker CD206 (Fig. 6E–G). These 
findings suggest that CTLA4 knockdown inhibits cell proliferation, downregulates TGF-β expression, and impedes the M2-type 

Fig. 5. The molecular mechanisms underlying the pathomics signature. (A) GSEA in KEGG database. (B) GSEA in HALLMARK database. (C) 
Correlation between pathomics score and TMB. (D) Pathomics score and immune infiltration analysis in CIBERSORT database. 

Fig. 6. Impact and mechanistic verification of CTLA4 on ccRCC Cell proliferation, migration, and invasion in vitro. (A–B) qRT-PCR and Western blot 
analyses were performed to assess the expression levels of CTLA4 in Caki1 cells transfected with small interfering RNA (siRNA) targeting CTLA4 and 
control siRNA. (C) Cell proliferation was evaluated using the Cell Counting Kit-8 (CCK-8) assay. (D) Transwell assay showing cell migration and 
invasion. (E–G) Following co-cultivation of transfected cells, qRT-PCR and Western blot analyses were conducted to measure the expression levels of 
iNOS and CD206 in macrophages. The unedited images are referenced in Supplementary Fig. 4. *P < 0.05, **P < 0.01, ***P < 0.001 vs NC group. 
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polarization of macrophages. 

4. Discussion 

ccRCC patients have a poor postoperative prognosis [2], and biomarkers play a significant role in assessing treatment efficacy and 
prognosis of tumors. Currently, the field of oncology emphasizes the effectiveness of cancer immunotherapy in cancer treatment [24]. 
It is noteworthy that immune checkpoint molecules such as PD-L1 and CTLA4 are considered critical regulatory factors in immune 
response, holding promise as potential stratified prognostic biomarkers in certain cancer types, including ccRCC [11,12,25]. Targeting 
immune checkpoint inhibitors against PD-1, PD-L1, and CTLA4 has garnered the highest attention and widespread research in the 
realm of immunotherapy for ccRCC patients [26]. The role of anti-CTLA4 agents in the immunotherapeutic landscape of ccRCC pa-
tients is of paramount significance, and our previous endeavors have encompassed a series of investigations into the molecular aspects 
of CTLA4 [12]. As a further exploration of the preliminary research, a pathomics-based PS signature was developed to predict the 
expression level of CTLA4 and its overall survival in ccRCC patients. Further enrichment analysis and immune infiltration analysis 
showed that DEGs in the PS high expression group were significantly enriched in the TGF-β signaling pathway and significantly 
correlated with TMB and immune infiltration. 

CTLA4 is a crucial transmembrane receptor on T cells that competes with CD28 for the B7 molecular ligand. Its binding to the ligand 
transmits inhibitory signals to T cells, promoting tumor cell growth [27]. Previous evidence suggests that the expression level of CTLA4 
is crucial for the survival and prognosis of cancer patients. According to recent literature, CTLA4 is overexpressed in various hema-
tological malignancies, which is associated with poor survival rates [28]. Targeted drugs that block CTLA4, such as Ipilimumab, have 
been demonstrated to improve OS in patients with renal cell carcinoma [29,30], and advanced non-small cell lung cancer [31]. A 
pan-cancer analysis revealed that CTLA4, as a biomarker, exhibits high expression in certain cancer types, including ccRCC, and 
correlates positively with clinical staging and microenvironment scoring, indicating a high prognostic value [10]. Consistent with our 
preliminary work [12], our research findings also indicate high expression of CTLA4 in ccRCC tissue, potentially leading to unfa-
vorable prognosis. This observation has been validated in vitro using ccRCC cells, where downregulation of CTLA4 expression was 
found to suppress the proliferation of ccRCC cells. 

The expression level of CTLA4 can be assessed using various methods. Firstly, peripheral blood detection methods such as ELISA 
[15] can be employed, but they have limitations, including real-time detection constraints, high cost, and an inability to reflect tumor 
parenchyma. Secondly, fresh tissue specimens can be used for detection, involving qRT-PCR at the RNA level, Western blot, or flow 
cytometry at the protein level. However, specimen collection can be challenging, and detection can be influenced by operators and 
antibodies. Thirdly, paraffin tissue samples can be utilized for detection using techniques such as immunohistochemistry, immuno-
fluorescence, and high-throughput sequencing [32]. However, these methods also have their own drawbacks, including reliance on 
operators, variability in antibodies, and high costs. Notably, clinical diagnosis requires H&E staining sections, which represent the 
most accessible image data. The field of pathology has experienced significant changes with the introduction of artificial intelligence, 
which is gradually being applied to aid pathologists. In this study, we aimed to address these limitations and fill the existing gap. 
Initially, we collected histopathological images from a large cohort of ccRCC patients and extracted features using the TCGA database. 
Subsequently, machine learning techniques such as mRMR, REF, and GBM were employed to construct a pathomics signature. The 
resulting model was extensively validated. Our findings demonstrate that this model not only accurately predicts patient prognosis but 
also reflects CTLA4 expression levels, potentially reducing the need for additional costly examinations in clinical practice. 

Additionally, CTLA4 inhibitors have been shown to increase T cell growth by depleting Tregs. In our preliminary research, it has 
also been demonstrated that CTLA4 promotes tumor growth by facilitating immune evasion [12]. In this study, we further validate that 
the level of PS can impact the expression of Tregs, which can induce immune suppression through contact-dependent mechanisms or 
contact-independent mechanisms, including the generation of soluble immunosuppressive molecules such as TGF-β [33]. Furthermore, 
the high expression of CTLA4 in cancers such as ccRCC is strongly associated with immune subtypes C2 (IFN-γ dominant) and C6 
(TGF-β dominant) [10]. Our data indicate a significant correlation between high PS expression and the TGF-β pathway. The validation 
of our findings was further substantiated through in vitro experiments involving ccRCC cells. Consistently, the downregulation of 
CTLA4 was concomitant with a notable reduction in the expression of TGF-β. The observed correlation not only reinforces the pivotal 
role of CTLA4 in immune modulation but also unveils a potential mechanistic link to TGF-β-mediated signaling pathways in the context 
of ccRCC. On the other hand, the expression of CTLA4 in immune infiltration of ccRCC tumors has been found to be correlated with 
patient prognosis, with higher CTLA4 expression indicating worse outcomes [34,35]. The CTLA4 and PD-L1 pathways represent 
pivotal targets in immunotherapy, and our data elucidate a conspicuous positive correlation between CTLA4 and both PD-1 and PD-L1. 
This observation aligns seamlessly with previous investigations in the realm of cancer research. Jiang et al. demonstrated a positive 
correlation between PD-L1 and CTLA4 expression in breast cancer, underscoring the consistency of our findings [36]. Similarly, Liu 
et al. identified a positive correlation between PD1 and CTLA4 expression in glioma patients across diverse populations [37]. The 
contemporary landscape of cancer therapy has witnessed a paradigm shift, notably with the combined application of CTLA4 and PD-1 
inhibitors, demonstrating an augmentation in the rate of remission among cancer patients [38]. This compelling evidence further 
underscores the synergistic role of CTLA4 in conjunction with PD-1/PD-L1 in shaping the prognosis of tumors. Collectively, these 
findings strongly suggest that CTLA4 may play a pivotal role in the occurrence of clear cell renal carcinoma and the orchestration of 
immune regulatory processes. Furthermore, it is plausible that CTLA4 could exert influence on immune cell infiltration dynamics and 
consequently impact the outcomes of immune-based therapeutic interventions. 

In addition, our study revealed that the high PS group with adverse prognoses exhibited elevated expression levels of both 
macrophage M1 and M2 subtypes. Consistent with our findings, previous research has indicated that macrophage M2 subtype can 
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suppress inflammatory responses, induce angiogenesis, and participate in tumor initiation and progression, posing a risk factor for 
unfavorable outcomes in ccRCC patients [39]. Macrophage M1, on the other hand, demonstrates anti-tumor characteristics due to its 
intrinsic phagocytic activity and enhanced anti-tumor inflammatory response [40]. The interconversion of M1 and M2 macrophages 
under specific signals has been reported [39], possibly accounting for the simultaneous elevation of both subtypes observed in our 
study. Similarly, in a prognostic model for glioma patients developed by Jiang et al. [41], both macrophage M1 and M2 showed an 
increasing trend, highly correlated with CTLA4, and the expression levels were significantly elevated in the high-risk group. 
Furthermore, recent studies have suggested that the M1/M2 ratio may serve as a more robust biomarker for survival outcomes [42]. In 
line with this, downregulating CTLA4 was demonstrated to prevent macrophage polarization towards the M2 subtype. Collectively, 
these findings underscore the critical role of CTLA4 in promoting M2 activation and immune suppression, suggesting that targeted 
inhibition of CTLA4 holds promise for enhancing the efficacy of immunotherapy in treating tumors. Over the years, research on the 
prognosis prediction of tumor patients has evolved from single-gene analyses to encompass multiple omics signatures. ccRCC is a 
prominent area of study, and our research group previously developed a radiomics signature for ccRCC patients [12]. The results 
demonstrated that the radiomics signature effectively predicts CTLA4 expression and patient prognosis in ccRCC cases, consistent with 
the findings of this study’s pathomics signature. However, it is important to note that these models are based on limited sample sizes, 
relying on predictions from public databases. Future studies should aim to include a larger number of patient samples to continuously 
refine and improve the model. 

5. Conclusion 

In conclusion, our study provides valuable insights into the significance of CTLA4 in the prognosis of ccRCC and highlights the 
potential of employing pathomics signatures in clinical practice. We established a pathomics signature using machine learning to 
predict patient prognosis and demonstrate its correlation with CTLA4 expression levels, indicating its potential as a cost-effective 
instrument in clinical practice. Nonetheless, further studies involving larger patient cohorts are necessary to enhance the reliability 
and applicability of the model. 
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